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ABSTRACT 

The demands on the automotive industry for increased reliability and reduced noise have a direct 

effect on automotive axle requirements.  This demand translates to increased precision in 

automotive axle manufacturing, including axle assembly where accurate positioning of hypoid 

gears and setting of proper bearing axial load is the most challenging process.  To achieve the 

accuracy required, the axle assembly often includes select fit shims to control gear position and 

bearing preload force.  The shim selection process integrates a measurement system into the 

assembly process that includes; in-process measurements of components and subassemblies as 

inputs, and audit measurements of each assembly to confirm gear position by backlash and 

bearing preload by torque to rotate as outputs.  Understanding the correlation of in-process 

measurements to audit measurements is an essential part of optimizing the shim selection 

process. 

The purpose of this research was to define and assess a method to correlate input measurements 

as independent variables to audit measurements as dependent variables in an axle assembly 

system.  This correlational study developed and assessed an axle shim selection process model as 

a predictor of variance in the dependent variables of backlash and rotational torque.  To account 

for errors affecting shim selection the measurement uncertainty framework was used.  The study 

included three steps.  The first step developed an uncertainty model of an existing axle assembly 

measurement system using the standard uncertainty propagation method.  The second step 

evaluated the ability of the model to simulate the production process and predict process 
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capability using a Monte Carlo Method (MCM) simulation.  The third step applied the model to 

assess effects of a measurement error for the axle cover in-process measurement. 

The results of this study suggest that an uncertainty model can correlate input and output 

measurements in the shim selection process.  Through regression analysis of reworked axles, a 

statistically significant linear correlation between shim thickness change and the dependent 

variables of backlash and bearing torque to rotate was identified.  The coefficients from the 

regression analysis combined with the measurement uncertainty components were included in a 

predictive MCM simulation.  Results from the simulation were compared to production data to 

evaluate the effectiveness of the model at predicting system performance.  The model simulation 

did predict system first time acceptance through the shim selection process, MCM results were 

within 0.8% of backlash and 0.2% of bearing torque to rotate when compared to sample 

production data.  Though there was a statistical difference in the prediction of backlash, the 

effect was not practically significant.  The study identified that factors not directly associated 

with the assembly measurement process are a significant contributor, repeatability GR&R studies 

alone were insufficient in explaining the overall process error.  Hypothesis testing suggests that 

the application of the measurement uncertainty framework that includes the effects of statistical 

and non-statistical contributors to process error can predict automotive axle shim selection 

process capability. 
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CHAPTER 1 

 

THE PROBLEM AND ITS SETTING 

In automotive axles, hypoid gears have been the dominant transmission gearing since 

their introduction in 1926 (Coy, Townsend, & Zaretsky, 1985).  Stewart & Wildhaber(1926) 

identified hypoid gearing benefits as high power density, reduced noise, and extended life.  

Stadtfeld (2011a) refers to hypoid gears as the paragon of gearing in the transmission of power at 

angles, commonly ninety-degrees as required in many automotive axle applications.  The 

assembly process in automotive axles includes two requirements.  First, accurate positioning of 

hypoid gears to maintain gear meshing performance (Wang, Fang, & Li, 2014), secondly, 

maintaining adequate bearing preload (Timken, 2011).  To achieve the required bearing preload 

and gear position accuracy, inserting select fit shims or spacers are a common practice.  Select fit 

assembly typically includes a complex measurement system.  Such a measurement system 

combines component and subassembly measurement, with audit measurement that assesses the 

position of the gears by measuring gear backlash (Stadtfeld, 2014) and bearing preload by 

measuring torque to rotate.  To determine the shim-selection process suitability, a measurement 

system analysis (MSA) method is required. 

In automotive manufacturing, the Automotive Industry Action Group (AIAG, 2010) 

publication Measurement Systems Analysis Reference Manual, commonly referred to as MSA, 

is widely used in the specification and assessment of measurement systems.  The AIAG 
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measurement process analysis includes assessing the value of measurement process.  An over-

specified measurement process adds unnecessary equipment acquisition and operational cost.  

An underspecified shim-selection measurement process produces inaccuracy and resulting 

incorrect shim selection that requires rework of assembled axles.  Shewhart (1939) discussed the 

need for measurement accuracy and precision and the importance of acquiring enough data to 

support decisions.  To achieve this balance requires what Dietrich and Schulze (2011) define as 

an appropriate measurement system that supports the correct manufacturing process. 

Assessing measurement system capability is the subject of several standards that provide 

guidelines, describe procedures, and establish criteria (Dietrich & Schulze, 2011).  Montgomery 

and Runger (1993) identified that the purpose of measurement system capability analysis is to 

understand and quantify the variability present in the measurement process.  The traditional 

approach to measurement system analysis is Gauge Repeatability and Reproducibility (GR&R) 

studies.  Various assessment methods are applied; AIAG MSA(2010) guidelines include Average 

and Range and ANOVA Methods, Wheeler (2009) proposes a method he describes as Honest 

Gauge R&R, Ingram & Taylor (1998) apply and Analysis of Means method.  In all methods, the 

outcome of the measurement system capability analysis is an estimate of the standard deviation 

of the measurement applied to specification or process limits.  These methods are not directly 

applicable to the shim selection process that applies input measurements to control the output as 

determined by audit measurements. 

In automotive axle manufacturing, controlling the individual components at the precision 

required to achieve axle assembly gear position and bearing preload requirements is not 

practical.  In lieu of controlling individual components, automotive axle assemblies include 

select fit shims to achieve these requirements as shown in Figure 1.  Select fit axle shims are 
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nominally 3 mm thick and produced in 0.025 mm thickness increments.  To determine the 

thickness of these shims, each individual axle includes component measurements as part of the 

assembly process. 

 

Figure 1.  Axle assembly with select fit Pinion Side and Gear Side case shims 

This shim selection process includes two measurement types, in-process measurements 

and 100% verification measurements called the audit measurements.  The results of the in-

process component and sub-assembly measurements are used in selecting the shim size required 

to achieve backlash and bearing preload on individual axle assemblies.  The in-process 

measurements for a sample axle are shown in Figure 2.  Most of the in-process measurements are 

linear dimensions determined by measuring the components during the assembly process.  The 

exception is the measurement 𝛿𝐽.  This measurement is a deviation from the ideal mounting 

position of the ring gear “G” and is determined uniquely for each gearset during the gear 

manufacturing process.  To reduce variation in the shim selection process the first shim selected 

is measured and included in the second selected shim calculation.  In this example, the Pinion 

Side Shim thickness (𝑃𝑆𝑀𝑒𝑎𝑠) is measured and included as part of the Gear Side Shim thickness 
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calculation.  

 

Figure 2.  Axle assembly in-process measurements for case shim selection 

These seven in-process measurements are combined to determine the select fit shims as 

shown in Equations 1 and 2.  In addition to the measured input variables, included in each of the 

shim selection equations are bias compensations referred to as “production offsets” that are used 

to provide an additional control of the process.  During axle production, the verification audit 

measurements are monitored to validate that the process is centered.  Similar to CNC machines, 

if the process is not centered a method of slightly modifying each calculated shim thickness is to 

add or subtract a constant value referred to as an offset.  The offsets are typically less than 0.050 

mm and typically remain constant throughout a day’s production. 

𝑃𝑖𝑛𝑖𝑜𝑛 𝑆𝑖𝑑𝑒 𝑆ℎ𝑖𝑚 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 = 𝐶𝐴𝑅1 − 𝐶𝐴𝑅2 + (𝐺 + 𝛿𝐽) − (𝑂𝐴𝐻 − 𝐵𝐹) +

𝑂𝐹𝐹𝑆𝐸𝑇𝑃𝑆 (1) 

𝐺𝑒𝑎𝑟 𝑆𝑖𝑑𝑒 𝑆ℎ𝑖𝑚 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 = 𝐶𝐴𝑅1 + 𝐶𝑂𝑉 − 𝑂𝐴𝐻 − 𝑃𝑆𝑀𝑒𝑎𝑠 + 𝑂𝐹𝐹𝑆𝐸𝑇𝐺𝑆 (2) 
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Once selected, the shims are inserted and the axle is assembled.  As part of the assembly 

process, each axle is measured to validate that gear position and bearing preload are correct.  The 

position of the gear and the bearing preload force cannot be directly measured.  Two indirect 

measurements are used; gear position by gear backlash, and bearing preload by bearing rotational 

torque.  These measurements, referred to as process audit measurements, are influenced by 

uncertainties in the measurement process.  These uncertainties include measurement error and 

uncertainties associated with variables that are not measured, such as the variation in Pinion 

position in the assembly.  If the assembly audit measurements are outside of product tolerance 

limits, the axle is rejected and returned to the process for rework and reassembly with new shims.  

An assembly system for an automotive shimmed axle is shown in Figure 3.  Accepted parts are 

OK and reject parts are not OK (NOK).   

 

Figure 3. Axle assembly and shim-selection measurement process block diagram 

  In automotive axle assembly, the measurement system is an integral part of the 

assembly process.  The in-process measurements are inputs to the shim selection process.  The 

audit measurements compared to acceptance limits are the process outputs.  In this 
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manufacturing environment, a conventional measurement system analysis criterion is not directly 

applicable.  AIAG recognized that the MSA is not a “compendium of analysis for all 

measurement systems” (AIAG, 2010).  The application of published MSA methods to axle shim 

selection require expanded analysis methods to support: (a) the determination of what individual 

measurement accuracy is required for process control, (b) the influences of variables not 

measured, and (c) a priori performance assessment.  A method that correlates direct input 

measurements to indirect output measurements can provide this expanded analysis method. 

Uncertainty Analysis in Measurement Systems 

A method for assessing and reporting the accuracy of a measurement is uncertainty 

analysis that Coleman and Steele (2009) describe as the degree of goodness of a measurement.  

Uncertainty analysis is a statistical approach to document the confidence of a measurement 

(Hughes & Hase, 2010).  It provides a method to include other contributors to measurement error 

beyond the typical repeatability study (Dietrich, 2014).  There exists a distinction between 

measurement uncertainty and measurement capability.  AIAG MSA Reference Manual (2010) 

draws a contrast between measurement uncertainty, which is an assessment of the confidence of 

a measurement, and measurement system analysis, which is a system for understanding and 

improving a measurement process. 

Uncertainty may be expressed as standard uncertainty 𝑢, which is synonymous with 

standard deviation, and 𝑢2which is synonymous with variance (Dietrich & Schulze, 2011).  This 

is the method used in the more recent International Standards Organization (ISO) Standard 

22514-7 (2012) that includes measurement uncertainty analysis as part of assessing the 

measurement system capability.  The effects of measurement uncertainty on process variation 

can be expressed by considering standard uncertainty as standard deviation in the MSA (AIAG, 
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2010) relationship 𝜎𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
2 = 𝜎𝑝𝑟𝑜𝑐𝑒𝑠𝑠

2 + 𝜎𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡
2 .  Applying the substitution to the ISO 

(2012) expression for observed to the actual process capability index (𝐶𝑝), as  𝐶𝑝𝐴𝑐𝑡 =

𝐶𝑝𝑂𝑏𝑠√1 + (
𝜎𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡

𝜎𝐴𝑐𝑡
)

2

 the effects of measurement uncertainty may be quantified.  This is 

illustrated in Figure 4 where the effects of measurement uncertainty add to the actual process 

variation.  The actual process capability must outperform the observed capability based on the 

measurement uncertainty. 

 

Figure 4. Influence of measurement uncertainty on observed process capability(AIAG, 2010) 

In reference to uncertainty in measurement, all of the sources listed above refer to the 

Guide to the Expression of Uncertainty in Measurement (GUM) (Joint Committee for Guides in 

Metrology, 2008a) as the source for evaluation and expression of uncertainty.  Taylor and Kuyatt 

(1994) National Institute of Standards and Technology (NIST) provide a Technical Note as 

guidance for evaluating and expressing the uncertainty, noting that the NIST is intended as a 

more condensed document consistent with the GUM.  The GUM provides a recognized method 

to express two types of uncertainty, one based on statistical analysis of observations, and one by 

means other than statistical analysis of observations. 

The topics of measurement, measurement systems, and uncertainty have been the subject 
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of previous research.  Stamm (2013) researched measurement system analysis techniques 

comparing ANOVA, MSA, and Wheeler’s Honest Gauge R&R approaches.  Patki (2005)   

researched methods to improve the techniques of existing MSA methods.  Fleming (1988) 

discussed the issues with dimensional tolerances and uncertainty relative to assembly processes.  

The previous research does not address the measurement requirements of the axle shim-selection 

assembly processes. 

United States automotive manufacturing organizations often look at the AIAG MSA as 

the authoritative reference for acceptance criteria of a measurement system.  MSA(2010, p. 62) 

notes that their approach assesses a measurement system as a process control tool.  Summarizing 

the AIAG, ISO, and German Automotive Association (VDA), Dietrich (2014) similarly states 

that the measurement process must be compared to the specification or manufacturing process 

limits.  These processes typically apply assessment techniques like the Automotive Industry 

Action Group (AIAG) Gauge Repeatability and Reproducibility (GR&R) studies designed for 

assessing the measuring process capability (2010).  For the axle shim-selection process, these 

approaches do not provide a method to correlate input and audit measurements or predict the 

performance of the measurement and assembly process.  A gap exists between the published and 

accepted measurement system analysis methods and the requirements of an axle shim-selection 

system analysis. 

This study attempted to address this gap by employing measurement uncertainty methods 

to the axle shim-selection process.  Uncertainty methods are typically applied to report 

measurement confidence intervals; however, in this study, they were applied as a method to 

predict process outcomes.  The basis of this study is that measurement uncertainty methods can 

be applied as a measurement system analysis tool for axle shim-selection.  To test this theory, a 
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production shim selection measurement system was modeled using uncertainty methods 

including correlation of constituent input measurements with audit measurements.  The accuracy 

of the model prediction was assessed using a Monte Carlo simulation to compare model data to 

production data.  The study aimed to determine the application of this approach to predict future 

axle shim selection systems and establish acceptance criteria.   

This study applies the technology management principle of using technology to solve 

problems and improve an organizations efficiency.  By transferring existing technology to the 

shim selection process the study provides a method to improve the efficiency of an established 

practice.  The development of an assessment method for shim selection provides a tool for 

management that permits process improvements while potentially providing an economic benefit 

by reducing cost and improving process capability.       

Statement of the Problem 

A gap exists between the published and accepted measurement system analysis methods 

and the requirements of an axle shim-selection system analysis, therefore there is a need to 

develop a prediction method to correlate input and audit measures of an axle shim-selection 

process.   

Primary Research Question 

Can the application of uncertainty principles in measurement provide a method to 

correlate input variables and predict performance of the shim-selection process output variables 

of backlash and torque to rotate? 

Specific Research Questions (RQ) 

RQ 1:  How can measurement uncertainty methods be applied to model the axle shim-

selection measurement process? 
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RQ 2:  Can a measurement system uncertainty model be used to predict the backlash and 

torque-to-rotate capability of a shim-selection measurement system? 

RQ 3:  Can a measurement system uncertainty model be used to determine the acceptance 

limits for an individual in-process shim-selection measurement apparatus? 

Research Question 1; how can measurement uncertainty methods be applied to model the 

axle shim-selection measurement process?  The first specific research question involves the 

development of a model to predict the performance of the measurement system in the axle 

assembly process.  The development of the model results from the application of measurement 

uncertainty techniques as outlined in literature to a specific axle shim-selection manufacturing 

process.   

Research Question 2; can a measurement system uncertainty model be used to predict the 

backlash and torque-to-rotate capability of a shim-selection measurement system?  The second 

specific research question involves validation of the model.  It is answered by comparing actual 

axle assembly shim-selection system production data to the data from a Monte Carlo simulation.  

A data set is developed using Monte Carlo simulation of measurement true values as input to the 

model developed in Research Question 1.  This comparison is made through the following 

hypotheses: 

HO1: There is no significant difference between the Means of the uncertainty prediction 

model and actual test data in Backlash Audit. 

HA1: There is significant difference between the Means of the uncertainty prediction 

model and actual test data in Backlash Audit. 

HO2: There is no significant difference between the Variance of the uncertainty 

prediction model and actual test data in Backlash Audit. 
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HA2: There is significant difference between the Variance of the uncertainty prediction 

model and actual test data in Backlash Audit. 

HO3: There is no significant difference between the Means of the uncertainty prediction 

model and actual test data in Audit Total Torque to Rotate. 

HA3: There is significant difference between the Means of the uncertainty prediction 

model and actual test data in Total Torque to Rotate. 

HO4: There is no significant difference between the Variance of the uncertainty 

prediction model and actual test data in Total Torque to Rotate. 

HA4: There is significant difference between the Variance of the uncertainty prediction 

model and actual test data in Total Torque to Rotate. 

Research Question 3; can a measurement system uncertainty model be used to determine 

the acceptance limits for an individual in-process shim-selection measurement apparatus?  The 

third research question involves varying measurement capability of a selected in-process 

measurement and assessing the impact on process results using the simulation model developed 

in Research Questions 1.  Two model simulation runs were used to compare results with Cover 

bearing bore depth (COV) at AIAG MSA 10% GR&R and 50% GR&R with the tolerance range 

as upper and lower limits using the following hypotheses.   

HO5: There is no significant difference between the Means of the uncertainty prediction 

model Audit Backlash with COV measurement capability at 10% and 50%. 

HA5: There is significant difference between the Means of the uncertainty prediction 

model Audit Backlash with COV measurement capability at 10% and 50%. 

HO6: There is no significant difference between the Variance of the uncertainty 

prediction model and Audit Backlash with COV measurement capability at 10% 
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and 50%. 

HA6: There is significant difference between the Variance of the uncertainty prediction 

model Audit Backlash with COV measurement capability at 10% and 50%. 

HO7: There is no significant difference between the Means of the uncertainty prediction 

model Audit Torque-to-Rotate with COV measurement capability at 10% and 

50%. 

HA7: There is significant difference between the Means of the uncertainty prediction 

model Audit Torque-to-Rotate with COV measurement capability at 10% and 

50%. 

HO8: There is no significant difference between the Variance of the uncertainty 

prediction model Audit Torque-to-Rotate with COV measurement capability at 

10% and 50%. 

HA8: There is significant difference between the Variance of the uncertainty prediction 

model and Audit Torque-to-Rotate with COV measurement capability at 10% and 

50%. 

Purpose of the Study 

The purpose of this research was to define and assess a method to predict the 

performance of an axle shim-selection measurement system.  The study used three sequential 

steps to achieve this.  First, the study modeled an existing production shim selection system to 

characterize the relationship between independent variables and the dependent variables of 

backlash and torque to rotate using uncertainty techniques.  Second, a Monte Carlo simulation 

compared the model prediction to the production measurement system.  Third, the study assessed 

the effects of measurement capability for a specific independent variable on the performance of 
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the system. 

Need for the Research 

There is a need for a method to correlate the input measurements to the audit 

measurements and predict the capability of the shim selection process.  Applying AIAG MSA 

criteria, that MSA(2010) describes as applicable to measurement systems for process control, 

does not address this specific requirement.  The International Standards Organization ISO-

22514-7 (ISO, 2012) applies uncertainty analysis but the capability of the measurement system is 

assessed by applying upper and lower limits of the measurand, not suitable for the shim selection 

process.  Other measurement process qualification standards reviewed by Dietrich and Schulze 

(2011) also rely on process variation or drawing tolerance limits as the system assessment 

criteria.  Therefore, as stated above, a need exists to develop a method to analyze the axle shim-

selection measurement system thereby allowing process improvements and reducing cost for 

axle manufacturers.  This method needs to account for individual test article variation and input 

of known sources of uncertainty in predicting the outcome of backlash and rotational torque. 

Delimitations and Clarifications 

The basis for measurement apparatus repeatability typically includes an assessment of the 

variance or standard deviation of the measurement.  In most instances, this study uses the 

Average and Range method for estimating the measurement standard deviation from the average 

range 𝑅̅ using the 𝑑2
∗ estimator, 𝜎𝑒𝑠𝑡 = 𝑅̅/𝑑2

∗.  The ANOVA method is applied in instances 

where more data is available or where there is a desire to identify interactions (AIAG, 2002). 

An element of uncertainty analysis as outlined by the GUM is an evaluation of 

uncertainty by means other than statistical analysis of a series of observations, which is deemed 

Type B evaluation of uncertainty.  This study includes estimates of uncertainty by non-statistical 
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means.  The application of Type B in this study includes known variables, such as feature non-

homogeneity, that are difficult to measure and analyze statistically.  One of the elements of this 

research is to provide a method to include such considerations in a measurement process, and 

assess the effectiveness in sample data.   

Two terms are common in uncertainty analysis, standard uncertainty 𝑢𝑖 comparable to 

standard deviation, and expanded uncertainty 𝑈𝑖 .  The expanded uncertainty is applied to 

represent the statistical range of uncertainty of a measurement and is calculated based on a 

coverage factor 𝑘, 𝑈𝑖 = 𝑘𝑢𝑖.  The coverage factor is not applicable to this study, uncertainty as 

applied is the standard uncertainty. 

Assumptions of the Study 

It is an assumption of this study that the part variability associated with rolling element 

bearings is a contributor to the overall measurement system uncertainty.  It is not within the 

scope of this study to characterize this variation.  Factors that vary during the assembly 

measurement process, such as variation in lubrication conditions and the run-in time, result in 

variation in rolling torque (Timken, 2011, p. 180). 

Data collected for this study is by manufacturing facility SCADA systems from 

automatic gauges, recorded and stored electronically.  Control networks are discussed by Moyne 

and Tilbury (2007) for manufacturing control and networking that enables automatic inspection, 

and traceability through part identification.  Individual component barcodes provides the 

capability to transfer component specific measurement data to the assembly process.  An 

assumption of this study is that this process provides accurate recording and data transfer.  The 

measurement data acquisition is automatic without operator influence and without a requirement 

for human discretion or recording of a measurement.  The manufacturing facility performs 
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regular audits to validate the data recording accuracy and reliability.   

In some instances, the measured components are positioned manually into an automatic 

gauge.  In selected instances where the test article is manually loaded, it is an assumption of this 

study that the effect of manual activity is not a factor in the measured results; in other instances, 

a reproducibility study is applied to assess operator influence.  The specific assumption is 

clarified and documented for each measurement. 

Several of the techniques of uncertainty analysis include a requirement that the process is 

normally distributed and that measurements are independent.  This assumption was validated 

through analysis of data or clarified as an assumption during the data analysis process for each 

variable. 

Terminology 

AIAG (Automotive Industry Action Group) - Organization founded in 1982 by the three 

largest North American automotive manufacturers – Chrysler, Ford, and General Motors.  AIAG 

is a not-for-profit association that now includes automotive manufacturers and suppliers that 

provides educational programs and standards publication (AIAG, 2015). 

Accuracy – The agreement of a measured value with an accepted reference value (AIAG, 

2010). 

Audit – For the purposes of this study, the measurement of a feature after a manufacturing 

process that is used to assess the acceptance of the product to a limit. 

Average Range Method – For the purposes of this study, average range method is a 

statistical estimate of standard deviation based on a range of measurements using the 𝑑2
∗ 

parameter (AIAG, 2010). 

Bias – Deviation of a measurement or average of measurements form the true value of 
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the characteristic (Dietrich & Schulze, 2011). 

BIPM (Bureau International des Poids et Measures) – The International Bureau of 

Weights and Measures, an “intergovernmental organization established by the Metre 

Convention, through which Member States act together on matters related to measurement 

science and measurement standards” (BIPM, 2013). 

Carrier - The carrier in an axle assembly is a reference to the cast housing machined to 

position the hypoid gears and for load reaction in the vehicle. 

Combined standard uncertainty– The “standard uncertainty of the result of a 

measurement when that result is obtained from the values of a number of other quantities” 

(JCGM, 2008a). 

Differential Shims - Selectable spacers located between the Carrier and the bearing to 

position the ring gear in a shimmed style axle, also referred to as case shims. 

DTR (Differential Torque to Rotate) – The torque required to rotate the differential 

assembly in the axle resulting from axial preload on the differential bearings.  

Error– For purposes of this study error refers to the difference between a measurand 

observed value and the true value. 

Expanded uncertainty (U) – The “quantity defining an interval about the result of a 

measurement that may be expected to encompass a large fraction of the distribution of values 

that could reasonably be attributed to the measurand” (JCGM, 2008a). 

First Time Acceptance (FTA) – An assembly completing the process and is accepted the 

first time without rework, synonymous with First Time Quality (FTQ). 

GR&R (Gauge Repeatability and Reproducibility) – Estimate of the combined variation 

of repeatability and reproducibility of a measurement system (AIAG, 2010, p. 215). 
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GUM – A reference to the BIPM publication Evaluation of measurement data - Guide to 

the expression of uncertainty in measurement. 

Hypoid Gears - High efficiency gears in terms of combined power transmission and 

efficiency, Dr. Hermann Stadtfeld (2011a) describes them as the paragon of gearing.  In 

automotive applications, the gears are often lapped as matched pairs that require accuracy in 

positioning in the final assembly. 

ISO (International Organization for Standards) – A global federation of national 

standards bodies that prepare and publish standards through technical committees (ISO, 2012).   

 Measurand – The particular item that is being measured or subject to measurement under 

specified conditions.  (AIAG, 2002) 

Measurement Uncertainty – “non-negative parameter characterizing the dispersion of the 

quantity values being attributed to a measurand, based on the information used” (JCGM, 2008b). 

Measurement System Analysis (MSA) – Quantification of measurement error by analyzing 

multiple sources of variation in a process including variation from the; measurement system, 

evaluators, and measured articles (Kazemi, Haleh, Haijpour, & Rahmati, 2010, p. 25). 

Monte Carlo Method (MCM) – “[A] method for the propagation of distributions by 

performing random sampling from probability distributions” (JCGM, 2008c). 

Pinion - The Pinion is the smaller gear in a hypoid gear-set connected to the driveshaft in 

a driving axle. 

Precision – Describes the variation of repeated measurements over the range of 

measurement, synonymous with repeatability (AIAG, 2010). 

PTR (Pinion Torque to Rotate) - The torque required to rotate the pinion assembly in the 

axle resulting from axial preload on the pinion bearings   
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Ring Gear - The Ring Gear is the larger gear in a hypoid gear-set, referred to 

synonymously as; ring, gear, and crown gear. 

Single Flank Test (SFT) – A gear processing measurement that characterizes the gear 

form on the concave and convex flanks separately.  Used in the manufacture of hypoid gears to 

measure transmission error (Stadtfeld, 2011b). 

SCADA (Supervisory Control and Data Acquisition) - A computerized system that is 

capable of gathering and processing data and applying operational controls over distances where 

centralized data acquisition and control are critical to system operation (Stouffer, Falco, & 

Scarfone, 2011). 

Standard uncertainty (u) – An “uncertainty of the result of a measurement expressed as 

standard deviation” (JCGM, 2008a). 

True Value – The actual measure of the part, though unknowable it is the target of the 

measurement process (AIAG, 2010, p. 45). 

TTR (Total Torque to Rotate) – The torque required to rotate the assembled axle resulting 

from axial preload on the pinion and differential bearings.  TTR is related to PTR and DTR by 

the theoretical relationship, 𝑇𝑇𝑅 = 𝑃𝑇𝑅 + 𝑇𝑇𝑅/𝐺𝑒𝑎𝑟 𝑅𝑎𝑡𝑖𝑜.  

Type A Uncertainty – “[A] method of evaluation of uncertainty by the statistical analysis 

of a series of observations.”  (JCGM, 2008a, p. 3) 

Type B Uncertainty – “[A] method of evaluation of uncertainty by means other than the 

statistical analysis of a series of observations.”  (JCGM, 2008a, p. 3) 

Uncertainty Analysis – Analysis of the experimental uncertainties in measurements and 

in simulation results (Coleman & Steele, 2009, p. 5). 
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CHAPTER 2 

 

REVIEW OF LITERATURE 

Mass production manufacturing transitioned in 1924, Shewhart(1939, pp. 4-5) identifies 

the growth in standardization and the acceptance of probability and statistics in the sciences, as 

motivation for the adoption of the quality control chart, the starting point of statistical process 

control (SPC).  To establish whether a process is under statistical process control requires, as 

Shewhart(1939) describes, measurements of one kind or another i.e., a measurement system.  As 

part of that process, Shewhart(1939) discusses the need for accuracy and precision in 

measurement.  He concluded that it was impossible to specify authoritatively a definitive 

meaning for either. 

This chapter provides a literature review on the application of statistics and uncertainty in 

measurement systems.  Previous research provides the background on methods for expressing 

and applying uncertainty techniques.  Included in this chapter review is literature on statistics as 

background in measurement and uncertainty analysis applications.  The review focuses on 

uncertainty in metrology and accepted methods and standards for measurement system analysis.  

Specific application of the methods to the axle shim selection measurement processes is 

described.  The chapter concludes with uncertainty methods specific to his study and the 

development of an uncertainty model. 
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Measurement System as Feedback 

For maintaining a process under statistical control, Shewhart(1939) describes a 

continuing self-correcting process, in current terms, a feedback loop.  Juran (1995) discusses the 

feedback loop as a simple model of manufacturing process control.  This feedback loop provides 

information to adjust the process to maintain control relative to some criteria.  The feedback 

model as described by Juran (1995) is applicable to any manufacturing process, even the 

craftsperson serves as process, sensor, umpire, and actuator in their work.  An assessment system 

that is downstream and feeding back to the manufacturing process as illustrated in Figure 5.  The 

sensor or monitor provides the necessary feedback to the umpire for decision making, that sensor 

is often some form of measurement system, the feedback serves as the process control method. 

 

Figure 5. The feedback loop in generic terms (Juran, 1995, p. 617) 

Achieving process control as discussed by Shewhart (1939) requires the removal of 

special or assignable cause variance, and monitoring of the process.  This dictates the need for 

measurement of the manufacturing process artifacts i.e., a measurement system.  Juran (1995) 

traces the history of measurements and the appropriateness of a measurement system from the 

ancients; he provides an example of quality control and measurement systems in use in China 

3,000 years ago.  The common understanding of measurement as described by Grubbs (1948) is 

a two-component concept, one the true or absolute value and the other the measurement error.  
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Grubbs (1948) was one of the first to discuss the application of statistical methods to discern the 

error of the measurement system, describing methods to estimate variance based on multiple 

measurements. 

As has been stated earlier, the domestic automotive companies of Chrysler, General 

Motors, and Ford combined to publish a manual under the auspice of the Automotive Industry 

Action Group (AIAG) for assessing measurement systems in 1990.  The AIAG Measurement 

System Analysis (MSA)(1990) applies statistical methods as part of the operational definition of a 

measurement system, and requires that the measurement variability must be small relative to the 

process and specification limits (p. 5).  The International Standards Organization (ISO) more 

recently published Standard 22514-7, Statistical methods in-process management – Capability 

and performance – Capability of a measurement process(ISO, 2012).  In both of these 

recognized industry standards, assessment of the measurement system is relative to limits of a 

manufactured feature.  Both standards discuss the suitability of a measurement process, AIAG 

MSA describes the first step of measurement system development is to establish the purpose and 

how it will be utilized (AIAG, 2002, p. 24).  The ISO (2012) measurement system capability 

standard similarly states that the measurement process must be suited for a specific measurement 

task.  The assessment metric, whether MSA(AIAG, 2002)GR&R results or the ISO (2012) 

Performance Ratio and Capability Indices, all are referenced to specification limits.  Neither 

provides a specific method to assess a measurement system used for the shim selection process.  

Statistics in Measurement Systems 

Measurement accuracy and precision as discussed by Shewhart (1939) emphasized the 

collection of enough data to make an accurate decision.  The purpose for this accuracy and 

precision for Shewhart(1939) was in support of maintaining a process in statistical control.  He 
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emphasizes repeated measures as a requirement to provide a basis for confidence in future 

measurements.  Another Shewhart(1939) contribution to expressing measurement accuracy is the 

concept of quantitative and qualitative elements of a measurement process.  Shewhart(1939) 

discussed measurement and accuracy in reference to statistical control and the expression of 

limits but does not address accuracy assessment of the measurement device.  The concept of 

measurement as a combination of the absolute value of the characteristic being measured and the 

error of the measurement is the basis of Grubbs (1948) publication on precision and 

reproducibility of a measurement instrument.  Grubbs (1948) defines the concept with a simple 

expression, 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 = 𝑥𝑖 + 𝑒𝑖, where 𝑥𝑖 is the true-value and 𝑒𝑖 is the measurement error.  

The expression provided the starting point for Grubbs (1948) derivation of separate variances for 

the measured feature and the measurement error.  Grubbs (1948) further derived methods for 

isolating the measured feature variance from the measurement error through multiple 

measurements; the method later adopted in Gauge Repeatability and Reproducibility (GR&R) 

studies.    

Shewhart is credited by Harry Ku et al. (1969) with introducing statistical control on the 

quality of manufactured items, but Ku credits Pontius and Cameron (1967) with the first 

published example of applying statistics to the expression of the precision of a measured value.  

The concept of uncertainty in measurement, and the application of repeated observation sample 

error as an estimate of standard deviation to express this uncertainty, is included in Pontius and 

Cameron (1967) published research.  The combined measurement uncertainty described by 

Pontius and Cameron (1967) included subjective bias estimate as systematic error, and estimated 

standard deviation as random error.   
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The expression of uncertainty that includes separate expression of systematic error, 

accuracy, or bias, from the random process error is an element of Eisenhart (1963) publication on 

instrument calibration.  Among the methods Eisenhart (1963) included was an unbiased estimate 

of the within-occasion standard deviation from the average range (𝑅̅), that is applied in 

constructing Range Charts.  The estimation of standard deviation from a series of samples based 

on range was developed by Patnaik (1950) as an efficient and simplistic practical statistical tool 

for small sample sizes.  Patnaik (1950) derives a constant 𝑑𝑛 used to estimate standard deviation 

based on an average range of groups sample measurements where, 𝜎𝑤 = unbiased estimate of 

standard deviation for a sample 𝑅̅ = sample average range, 𝑑𝑛 = unbiased estimator constant. 

𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑜𝑓 𝜎𝑤 = 𝑅̅/𝑑𝑛 

 The early applications of assessing measurement error, or uncertainty, focused on 

standards and laboratory calibration, a result of increased accuracy requirements in the missile 

and satellite fields (Ku et al., 1969).  The expression of imprecision and systematic error as a 

clarifying statement to a measurement result is the approach adopted by Harry H. Ku (1969).  Ku 

outlined techniques for expressing imprecision and systematic error or bias, and included details 

on the expression uncertainty.  Ku (1969) included the concept of error influences based on 

judgment as part of the uncertainty including expressions like “believed”, “estimated”, and 

“considered”. 

The extension of statistical methods from laboratory to metrology for manufacturing 

environments is discussed by Ku (1967).  He applied statistical concepts in clarifying 

measurement uncertainty to include computing confidence intervals and limits.  The two 

underlying assumptions in analyzing a measurement process are identified by Ku (1967), that the 

measurement follows the normal distribution, and a reliance on the Central Limit Theorem.  The 
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Central Limit Theorem assumption leads to a confidence interval when the variance 𝜎2 of the 

population is known; 𝜎𝑀 = 𝜎 √𝑁⁄  for 𝑁 measurements, where 𝜎𝑀 is typically referred to as the 

Standard Error of the Mean (Warner, 2013).  Ku (1967) includes a discussion of sample mean 𝑥̅ 

and sample variance 𝑠2 as a method to estimate the standard error of the mean, expressed as  

𝑆𝐸𝑀 = 𝑠 √𝑁⁄  to clarify it is based on the sample variance.  The methods outlined by Ku (1967) 

include estimating confidence intervals when the population variance is unknown by calculating 

the variance of the measurements.  This approach is included in Warner (2013) statistics text 

applying Students t distribution as an assessment of upper and lower confident limits on a 

measurement applying 𝑡𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 probabilities where degrees of freedom (𝑑𝑓) are based on sample 

size (N) as, 𝑑𝑓 = 𝑁 − 1, 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = 𝑀 ± (𝑡𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 ∗ 𝑆𝐸𝑀) 

Expressing uncertainty in measurement that includes various contributors beyond the 

measurement variance is emphasized by Eisenhart (1968) to include detailed descriptions of 

standard error and degrees of freedom from multiple sources in reporting results.  The method to 

propagate errors in metrology when multiple measurements are applied is a topic Ku (1967) 

includes in his literature.  The general formula for error propagation with two measurements 

from Ku (1967) where 𝑠𝑖 represents the standard error of the measurement data; 
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Provided the measurements are independent 𝑟𝑥𝑦 = 0 and the covariance does not contribute to 

the propagated variance.  This approach provided a method to apply uncertainties in 

measurements to a reported result.  Another established method Ku (1967) applied to early 

metrology, estimating standard deviation based on the range of a group of measurements, a 
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method that was applied to statistics by Patnaik (1950) and later adopted by AIAG MSA for 

average range GR&R. 

Uncertainty Analysis 

The concepts of measurement error and measurement uncertainty included in 

publications on laboratory results, metrology, and measurement systems were the subject of 

numerous publications, including the National Bureau of Standards collection by Ku et al. 

(1969), but a broadly accepted approach to express measurement error and uncertainty did not 

exist.  This issue was acute in the aerospace industry, as Abernethy, Benedict, and Dowdell 

(1985) identified that the absence of an uncertainty calculation standard made results comparison 

difficult.  The publication by Abernethy et al. (1985) maintained the basic principle of expressing 

error as systematic or bias error, and precision or random error.  Adapting the standard error 

formula, as did Pontius and Cameron (1967) for random error, Abernethy et al. (1985) identified 

that the bias error had no statistical equation and must be estimated.  Conceding the judgmental 

nature of bias error estimate, Abernethy et al. (1985) combined the two errors as an estimate of 

the measurement uncertainty (U) using the expression 𝑋̅ ± 𝑈, where 𝑋̅ represents the average 

measurement and 𝑈is the associated uncertainty.  Adopting Student’s t statistic in the same 

manner as Ku (1967), the authors identified two confidence interval expressions for uncertainty.  

This became an accepted approach to quantify both statistical and expert judgment of 

measurement error.  A unified approach for expressing uncertainty was finally introduce with the 

publication of the Guide to the expression of uncertainty in measurement (GUM) in 1993 

(JCGM, 2008a). 

The common application of uncertainty in reference to the quality of measurement 

includes two factors as identified by Kessel (2002), the equality of the measurand true value to 
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the measurement, and the accuracy of that measurement.  Kessel (2002) refers to the GUM as 

outlining the unified approach to stating the uncertainty in measurements.  The GUM (JCGM, 

2008a) is a publication by a working group of experts selected by the Bureau International des 

Poids et Measures (BIPM), the International Electrotechnical Commission (IEC), the 

International Organization for Standardization (ISO), and the International Organization of Legal 

Metrology (OIML).  Virtually every source, including MSA(2010), ISO (2005), Coleman and 

Steele (2009), Hughes and Hase (2010), and Taylor and Kuyatt (1994)NIST Guidelines, refer to 

the GUM as the primary reference in uncertainty analysis.  The concept of quantified uncertainty 

by GUM (2008a) is an expression of the combined error, established through error analysis, of 

the uncertainty or doubt about the stated result.  The GUM (2008a) provides methods for 

evaluating and expressing how well the result of the measurement represents the true value of the 

measurand. 

The methods for developing uncertainty expressions follow what Shewhart (1939) 

described, quantitative and qualitative elements.  The contribution of the GUM (2008a) is in 

providing methods for evaluating and expressing measurement uncertainty that are a consensus 

of recognized international organizations.  Prior to the publication of the GUM (2008a) the 

concept of a measurement as an expression of the true value and measurement error that includes 

statistical and judgment elements was well established.  Taylor and Kuyatt (1994)NIST 

Technical Note discuss that these two recognized elements of measurement error are classified 

and combined in two categories of uncertainty, consistent with GUM, as Type A, that evaluated 

by statistical methods, and Type B, that evaluated by other means.  The expression of Type A 

and Type B uncertainties are part of the measurement lexicon, as Coleman and Steele (2009, p. 

264) state, to remove the ambiguity associated with the previous expressions of systematic and 
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random error.   

The sources of Type B uncertainties are both random and systematic effects on 

measurements.  ISO (2005) lists examples of Type B evaluations including, calibration of 

reference standards, environmental effects that cannot be sampled, misalignment in the 

measurement instrument, and instrument resolution.  The technique identified by ISO (2005) is 

to estimate the worst case based on experience, scientific judgment, and scant data.  The GUM 

(JCGM, 2008a) describes Type B estimates of uncertainty as scientific judgment based on “the 

pool” of available information, including “experience with or general knowledge of the behavior 

and properties of relevant materials and instruments” (p. 11).  The GUM (JCGM, 2008a) defines 

that the purpose of Type A and B classifications is to indicate the method used, both are based on 

probability distributions and that Type B methods can be as reliable as Type A methods. 

Guidelines for applying Type A and Type B uncertainty methods are provided in three 

publications that reference the GUM.  The ISO (2005) Technical Specification 21749:2005, 

Measurement uncertainty for metrological applications – Repeated measurements and nested 

experiments, applies the principles to ongoing manufacturing processes.  The ISO (2012)22514-

7, Statistical methods in-process management Capability and performance, Part 7: Capability of 

measurement processes, applies the principles to measurement system capability analysis.  

Finally, Dietrich and Schulze (2011)Measurement Process Qualification, Gauge Acceptance and 

Measurement Uncertainty According to Current Standards, applies the principles of the Guide 

and ISO standards to manufacturing applications. 

Measurement uncertainty analysis applies the GUM (2008a) expressions for standard 

uncertainty, 𝑢(𝑥𝑖), and standard variance 𝑢2(𝑥𝑖), for both Type A and Type B uncertainties.  To 
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determine a combined uncertainty 𝑢𝑐(𝑦) and variance 𝑢𝑐
2(𝑦)of a measurement process the 

individual measurement uncertainties are summed using GUM Equation (10). 

 𝑢𝑐
2(𝑦) = ∑ (

𝜕𝑓

𝜕𝑥𝑖
)

2
𝑁
𝑖=1 𝑢2(𝑥𝑖) 

Where 𝑓 is a functional expression of the measurement described by GUM Equation (1). 

 𝑌 = 𝑓(𝑋1, 𝑋2, … , 𝑋𝑁) 

The ISO 22514-7 (2012) provides a method to apply the GUM equation to combine individual 

component uncertainty variance 𝑢𝑖
2 to determine a combined measurement variance 𝑢𝑀𝑒𝑎𝑠

2  

contributors to uncertainty; 

 𝑢𝑀𝑒𝑎𝑠
2 = ∑ 𝑢𝑖

2𝑁
𝑖=1  

Monte Carlo Uncertainty Methods 

A statistical method to study complex physical phenomena using random number 

generation was introduced to literature by Metropolis and Ulam (1949) which they referred to as 

the Monte Carlo Method (MCM).  The concept of applying statistical techniques to problem 

solving was known prior to this publication but was not commonly used due to the tedious 

calculations involved.  The computational power of computers revived the approach to solve 

complex problems; scientists at the Los Alamos Laboratory were first to apply the Monte Carlo 

name(Metropolis, 1987).  Monte Carlo Simulation (MCS) is a tool commonly applied in 

measurement uncertainty analysis to propagate multiple error sources to determine the combined 

standard uncertainty.  Coleman and Steele (2009)outline the simulation process used to 

incorporate error from multiple sources in predicting the output variable distribution, shown in 

Figure 6.  It is initiated by selecting a probability density function (PDF) to produce the true 

value, then adding the error from the various sources based on their individual PDF’s.  The MCS 

inputs include selecting the appropriate PDF and the number of trials for the simulation.   
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Figure 6. Monte Carlo Method for combined standard uncertainty (Coleman & Steele, 2009) 

Previous studies have applied MCM in measurement system analysis, Yeh and Sun 

(2013) applied MCM to estimate the variability of GR&R.  They provided the basic steps in an 

MCM study as selecting the appropriate PDF to generate the random input, propagate the inputs 

through the model to generate an output, repeat the steps for the number of iterations, and 

analyze the results.  The number of simulation iterations is based on the purpose of the analysis 

that is commonly to determine the output reported coverage factor.  Couto, Damasceno, and de 

Oliveira (2013) discuss methods for determining MCM iterations including following the GUM 

guidelines for number of trials 𝑀 > 104 (1 − 𝑝)⁄  where p is the probability coverage for the 

output, and convergence methods that monitor the stability of the output.  Coleman and Steele 

(2009) approach for determining MCM iterations for standard uncertainty is to monitor the 

standard deviation of the output and stopping iterations once it converges to a limit based on the 

purpose of the analysis.   
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The application of the MCM is common in many research fields because of the ease of 

use and efficiency (Kroese, Brereton, Taimre, & Botev, 2014).  There are numerous software 

packages available for MCS, including Microsoft Excel®, which is commonly used due to the 

ease of programming and software availability (Farrance & Frenkel, 2014).  McCullough and 

Heiser (2008) have criticized the use of Excel for statistical analysis as inadequate for statistical 

and scientific purposes, particularly versions prior to 2007.  Farrance and Frenkel (2014)argue 

that Microsoft Excel®  for MCS is an acceptable approach for analysis similar to uncertainty 

analysis, where heavy use of the random number generator feature is not required. 

The axle shim-selection process includes multiple uncertainties with varying PDF’s, this 

fits the Coleman and Steele (2009) feasibility criteria for the application of MCM uncertainty 

analysis.  A shim-selection MCS is an effective method to propagate multiple uncertainties for 

each input and output.  An advantage of MCS is the ability to generate a large amount of 

simulated production data that matches the actual production process.  The simulated data can 

then be directly compared to production data using data visualization and accepted statistical 

techniques.  This includes the ability to compare input and output variables, and in-process 

observations to validate the analysis.  Another benefit is the flexibility of a MCS model.  With an 

MCS model, changes in variables and in the process can be readily made and compared.  A 

Microsoft Excel® shim-selection process MCS is a convenient and accurate method to correlate 

input and output variables.  

Industry Approaches to Measurement Uncertainty 

Early examples of published uncertainty analysis methods focused on the laboratory and 

testing facilities, for example the Abernethy and Thompson Jr. (1973)Handbook, Uncertainty in 

Gas Turbine Measurements.  The emphasis was on reporting and communicating specific 
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confidence ranges in measurement testing results and scientific data.  An early treatment of 

uncertainty in an industrial application is by Ku (1967) in the American Society of Tool and 

Manufacturing Engineers Handbook of Industrial Metrology.  Ku (1967) described the 

measurement process and assessing the variability using statistical methods.  In the automotive 

industry, measurement error is discussed in the first edition of the AIAG MSA Manual, but the 

topic of uncertainty is not discussed until later editions.  The third edition of MSA(AIAG, 2002) 

discusses the topic of uncertainty in two contexts.  The first is a general definition as the range of 

measured values in which the true value is contained (p. 8).  The second context is the more 

formal uncertainty analysis.  The reference manual identifies the concept but specifically 

delineates that MSA focuses on understanding the measurement process, and defers to the Guide 

to the Expression of Uncertainty in Measurement (GUM) for the topic of uncertainty, claiming it 

a high-level reference document.  GUM defines uncertainty in measurement as a reflection of the 

lack of exact knowledge of the measurand value (JCGM, 2008a, p. 5). 

An alternate standard that provides insight into the application of uncertainty in industrial 

applications is ISO (2012) 22514-7 Statistical methods in-process management Capability and 

performance Part 7: Capability of Measurement processes.  This standard provides a statistical 

approach to assessing uncertainty and applying that to assessing capability of measurement 

processes.  The contrast between MSA and ISO approaches are made by Dietrich (2014), noting 

that ISO guidelines describes assessing a measurement system, including uncertainty from test 

part variation, separate from influences not directly the result of the measurement system.  Table 

1 summarizes the ISO (2012) defined components of uncertainty, identifying seven categories of 

uncertainty.  The application of the uncertainty expression by ISO (2012) provides greater 

granularity than MSA GR&R, defining two performance ratios and two performance indices for 
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measurement system assessment. 

Table 1 

ISO 22514-7:2012 Standard uncertainty component descriptions 

Component Symbol Description 

Maximum 

Permissible Error 

(MPE) 

𝑢𝑀𝑃𝐸 A standard and known uncertainty expressed as the 

probability of a rectangular distribution: 

𝑢𝑀𝑃𝐸 =
𝑀𝑃𝐸

√3
 

 

Measurement 

System Resolution 
𝑢𝑅𝐸  One half measurement resolution 𝑅𝐸  expressed as the 

probability of a rectangular distribution: 

𝑢𝑅𝐸 =
1

√3
∗

𝑅𝐸

2
 

 

Calibration 𝑢𝐶𝐴𝐿 Standard deviation of uncertainty due to calibration, 

including the coverage factor 𝑘: 

𝑢𝐶𝐴𝐿 =
𝑈𝐶𝐴𝐿

𝑘𝐶𝐴𝐿
 

 

Linearity 𝑢𝐿𝐼𝑁 Uncertainty resulting from linearity.  Determined 

from a calibration certificate, experimentally by 

ANOVA methods, or from uniform distribution range 

where a is half width of the uniform distribution or 

known MPE value: 

𝑢𝐿𝐼𝑁 =
𝑎

√3
 

 

Bias 𝑢𝐵𝐼 Difference from a measured standard: 

𝑢𝐵𝐼 =
|𝑥𝑔̅̅ ̅ −  𝑥𝑚̅̅ ̅̅ |

√3
 

Reference 

Standards 
𝑢𝐸𝑉𝑅 Minimum of 30 repeated measures on a reference 

standard or standards.  The uncertainty is the unbiased 

estimate of the standard error: 

𝑢𝐸𝑉𝑅 = √
1

𝐾 − 1
∑ (𝑥𝑖 − 𝑥𝑔)

2𝐾

𝑖=1
 

Other uncertainty 

components 
𝑢𝑀𝑆−𝑅𝐸𝑆𝑇 Other uncertainty components not characterized 

above that influence the measuring system. 
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The application of uncertainty analysis by ISO (2012) includes two acceptance criteria, 

one a capability index 𝐶𝑀𝑆, and a capability ratio 𝑄𝑀𝑆.  Comparing the ISO 22514-7 standard to 

AIAG MSA Dietrich (2014) contends that the ISO capability assessment process has an 

advantage.  The separation of uncertainty into component elements of the measurement process 

that affects the uncertainty permits one to assess the source of uncertainty independently.  

Dietrich (2014) contends that this is enough of an advantage to select the ISO 22514-7 approach 

over AIAG MSA, but concedes that the MSA global recognition and ease of application provide 

arguments for that approach.  Either AIAG or ISO approaches apply the same evaluation 

techniques, an assessment of the measurement system to the feature specification limits.  MSA 

evaluates the ratio of the repeatability and reproducibility (GR&R) relative to the total variation 

(TV) of the upstream process.   

 %𝐺𝑅𝑅 = 100 ∗
√(𝐸𝑉)2+(𝐴𝑉)2

𝑇𝑉
 

The assessment method of ISO 22514-7 includes the upstream process upper and lower 

specification limits in the assessment metrics.  The performance ratio 𝑄𝑀𝑆 evaluates the 

uncertainty as the percentage of the specification range upper limit (U) and lower limit (L).  

 𝑄𝑀𝑆 =
2∗𝑈𝑀𝑆

𝑈−𝐿
∗ 100 

Similarly, the ISO Capability index 𝐶𝑀𝑆 is related to the specification range. 

 𝐶𝑀𝑆 =
0.3∗(𝑈−𝐿)

6∗𝑢̂𝑀𝑆
∗ 100 

Measurement Requirements for Precision Assembly 

The assembly of manufactured components with interchangeable parts started, as  

Shewhart(1939) describes, as an exact science, assuming individual assembly components are 

manufactured to exact dimensions.  The statistical process control concept 
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Shewhart(1939)introduced, provided a method to analyze and control the manufacturing process 

but the responsibility of assigning the limits to manufactured components fell on the design 

engineer.  The design engineer had to assign tolerances that resulted in acceptable assemblies, 

and to perform analysis that determined tolerance limits.  The concept of an assembly tolerance 

stack and component tolerance allocation Scholz (1995) traces back to 1925 with numerous 

publications in the 1950’s on the topic.  The two tolerance allocation methods Scholz (1995) 

summarizes are arithmetic and statistical tolerancing.  The arithmetic tolerance assumption is 

that the component feature can have any value within the tolerance range and that all possible 

values are within that range.  The statistical tolerancing approach assumes that the component 

features vary following a distribution, most commonly a normal distribution.  The intuitive issue 

for assembly of interchangeable parts as Scholz (1995) described is the inability to assemble 

parts considering each relevant feature includes variation. 

The goal of allocating the tolerance of components in an assembly as summarized by 

Scholz (1995) is to maintain the allowable assembly error within the detail component 

manufacturing errors.  Ultimately, the purpose of tolerance allocation is one of cost associated 

with part and assembly manufacture, to the extent one can relax tolerance the cost to 

manufacture the assembly is reduced (Scholz, 1995).  Researchers have developed alternate 

methods for allocating and analyzing tolerances.  Greenwood (1987) proposed alternate 

approaches to statistical tolerancing to predict the outcome of an assembly process modeling the 

component process bias along with the random variation.  Chase and Parkinson (1991) 

summarized three methods for tolerance allocation, worst case (arithmetic), statistical, and 

simulation.  Heling, Aschenbrenner, Walter, and Wartzack (2016) propose an integrated model 

that includes manufacturing cost in the allocation of tolerances.  The research on tolerance 
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allocation has a common theme described by Chase (2004), as manufacturers pursue higher 

quality products, controlling and monitoring manufacturing variation consumes much effort.  

The purpose of manufacturing tolerance studies is the allocation of tolerance at the component 

level.  Chase (2004) describes the process as predicting accumulated variation in the assembly 

and driving the process to manufacture the components within statistical control to meet the 

assembly requirements. 

Reducing process variation to simultaneously improve quality and reduce cost is a 

phenomena recognized by Dr. Genichi Taguchi (Sullivan, 1987), who developed a method to 

analyze the relationship.  Taguchi’s “Loss Function” 𝐿(𝑥) assesses the monetary impact of 

process deviation.  It is used to calculate the loss 𝑎 when variable 𝑥 is not at the target value 𝑇 by 

magnitude 𝑏, 𝐿 = (𝑎 𝑏2) ∗ (𝑥 − 𝑇2)⁄ (Drake, 1999).  The concept applied to a normal distribution 

is shown in Figure 7.  The method can be applied to a manufacturing process to make trade-offs 

based on the monetary impact of deviation.  

 

Figure 7. Taguchi loss function relative to a normal distribution (Drake, 1999) 

The method to communicate manufacturing requirements includes dimensions and 

tolerances as part of engineering drawings.  One of the earliest drawing standards was issued in 
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1927, British Standard No. 308, the first American standard for drafting was issued in 1935 by 

the American Society of Mechanical Engineers as Dimensional and Tolerancing Standard Y14.5 

(Srinivasan, 2008).  The standards have been revised since inception and now adopt the 

expression Geometric Dimensioning and Tolerancing (GD&T) to communicate requirements.  

The application of GD&T requires the designer to transfer the design requirements into 

unambiguous and measureable specifications (Drake, 1999).  The application of GD&T in 

components that make up complex assemblies is to improve the assembly process.  Although 

three-dimensional models of components and assemblies commonly communicate nominal 

geometry, the tolerance requirements are typically communicated in two-dimensional drawings, 

what Srinivasan (2008) refers to as dual product documentation.  Complex assemblies and 

feature requirements such as torque and gear backlash typically remain as minimum and 

maximum drawing limits.   

Complex assemblies where component manufacture under statistical control limits to 

satisfy precision downstream criteria is not economical require an alternate approach.  

Automotive axles are an example where manufacturing the individual components within 

tolerance limits to achieve assembly requirements is impractical.  The axle assembly of this 

study limits backlash to ±0.050 mm, equivalent to a ring gear positional tolerance of ±0.075 mm.  

An acceptable manufacturing process would require the allocation of this tolerance across 

multiple machining processes, gear manufacture, welding, and the two tapered roller bearings.  

Just the two automotive quality tapered roller bearings require ±0.200 mm, more than the total 

permissible tolerance.  To meet the assembly requirements in many axle designs select-fit 

spacers or shims are included in the assembly to accommodate the manufacturing variation of the 

components.  Selecting this shim requires inspection and recording measurements of individual 
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components.  Shims are classified, typically in 25-micron increments, and the process selects the 

shim class that most closely meets the requirement for the specific axle being assembled.   

Automotive Axle Assembly 

As stated earlier, in automotive axle assembly, hypoid gears are common and accurate 

positioning of hypoid gears is critical for providing durable and low noise producing assemblies 

(Spear & Baxter, 1966).  Accuracy in setting pinion and ring gear position is the most 

challenging process in axle assembly.  The arrangement of hypoid gears is such that the pinion 

axis position relative to the ring gear axis-centerline varies in two directions.  A common method 

of describing this relationship is the P-E-G system, illustrated in Figure 8.  The G dimension 

defines the gear axial position along the gear centerline relative to pinion centerline.  The E 

dimension is the off axis distance or offset of the pinion center from the gear centerline 

perpendicular, often referred to as the hypoid offset.  The P dimension is the position of the 

pinion along the pinion axis relative to the ring gear centerline.  In automotive axle assembly, the 

design commonly includes the flexibility to vary the pinion position P and gear position G 

through selectable shims or other methods.  In axle assembly, the gear position selectable shims 

are referred to as differential or case shims signifying that they position the differential 

case(Spear & Baxter, 1966).   
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Figure 8. Axle hypoid gear positioning P-E-G system 

A common manufacturing method for automotive hypoid gears includes lapping of 

mating pinion and ring gears after heat treatment.  Once the gears are lapped, they are serialized 

and maintained as a match set.  After lapping the matched set gears are roll tested to validate the 

gears are correctly manufactured by validation of the contact pattern.  The technique used to roll 

test the matched gears is termed Single Flank Testing (SFT) signifying the gear teeth are 

evaluated separately on the convex flank, or tooth side, and the concave flank (Stadtfeld, 2011b).  

The SFT validates gear performance under load including information on transmission error.  

The SFT process positions the Pinion at the proper mounting distance “P” and the ring gear in 

contact with the pinion while rotating.  The gear is retracted a known distance that positions the 

ring gear axially away from the pinion, creating backlash.  This position is measured and the 

deviation from the theoretical “G” is recorded.  That deviation from the ideal “G” is defined 

as𝛿𝐽, a value recoded in millimeters and tracked for each gearset as shown in Appendix A, 

Figure 26. 

In addition to gear positioning, the requirement to maintain axial load on the bearings 
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contributes to the gear positioning system complexity.  The system elements consisting of the 

bearings, carrier or housing, and differential case are a series of mechanical components that 

react to load in the same manner as a mechanical spring.  Using select fit shims as a method to 

position the gears was originally introduced by Boden (1936).  The current approach is to 

assemble the shims between the bearing outer-race, commonly referred to as the cup, and a 

machined surface on the carrier.  The equations used to calculate the required shim thickness 

introduced in Chapter 1 are repeated below. 

𝑃𝑖𝑛𝑖𝑜𝑛 𝑆𝑖𝑑𝑒 𝑆ℎ𝑖𝑚 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 = 𝐶𝐴𝑅1 − 𝐶𝐴𝑅2 + (𝐺 + 𝛿𝐽) − (𝑂𝐴𝐻 − 𝐵𝐹) +

𝑂𝐹𝐹𝑆𝐸𝑇𝑃𝑆 (1) 

𝐺𝑒𝑎𝑟 𝑆𝑖𝑑𝑒 𝑆ℎ𝑖𝑚 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 = 𝐶𝐴𝑅1 + 𝐶𝑂𝑉 − 𝑂𝐴𝐻 − 𝑃𝑆𝑀𝑒𝑎𝑠 + 𝑂𝐹𝐹𝑆𝐸𝑇𝐺𝑆 (2) 

A diagram depicting an axle measurement system identifying in-process and audit gauges 

is shown in Figure 9.  The specific process for selecting the shims varies, but typically includes a 

series of in-process measurements of the components.  At the end of the assembly process there 

are two measurements used to verify the shim selection process, these measurements serve as an 

audit of the process.  The first audit is gear backlash used to assess the position of the gears.  The 

second is rolling torque measurement used to assess bearing axial load.  The result is a mass 

produced product that each individual assembly is comprised of a specific group of components 

individually measured in a measurement system integral with the assembly process. 
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Figure 9. Automotive axle-assembly measurement system process diagram 

The accepted concept of measurement, as described by the Bureau International des 

Poids et Measures (BIPM, 2008b), is that the measurement estimates the true quantity value that 

is constant and unknowable in practice.  However, in case of automotive axle assembly the true 

value is not constant.  To obtain an estimate of the true value Hughes and Hase (2010) identify 

repeated measures as the best method to average out errors, a technique not practical in high 

volume production environments.  Test article variation, or within part variation, is 

acknowledged by MSA(2010) as a source of variance, and that ANOVA, Range, and Average 

Range methods all ignore this factor.  This artifact variation differs from Part Variation (PV) that 

MSA defines as expected part and time variation for a stable process (p. 216). 

In the axle assembly process, parts that are a source of within part variation that 

contribute to measurement error are the bearings and the hypoid gears.  The bearing geometry, 

precession rates, and effects of lubrication all affect the position of the bearing races (height) and 

the measured torque (Timken, 2011).  Bălan, Stamate, Houpert, and Olaru (2014) identify that 

this variation is complex and highly dependent on lubrication such that compensation through 

algorithms in an assembly process is not practical.  Hypoid gear design in automotive axles seeks 

to minimize the frequency that the same two teeth mesh on the mating gears, defined as the 
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hunting tooth frequency.  As noted by Stadtfeld (2014) hunting tooth design requires one full 

revolution of the pinion for each ring gear tooth to characterize backlash fully.  Measuring all 

tooth combinations in a production environment is impractical.  Currently there is no concise  

method to include known part variation in measurement system analysis. 

The assessment of within part variation in a measurement system is part of the ISO 

22514-7 (2012) standard, it is described as non-homogeneity of the part and is symbolized as 

𝑢𝑂𝐵𝐽.  ISO standard guidance on assessing the non-homogeneity centers on feature variation and 

assumes a rectangular distribution for predicting the uncertainty based on product drawing or 

experimentation.  The AIAG MSA analysis does not include a method to distinguish part 

variation from the random error of the measurement system to that of the manufacturing process.  

The ISO 22514-7 identifies it as an uncertainty in the measurement system capability but bases 

that uncertainty prediction on generalized assumptions. 

Summary 

A review of the literature provides the background for the application of measurements 

and the uncertainty of measurements.  In more complex measurement systems, like axle shim 

selection, the process is affected by measurement errors, uncertainty associated with part 

variation, and uncertainties not directly measured.  An approach for expressing and analyzing 

measurement errors is uncertainty analysis, a concept introduced to metrology by Ku (1967) and 

codified in the Guide to Measurement Uncertainty published by JCGM (2008a).  Uncertainty 

analysis provides a method to include various sources of error and variation to predict the 

outcome in a measurement process.  ISO (2012) has published guidelines for uncertainty analysis 

specific to manufacturing in the Capability of measurement processes Standard 22514-7.  The 

ISO Standard does not include methods for analyzing complex systems, like axle shim selection, 
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but when combined with other literature and Monte Carlo Methods an approach for modeling 

and analyzing complex measurement systems is possible (Coleman & Steele, 2009). 

The research methodology presented in the following chapter outlines a quantitative 

study that Creswell (2013) describes as “a means for testing objective theories by examining the 

relationship among variables.”  Following Creswell’s (2013) definition of the theory of 

quantitative research as the use of interrelated variables, in this study measurements and their 

uncertainties, formed into propositions that specify the relationship.  The proposition for this 

study is an uncertainty model explains the correlation of input measures and resulting audit 

measures.  To validate the theory experimental results from a production manufacturing system 

are compared to results from a Monte Carlo simulation(Coleman & Steele, 2009).          

The task for manufacturing systems technology management as summarized by ISU 

(2016) is the application of technology to add value to a manufacturing process, and profitably 

produce products.  Standards and publications for measurement system selection and analysis 

emphasize appropriateness, MSA(AIAG, 2002, p. 24), ISO 22514-7 (2012), Dietrich and 

Schulze (2011) all concur that the measurement process must be appropriate for the specific task.  

Uncertainty analysis provides an appropriate approach that includes a mix of uncertainties 

evaluated by statistical methods and those evaluated by other means.  A predictive technique is 

the basis for meaningful measurement system acceptance criteria when upper and lower limits do 

not apply.  Further, a method to correlate input measurements to process outputs can be used to 

predict a priori the performance of an axle assembly process thereby providing management with 

a tool to support decisions on the measurement and assembly system. 
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CHAPTER 3 

 

METHOD OF INVESTIGATION 

Overview 

This study evaluated a method to correlate input measurements to audit measurements of 

an axle shim-selection system.  The assembly and shim-selection measurement system shown 

previously in Figure 3 and Figure 9 identify the elements of the process selected for this 

research.  The axle shim-selection process includes factors that are not part of the assembly and 

measurement system.  To include the effects of all of the factors that influence the process, the 

technique of measurement standard uncertainty was applied.  The standard uncertainty of each 

independent and dependent variable was assessed and then propagated through the process.  To 

propagate the standard uncertainties a Monte Carlo Simulation (MCS) was developed in 

Microsoft Excel® 2007 (12.0.6214.1000). 

The study methodology included three stages.  The first stage defines the combined 

uncertainty for each measurement variable and assembles the uncertainties into a model of the 

system.  The second stage combines the uncertainties with simulated true values in a Monte 

Carlo simulation to generate simulated data of the selected shim selection system.  The 

simulation data is compared to production data to evaluate the ability of the model as a 

correlation tool.  The third stage applies the model to assess the effects of measurement 

capability for a specific independent variable on the performance of the measurement system. 
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To answer Research Question 1, how can measurement uncertainty methods be applied to 

model the axle shim-selection measurement process, an uncertainty propagation model was 

developed.  Each measurement variable was individually analyzed for uncertainty following 

GUM guidelines and techniques that are summarized for manufacturing measurement systems 

by ISO (2012), Dietrich (2014), and Dietrich and Schulze (2011).  The component uncertainties 

include both Type A and Type B standard uncertainties.  Type A uncertainties are based on 

observation data and analysis using statistical methods that estimate the standard uncertainty.  

Type B methods are based on non-statistical methods including published literature, engineering 

analysis, or known relationships.  The component uncertainties for each measurement determine 

a combined standard uncertainty for that measurement.  The combined standard uncertainties 

were propagated through the shim call equations, Equation 1 and Equation 2 in Chapter 1, 

following the approach initially published by Ku (1967) and included in the GUM.  The 

propagated uncertainty results were documented in tabular form for each variable. 

To answer Research Question 2, Can a measurement system uncertainty model be used to 

predict the backlash and torque-to-rotate capability of a shim-selection measurement system, the 

study evaluated the model effectiveness by comparing predicted results with sample data from a 

production system using a Monte Carlo simulation.  The uncertainties developed as part of 

Research Question 1 were included in the simulation to produce a set of virtual data that was 

compared to sample production data.  To obtain the sample production data, the factory 

Supervisory Control and Data Acquisition (SCADA) was used.  SCADA data for a continuous 

production of two-thousand sequential parts was collected on an axle assembly line running three 

unique models.  The data was qualified, separating cases by axle type and excluding any rerun 

axles or axles with incomplete data sets.  Statistical methods were then used to identify and 
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eliminate outliers.  The production data is statistically compared to the virtual model data to 

identify the ability of the model to predict the results, distribution, and process capability. 

To answer Research Question 3, can a measurement system uncertainty model be used to 

determine the acceptance limits for an individual in-process shim-selection measurement 

apparatus, the study assessed a selected static measurement that demonstrates stable process 

capability.  The analysis of that independent variable compared results with an in-process 

measurement GR&R of 10% with an in-process measurement GR&R of 50% using AIAG MSA 

methods based on the drawing tolerance.  The Monte Carlo simulation produced two separate 

data sets.  A comparison of the two data sets, analyzing the effects of measurement system 

capability on the shim selection process, provides an example application of the uncertainty 

model. 

Study Variables 

The measurement variables included in the axle shim-selection process are described in 

Table 2.  The variables are classified as predictor input variables and audit variables; all variables 

are continuous.  The input variable measurements are included in Equations 1 and 2 shown in 

Chapter 1 to determine the appropriate shim size for the assembly.  The audit variable 

measurements are the outcome of the shim selection process.  To support the uncertainty analysis 

the independent variable measurements were categorized as static dimensional measurements, 

dynamic bearing measurements, and gear position measurements. 
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Table 2 

Shim selection process measurement variable descriptions 

Measurement Description Symbol Measurement Apparatus 

Predictor Input Measures (Independent Variables) 

Split Line to Pinion Side Shim Seat CAR1 Carrier Gauge, Precision Static single purpose 

dedicated gauge using digital measurement 

probes Split Line to Centerline of Pinion 

Head Bearing Bore 
CAR2 

Split Line to Gear Side Shim Seat COV Cover Gauge, Precision Static single purpose 

dedicated gauge using digital measurement 

probes 

Ring Gear measured difference from 

theoretical mounting distance “G” 
𝛿𝐽 “Single Flank” Transmission Error Gear Tester 

Differential Assembly overall height 

Bearing cup to cup 
OAH Differential Gauge, Dedicated gauge that 

measures distance with probes while rotating 

the bearings under axial bearing load 
Differential Assembly distance from 

Gear Side Bearing Cup to Gear 

mounting reference 

BF 

Thickness of the selected shim 𝑃𝑆𝑀𝑒𝑎𝑠  
𝐺𝑆𝑀𝑒𝑎𝑠  

Shim Verifier, Dedicated measurement device 

that measures the thickness of the selected 

shim 

Audit Measures (Dependent Variables) 

Assembly Backlash measured 

dynamically  
LASH Dedicated dynamic audit gauge with precision 

encoder and torque transducer 

Assembly Total Torque to Rotate 

measured at the Pinion 
TTR 

 

Research Design - Question 1 

Research Question One methodology applies measurement uncertainty to the axle shim-

selection process to model independent input measures and predict dependent audit measures.  

The result is a prediction of the observed audit measurements standard deviation.  The model 

development followed four steps as shown in Figure 10.   
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Figure 10. Design process steps for Research Question 1 

Variable Standard Uncertainty Development 

The first step combined individual standard uncertainty components, 𝑢𝑖 to develop a 

combined standard uncertainty 𝑢𝑀𝑒𝑎𝑠, for each measured variable listed in Table 2.  The 

components of standard uncertainty are part of the ISO (2012)Statistical methods in process 

management – Capability and performance – Part 7: Capability of a measurement process.  The 

standard identifies fourteen uncertainty components for measurement processes and 

measurement systems.  By combining the “other” category of measurement system 𝑢𝑀𝑆−𝑅𝐸𝑆𝑇 

with process 𝑢𝑅𝐸𝑆𝑇, and excluding uncertainties associated with traceable standards 𝑢𝐶𝐴𝐿, and 

temperature variation 𝑢𝑇, eleven components were considered for each measurement variable.  

Table 3 summarizes the eleven components.  The combined standard uncertainty for each 

measured variable was determined using Equation 3 below. 

𝑢𝑀𝑒𝑎𝑠
2 = ∑ 𝑢𝑖

2𝑁
𝑖=1   (3) 
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The result of Step 1 are standard uncertainties for each measured variable; 𝑢𝐶𝐴𝑅1, 𝑢𝐶𝐴𝑅2, 𝑢𝐶𝑂𝑉, 

𝑢𝛿𝐽, 𝑢𝑂𝐴𝐻, 𝑢𝐵𝐹, 𝑢𝑃𝑆𝑀𝑒𝑎𝑠, 𝑢𝐺𝑆𝑀𝑒𝑎𝑠, 𝑢𝐿𝑎𝑠ℎ, 𝑢𝑇𝑇𝑅 documented in tabular form in Chapter 4. 

Table 3 

Standard uncertainty components considered in this study (ISO, 2012) 

Symbol u Component Comment 

𝑢𝐿𝐼𝑁 Linearity Uncertainty arising from non-linearity of 

measurement 

𝑢𝐵𝐼 Bias Uncertainty resulting from bias relative to a 

standard 

𝑢𝐸𝑉𝑅 Repeatability on standard Repeatability on a standard 

𝑢𝑅𝐸  Resolution Uncertainty based on the measurement apparatus 

resolution 

𝑢𝐸𝑉𝑂 Repeatability on workpiece Repeatability on the workpiece based on 

repeatability studies 

𝑢𝐴𝑉 Appraiser reproducibility Uncertainty associated with operator influence 

based on repeatability studies  

𝑢𝐺𝑉 System reproducibility Reproducibility of the measurement system based 

on R&R studies 

𝑢𝑆𝑇𝐴𝐵 Reproducibility over time Uncertainties associated with time based effects 

𝑢𝐼𝐴𝑖 Interactions Uncertainties associated with appraiser related 

interactions from ANOVA studies 

𝑢𝑂𝐵𝐽 Measurand non-homogeneity Uncertainties arising from measurand non-

homogeneity 

𝑢𝑅𝐸𝑆𝑇 Other uncertainty 

contributors 

Other uncertainty components that are not 

included above 

 

Standard Uncertainty Propagation 

The second step modeled the uncertainty associated with the Pinion Side Shim 𝑢𝑃𝑆, and 

the Gear Side Shim 𝑢𝐺𝑆.  This step propagates the individual measurement standard uncertainties 
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𝑢𝑖 determined in Step 1 through the shim selection equation using the general law of error 

propagation (JCGM, 2008a).  The Chapter 1 shim selection Equations 1 and 2, repeated below, 

include the measurement independent variables and an offset constant: 

𝑃𝑖𝑛𝑖𝑜𝑛 𝑆𝑖𝑑𝑒 𝑆ℎ𝑖𝑚 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 = 𝐶𝐴𝑅1 − 𝐶𝐴𝑅2 + (𝐺 + 𝛿𝐽) − (𝑂𝐴𝐻 − 𝐵𝐹) + 𝑂𝐹𝐹𝑆𝐸𝑇𝑃𝑆 (1) 

𝐺𝑒𝑎𝑟 𝑆𝑖𝑑𝑒 𝑆ℎ𝑖𝑚 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 = 𝐶𝐴𝑅1 + 𝐶𝑂𝑉1 − 𝑂𝐴𝐻 − 𝑃𝑆𝑀𝑒𝑎𝑠 + 𝑂𝐹𝐹𝑆𝐸𝑇𝐺𝑆 (2) 

The propagation of uncertainty applies what GUM (JCGM, 2008a) describes as “the law of 

propagation of uncertainty” (3.3.6).  Specific consideration for this study is the propagation of 

uncertainty in the Gear Side Shim calculation for backlash.  The carrier measurement 𝐶𝐴𝑅1 and 

the differential overall height 𝑂𝐴𝐻 are included in the Pinion Side and Gear Side shim thickness 

calculation.  The GUM method to treat this in uncertainty propagation considers the covariance 

of the variables.  The uncertainty propagation to determine combined uncertainty of correlated 

variables includes interactions provided in Section 5 of the GUM, paragraph 5.1.2, equation (13) 

for uncertainty analysis. 

 𝑢𝑐
2(𝑦) = ∑ (

𝜕𝑓

𝜕𝑥𝑖
)

2
𝑁
𝑖=1 𝑢2(𝑥𝑖) + 2 ∑ ∑

𝛿𝑓

𝛿𝑥𝑖

𝑁
𝑗=𝑖+1

𝑁−1
𝑖=1

𝛿𝑓

𝛿𝑥𝑖𝑗
𝑢(𝑥𝑖 , 𝑥𝑗) 

The 𝑃𝑆𝑀𝑒𝑎𝑠 applied to the Gear Side shim calculation includes measurement independent 

variables that are common with the Pinion Side shim-call equation.  The GUM discusses 

uncertainties in terms of error, in this instance, the error would be duplicated and hence 

overstated.  The two measurements are therefore not correlated, and should be treated as 

constants in the Gear Side shim calculation.  The uncertainty propagation to determine combined 

uncertainty of uncorrelated uncertainties is provided in Section 5 of the GUM, paragraph 5.1.2, 

equation (10) for uncertainty analysis.  

 𝑢𝑐
2(𝑦) = ∑ (

𝜕𝑓

𝜕𝑥𝑖
)

2
𝑁
𝑖=1 𝑢2(𝑥𝑖) 
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Applying the GUM method to analyze uncorrelated uncertainties to the Pinion Side shim 

call equation includes an assumption that there is no covariance of the individual measurements.  

For the Pinion Side Shim this assumption is valid as all measurements are independent.  The 

GUM identifies the factors for each measurement variable as sensitivity coefficients.  In the case 

of the Pinion Side Shim, all of the variables have unity sensitivity coefficients.  There is an 

additional uncertainty included to account for the incremental shim steps 𝑢𝑆𝑡𝑒𝑝
2 .  The resultant 

uncertainty estimate for the Pinion Side shim 𝑢𝑃𝑆 is. 

𝑢𝑃𝑆 = √𝑢𝐶𝐴𝑅1
2 + 𝑢𝐶𝐴𝑅2

2 + 𝑢𝑂𝐴𝐻
2 + 𝑢𝐵𝐹

2 + 𝑢𝛿𝐽
2 + 𝑢𝑆𝑡𝑒𝑝

2  (4) 

The Gear Side shim call includes measurements common to the Pinion Side but no 

covariance.  Two variables, CAR1 and OAH, are included in the Gear Side shim thickness 

calculation.  These two variables are treated as constants in the Pinion Side uncertainty 𝑢𝐺𝑆 as it 

relates to backlash.  

𝑢𝐺𝑆 = √𝑢𝐶𝑂𝑉1
2 + 𝑢𝑃𝑆𝑀𝑒𝑎𝑠

2 + 𝑢𝑆𝑡𝑒𝑝
2  (5) 

Correlation of Input and Audit Variables 

The third step determined the effects of shim selection uncertainty of Equations 4 and 5 

on the audit process dependent variables using regression techniques.  Shimmed axles respond to 

shim dimensional changes with an interaction of bearing preload force and backlash due to 

relative stiffness of the assembled components.  As part of this study, the relationship was 

determined empirically by post processing data from re-shimmed axles.  The response of 

backlash and Differential Torque to Rotate (DTR) to dimensional shim changes was measured 

and recorded as part of the rework process.  Regression analysis of this data provided factors 

used to predict of the resultant process uncertainties for DTR,𝑢𝐷𝑇𝑅 and backlash,𝑢𝐵𝑎𝑐𝑘𝑙𝑎𝑠ℎ. 
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The preload on the bearings is a function of the overall system stiffness coefficient, 

defined here as 𝑘𝐷𝑖𝑓𝑓, a direct linear function of the total shim installed.  To determine this 

coefficient, re-shimmed axles were used to generate a data set with total shim dimensional 

change as the independent variable and change in Differential Torque to Rotate as the dependent 

variable.  Analyzing this data with IBM SPSS Statistics (23.0) Linear Regression, the un-

standardized coefficient in the analysis was used as 𝑘𝐷𝑖𝑓𝑓.  Following the guidelines provided in 

GUM Section 5.2, the values of Pinion Side (PS), Gear Side (GS) are independent, and the 

covariance term is eliminated in the propagation derivative.  Applying this relationship and the 

uncertainty propagation equation derives a torque to rotate process related to the Differential 

Torque to Rotate (DTR) uncertainty 𝑢𝐷𝑇𝑅. 

 𝐷𝑇𝑅 = 𝑓(𝑘𝐷𝑖𝑓𝑓(𝑃𝑆 + 𝐺𝑆)) 

 𝑢𝐷𝑇𝑅 = √𝑘𝐷𝑖𝑓𝑓
2 (𝑢𝑃𝑆

2 + 𝑢𝐺𝑆
2 ) 

The effect on backlash by changes in the Gear Side and Pinion Side shims is more 

complex.  There is an interaction between stiffness and gear position in the assembly resulting 

from the individual component stiffness.  To determine the coefficients, re-shimmed axles were 

used to generate a data set with Pinion Side shim dimensional change and Gear Side shim 

dimensional change as the independent variables, and change in backlash as the dependent 

variable.  This data was analyzed with IBM SPSS Statistics (23.0) Linear Regression.  The un-

standardized coefficients in the analysis were used to determine the backlash response to shim 

change.  Separating the stiffness results for each shim, the backlash effect on Pinion Side factor 

is 𝑘𝑃𝑆 and the Gear Side 𝑘𝐺𝑆was used in the following relation to determine backlash uncertainty 

𝑢𝐵𝑎𝑐𝑘𝑙𝑎𝑠ℎ. 

 𝐵𝑎𝑐𝑘𝑙𝑎𝑠ℎ = 𝑓(𝑘𝑃𝑆𝑃𝑆 + 𝑘𝐺𝑆𝐺𝑆) 
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 𝑢𝐵𝑎𝑐𝑘𝑙𝑎𝑠ℎ = √𝑘𝑃𝑆
2 𝑢𝑃𝑆

2 + 𝑘𝐺𝑆
2 𝑢𝐺𝑆

2  

Output Measurement Uncertainty Prediction 

The final step in developing the model was the application of measurement uncertainties 

to predict the observed Audit measurement error using standard uncertainties’, 𝑢𝑇𝑇𝑅−𝑂𝑏𝑠 and 

𝑢𝐵𝑎𝑐𝑘𝑙𝑎𝑠ℎ−𝑂𝑏𝑠.  The audit measurement standard uncertainties derived in Step 1, uncertainty 

𝑢𝑀𝑆𝑇𝑇𝑅 and 𝑢𝑀𝑆𝐵𝑎𝑐𝑘𝑙𝑎𝑠ℎ, were combined with the process uncertainties derived in Step 3 to 

predict the observed standard uncertainty 𝑢𝑂𝑏𝑠 in the audit-process.  The observed 

uncertaintyincludes the actual process standard uncertainty 𝑢𝐴𝑐𝑡 combined with the measurement 

standard uncertainty 𝑢𝑀𝑆.  Applying standard uncertainty summing techniques, the prediction 

model for observed backlash and Total Torque to Rotate is expressed in the following equations. 

 𝑢𝑂𝑏𝑠
2 = 𝑢𝐴𝑐𝑡

2 + 𝑢𝑀𝑆
2  

 𝑢𝑇𝑇𝑅−𝑂𝑏𝑠 = √𝑢𝐷𝑇𝑅
2 (𝑟𝑎𝑡𝑖𝑜)2 + 𝑢𝑀𝑆𝑇𝑇𝑅

2⁄  

 𝑢𝐵𝑎𝑐𝑘𝑙𝑎𝑠ℎ−𝑂𝑏𝑠 = √𝑢𝐵𝑎𝑐𝑘𝑙𝑎𝑠ℎ
2 + 𝑢𝑀𝑆𝐵𝑎𝑐𝑘𝑙𝑎𝑠ℎ

2  

 

Research Design - Question 2 

Research Question 2 applied data to the model developed as part of Research Question 1 

for analysis.  This analysis compares sample measurement data collected from a Supervisory 

Control and Data Acquisition (SCADA) for the assembly process to a Monte Carlo simulation 

using measurement uncertainties.  This portion of the study included validation of the production 

data, The Monte Carlo model development, and the statistical comparison of results.   

To validate the data, each individual axle was isolated to the first time through the 

assembly process and duplicates were eliminated using sorting techniques in Excel.  Table 4 
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identifies the measurement variables and characteristics of the measurement data.  A graphical 

image of the measurement variables is included in Appendix A.   

Table 4 

Independent and dependent variable characteristics 

Symbol Type Classification Resolution Units 

CAR1 Independent Continuous 0.00X Millimeter (mm) 

CAR2 Independent Continuous 0.00X Millimeter (mm) 

COV Independent Continuous 0.00X Millimeter (mm) 

𝛿𝐽 Independent Continuous 0.00X Millimeter (mm) 

OAH Independent Continuous 0.00X Millimeter (mm) 

BF Independent Continuous 0.00X Millimeter (mm) 

𝑃𝑆𝑀𝑒𝑎𝑠  Independent Continuous 0.00X Millimeter (mm) 

𝐺𝑆𝑀𝑒𝑎𝑠  Independent Continuous 0.00X Millimeter (mm) 

Lash Dependent Continuous 0.00X Millimeter (mm) 

TTR Dependent Continuous 0.0X Newton-Meter (Nm) 

 

As part of this research the data was reviewed as recommended by Warner (2013, p. 

125), reviewing outliers, inconsistencies, and other data anomalies.  The data was summarized 

by individual part unique serial number and a case number assigned as an identifier.  The 

individual measurements were analyzed in IBM SPSS Statistics (23.0) to identify data fliers, 
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assess the distribution, and identify potential special cause variation.  Normality was assessed by 

calculating a z ratio of the excess kurtosis and skewness by their respective standard error 

(Warner, 2013), thus a z ratio no greater than 2.0 provides a 𝑝 ≤ .05 risk of Type 1 error.  Datum 

selected for elimination from the data set was identified along with the rationale for elimination 

stated in Chapter 4.  The final data set for the analysis is summarized and tabulated in Chapter 4.  

Monte Carlo Simulation 

To generate simulated data, Excel was used to simulate data using the Monte Carlo 

Method as outlined in the GUM Introduction (JCGM, 2009).  The simulation was constructed 

with cases oriented in rows and the process simulated in columns.  An initial study included 

simulating random true values for each in-process measured variable using the NORM.INV 

function to produce 5,000 cases of true values aligned in rows.  Using the same method, 5,000 

measurement error values were simulated based on a normal distribution.  The combined 

uncertainty for each in-process variable applied the uncertainties developed in answering 

Research Question 1.  The MCM simulation calculated an observed value for each variable by 

adding the measurement error to the true value.  The process proceeded for each case producing 

results for 5,000 unique cases as shown in Figure 11.     
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Figure 11. Simulation observed value determined from true value and standard uncertainty 

The simulation proceeds on a case-by-case basis following the assembly process.  Excel 

is used to calculate observed and true values for Pinion and Gear Side shims using Equations 1 

and 2.  The difference between the observed and true values is the shim error for each case.  The 

effect of this error on the process DTR and Backlash is determined by applying the 𝑘𝐷𝑖𝑓𝑓, 𝑘𝑃𝑆, 

and 𝑘𝐺𝑆 factors developed in answering Research Question 1.  The DTR and Backlash errors are 

determined on a case-by-case basis with Equations 6 and 7 in the simulation. 

𝜖𝐷𝑇𝑅 = 𝑘𝐷𝑖𝑓𝑓 ∗ (𝜖𝐺𝑆) (6) 

𝜖𝐵𝑎𝑐𝑘𝑙𝑎𝑠ℎ = 𝑘𝑃𝑆 ∗ 𝜖𝑃𝑆 + 𝑘𝐺𝑆 ∗ 𝜖𝐺𝑆 (7) 

The simulation design for generating DTR and backlash process error is shown in Figure 12. 
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Figure 12 .Simulation calculation of process error flow diagram for DTR and Backlash 

The simulated process error for DTR and Backlash produce results comparable to the 

actual process variance.  The simulation proceeds on a case-by-case basis adding the calculated 

process error to true values to generate input values for DTR and Backlash.  The measurement 

error associated with the audit process is added to this input value to generate a simulated audit 

result for each case.  The process for TTR is shown in Figure 13, the process for Backlash is 

shown in Figure 14.  The results generate the data set that is used for comparison to the collected 

SCADA data. 
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Figure 13. Simulation process for generating Audit TTR values 

 

Figure 14. Simulation process for generating Audit Backlash values 
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The GUM provides guidelines on the number of iterations in the Monte Carlo simulation, 

where each iteration generates a unique datum.  The GUM guidelines for a priori setting of 

Monte Carlo iterations is at least 104 times greater than 1/(1 − 𝑝) where p is the published 

confidence interval for the supplied uncertainty (JCGM, 2008c).  An alternate adaptive approach 

is included in the GUM (JCGM, 2008c) to continue increasing number of Monte Carlo trials 

until the parameter of interest has stabilized.  The adaptive approach was the method selected for 

this research.  The Monte Carlo trials were selected such that the calculated standard deviation 

from the simulation was stabilized the equivalent process capability by more than ±0.05.  This 

approach was selected based on the GUM description of the adaptive Monte Carlo stabilization 

criteria considering the purpose of this research.  The technique of monitoring the sample 

standard deviation for stabilization is consistent with the approach recommended by Coleman 

and Steele (2009). 

Monte Carlo Simulation Validation 

To validate the MCS production SCADA data observed results for each measurement 

was compared to the model prediction.  This included an assessment of skewness and kurtosis of 

the derived actual distribution based on the observed and predicted measurement uncertainty.  

This assessment provided a first evaluation of the model validity by identifying inconsistencies 

between the model and the data.  Observed values are used as it is not possible to separate the 

measurement uncertainty from the true value in the SCADA data.  The analysis results are part 

of a tabulated summary of the observed, predicted uncertainty, and estimated actual variation in 

Chapter 4. 

The typical application for Monte Carlo simulation is to determine coverage factors for 

the resultant measurements or to compare results from other uncertainty frameworks.  This study 
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applied the techniques for a different purpose; to determine a distribution of the output variables 

for comparison to actual data.  Complex numerical simulation model validation (e.g. 

Computational Fluid Dynamic models) as discussed by Coleman and Steele (2009) is not 

applicable to this study.  This study simulation employs basic mathematic expressions where the 

simulation numerical error is eliminated by validating the simulation calculations on a sample 

case.  

Uncertainty simulation validation methods for this study included a comparison of the 

simulation predicted output for the audit variables to actual output measurements.  The study 

method follows the guidelines of the GUM Supplement 1, Guide to the expression of uncertainty 

in measurement” –propagation of distributions using a Monte Carlo method (JCGM, 2008c), 

and Coleman and Steele (2009).  The evaluation technique for the effectiveness of the shim-

selection uncertainty model compares the simulation distribution and standard deviation to the 

SCADA data for the audit measurements of Backlash and DTR error.  A comparison of the 

means using independent samples t-test (Warner, 2013)is applied.  It was anticipated that both 

process results would be centered about the nominal mean.  This test served to identify any bias 

in the model or the SCADA data.  The risk to the research conclusions due to Type I error in this 

means comparison is judged very low; a significance of 0.05 was used.  If the MCS mean had 

differed significantly from the target, the simulation could have been iterated to include a bias on 

one of the input parameters.  Assessing the ability of the model to predict variance is the primary 

goal of this research.  To determine the ability of the model to predict the measurement process 

variance, the F-Test was used to compare variance of the simulation results to the SCADA data.  

The risk associated with Type I error is considered low.  It was the goal of the research to 

identify if uncertainty may be used to predict a shim-selection measurement system capability.  
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In many instances, this may be used as a comparison of alternative systems.  In those instances, 

an uncertainty model’s ability to predict absolute variance would not be as important as a 

measure of one alternative performs in comparison to another at reducing process variance.  The 

significance level for the F-Test is p=0.05. 

Research Design - Question 3 

Research Question 3 seeks to answer the question can the model be used to determine the 

acceptance limits for an individual in-process shim-selection measurement device.  The static 

housing parameter Cover bearing bore depth (COV) was selected for comparison.  The model 

was used to compare simulation results with a 10% GR&R to results at 50% GR&R using MSA 

methods based on drawing tolerance.  A comparison of the means using independent samples t-

test (Warner, 2013)was applied.  To determine the ability of the model to predict the 

measurement process variance, the F-Test was used.  Significance levels for both tests is p=.05.  

Summary 

This chapter identified the quantitative research methods that were used to correlate input 

measures and resulting audit measures applying uncertainty analysis techniques.  The  

methodology was divided into three stages.  The first stage combined uncertainty for each 

measurement variable and assembled the uncertainties into a model of the system.  The second 

stage includes the uncertainties with simulated true values in a Monte Carlo simulation to 

generate simulated data of the selected shim selection system.  The third stage applied the model 

to assess the effects of measurement capability for a specific independent variable on the 

performance of the measurement system.  
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 CHAPTER 4 

 

RESULTS 

The purpose of this study was to define and assess a method to predict the performance of 

an axle shim-selection measurement system.  This Chapter describes the study results following 

the method of investigation described in Chapter 3.  To address the research questions this 

Chapter is divided into three sections that provide results for each of the research questions.  The 

first section presents the derivation of the shim selection uncertainty model.  This includes the 

calculation of each variable uncertainty to address Research Question 1, how can measurement 

uncertainty methods be applied to model the axle shim-selection measurement process?  The 

section includes the correlation analysis of backlash and DTR response to shim change and 

derivation of the correlation factors.  The first section concludes with the uncertainty results that 

were used for the model simulation. 

The second section addresses Research Question 2, can a measurement system 

uncertainty model be used to predict the backlash and torque-to-rotate capability of a shim-

selection measurement system?  This question is addressed by the following hypotheses: 

HO1: There is no significant difference between the Means of the uncertainty prediction 

model and actual test data in Backlash Audit. 

HA1: There is significant difference between the Means of the uncertainty prediction 

model and actual test data in Backlash Audit. 
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HO2: There is no significant difference between the Variance of the uncertainty 

prediction model and actual test data in Backlash Audit. 

HA2: There is significant difference between the Variance of the uncertainty prediction 

model and actual test data in Backlash Audit. 

HO3: There is no significant difference between the Means of the uncertainty prediction 

model and actual test data in Audit Total Torque to Rotate. 

HA3: There is significant difference between the Means of the uncertainty prediction 

model and actual test data in Total Torque to Rotate. 

HO4: There is no significant difference between the Variance of the uncertainty 

prediction model and actual test data in Total Torque to Rotate. 

HA4: There is significant difference between the Variance of the uncertainty prediction 

model and actual test data in Total Torque to Rotate. 

The third section addresses Research Question 3, can a measurement system uncertainty 

model be used to determine the acceptance limits for an individual in-process shim-selection 

measurement apparatus?  This question is addressed by the following hypotheses: 

HO5: There is no significant difference between the Means of the uncertainty prediction 

model Audit Backlash with COV measurement capability at 10% and 50%. 

HA5: There is significant difference between the Means of the uncertainty prediction 

model Audit Backlash with COV measurement capability at 10% and 50%. 

HO6: There is no significant difference between the Variance of the uncertainty 

prediction model and Audit Backlash with COV measurement capability at 10% 

and 50%. 

HA6: There is significant difference between the Variance of the uncertainty prediction 
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model Audit Backlash with COV measurement capability at 10% and 50%. 

HO7: There is no significant difference between the Means of the uncertainty prediction 

model Audit Torque-to-Rotate with COV measurement capability at 10% and 

50%. 

HA7: There is significant difference between the Means of the uncertainty prediction 

model Audit Torque-to-Rotate with COV measurement capability at 10% and 

50%. 

HO8: There is no significant difference between the Variance of the uncertainty 

prediction model Audit Torque-to-Rotate with COV measurement capability at 

10% and 50%. 

HA8: There is significant difference between the Variance of the uncertainty prediction 

model and Audit Torque-to-Rotate with COV measurement capability at 10% and 

50%. 

Research Question 1 

Research question one asks, how can measurement uncertainty methods be applied to 

model the axle shim-selection measurement process? 

As described in Chapter 3, eleven components from the ISO (2012) Standard 22514-7 

listed in Table 3 were used to evaluate the measurement uncertainty for each variable.  This 

Section calculates and applies each uncertainty component to the specific measurement.  The 

findings divide the uncertainty calculation by the type of measurement, static, dynamic, process, 

and audit due to the commonalities of each type.  For each variable type, a Table that lists the 

standard uncertainties for the variable follows a discussion of the standard uncertainty rationale. 



64 

Two uncertainty components, appraiser reproducibility 𝑢𝐴𝑉 and appraiser interactions 

𝑢𝐼𝐴𝑖 relate to appraiser contributions to uncertainty.  The repeatability study for CAR1, CAR2, 

COV, and δJ include appraiser reproducibility calculation and the resultant uncertainty is 

included.  The other measurements exclude appraiser uncertainty as not applicable since the 

other process measurements are automatic.  The guidelines provided in ISO (2012) include the 

greater of resolution uncertainty 𝑢𝑅𝐸  or repeatability on standards 𝑢𝐸𝑉𝑅.  In all cases, a 

consideration of repeatability on a standard master part was included and resolution uncertainty 

excluded.  Measurement GR&R was collected from available sources and included a variety of 

methods.  The method and results for the Type A uncertainties are summarized in Appendix B. 

Static measurement independent variables. 

Static measurements included as independent variables in this study share uncertainty 

components.  The housing and cover measurement variables CAR1, CAR2, and COV are 

measured on a precision gauge in similar manner.  Gauge reliability and repeatability studies 

provided an assessment of performance of the measurement apparatus.  The other static 

measurements 𝑃𝑆𝑀𝑒𝑎𝑠  and 𝐺𝑆𝑀𝑒𝑎𝑠 are shim measurements of the selected shim with a common 

verifying apparatus.  The development of standard uncertainty allocations for the static 

measurements are described below and tabulated in Table 5 for CAR1, Table 6 for CAR2, Table 

7 for COV, and Table 8 as a common uncertainty for 𝑃𝑆𝑀𝑒𝑎𝑠  and 𝐺𝑆𝑀𝑒𝑎𝑠 .  The uncertainty for 

each static measurement is combined as a single standard uncertainty value following the method 

published by ISO (2012). 

 𝑢𝑆𝑇𝐴𝑇𝐼𝐶 = √𝑢𝐿𝐼𝑁
2 + 𝑢𝐵𝐼

2 + 𝑢𝐸𝑉𝑅
2 + 𝑢𝐸𝑉𝑂

2 + 𝑢𝐴𝑉
2 + 𝑢𝑆𝑇𝐴𝐵

2 + 𝑢𝑂𝐵𝐽
2 + 𝑢𝑅𝐸𝑆𝑇

2  

Two standard uncertainties related to linearity and bias, 𝑢𝐿𝐼𝑁 and 𝑢𝐵𝐼are typically 

determined experimentally by repeated measures on reference standards as outlined in Section 
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7.1.2 Repeatability and bias based on one reference standard, and 7.1.3 Linearity analysis based 

on a minimum of three reference standards of the ISO (2012)22514-7 standard.  Linearity is 

determined through linear regression comparing the measurement system to a minimum of three 

standards covering the measurement range.  The devices in this study used one mean reference 

master as the standard, an approach common in shim selection measurement.  The standard 

uncertainty𝑢𝐿𝐼𝑁 is assumed zero for static measurements based on two factors.  First, linearity is 

not significant due to the limited range of each measurement, all are less than 0.200 mm.  

Second, the utilization of digital probes excludes the effects of any gain related non-linearity.   

The ISO (2012) standard includes a method to combine bias 𝑢𝐵𝐼 and repeatability on 

standards in the 𝑢𝐸𝑉𝑅 standard uncertainty, the method selected for this variable.  Bias and 

linearity uncertainty are combined and included in the uncertainty associated with repeatability 

on the standard.  A known set-up master serves as the reference standard and the uncertainty 

𝑢𝐸𝑉𝑅 is categorized as a Type B uncertainty.  Assuming a repeatability of ±1 micron, which is 

typical in the axle manufacturing industry, a calculated rectangular distribution with 0.002 mm 

range provides a standard uncertainty probability (JCGM, 2008c), 𝑢𝐸𝑉𝑅 = 0.002 √3⁄ =

0.00115 𝑚𝑚.  This uncertainty value is applied to all three static gauge measurements CAR1, 

CAR2, COV, and the shim verifier 𝑃𝑆𝑀𝑒𝑎𝑠 and 𝐺𝑆𝑀𝑒𝑎𝑠 . 

Standard uncertainties associated with repeatability and reproducibility (GR&R) studies 

are Type A uncertainties calculated from repeated measurements.  The uncertainties of 

repeatability on the workpiece 𝑢𝐸𝑉𝑂, appraiser reproducibility 𝑢𝐴𝑉, and appraiser workpiece 

interactions 𝑢𝐼𝐴𝑖 are determined from repeated measures studies.  The ANOVA study method 

published in both the ISO (2012) 22514-7 Standard and the fourth edition of AIAG (2010) MSA 

was applied to measurements CAR1, CAR2, and COV.  The studies are included in Appendix B.  
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This technique separates the variance contributions of the equipment, appraiser, and interactions.  

The analysis did not identify any significance for appraiser influence 𝑢𝐴𝑉, CAR1 F(2) = 0.51 

with p = .60, CAR2 F(2) = 0.44 with p = .64, and COV F(2) = 0.38 with p = .69.  Similarly, there 

is no interaction significance 𝑢𝐼𝐴𝑖, CAR1 F(2) = 0.16 with p > .99, CAR2 F(18) = 0.48 with p = 

.90, and COV F(18) = 1.00 with p = .48.  Appraiser and interaction standard uncertainties were 

excluded, the repeatability on test parts 𝑢𝐸𝑉𝑂 is included in the respective uncertainty summary 

table for each variable. 

The verifier measurement uncertainties 𝑃𝑆𝑀𝑒𝑎𝑠 and 𝐺𝑆𝑀𝑒𝑎𝑠 are not susceptible to 

appraiser influence and apply an average range approach classified as a Type 3 Study and 

described by Dietrich and Schulze (2011).  The shim measurement uncertainty 𝑢𝐸𝑉𝑂 equals the 

estimated standard deviation determined by the average range of a twenty-five part study with 

two measurements on each part, 𝜎 = 𝑅̿/𝑑2
∗.  Data from the repeatability studies is included in 

Appendix B. 

Stability uncertainty 𝑢𝑆𝑇𝐴𝐵 of the measurement process is included by both ISO (2012) 

and Dietrich and Schulze (2011) as an element of the combined uncertainty.  Dietrich and 

Schulze recommended a time based assessment of stability while the ISO standard suggest an 

extended ANOVA model as a possible approach provided interactions are excluded.  At issue is 

selecting a process that can isolate stability uncertainty from repeatability on the master or a 

reference part.  The shim selection process typically re-masters the gauges periodically to 

eliminate stability influences.  There was consideration for stability associated with the process 

and this uncertainty was an opportunity to apply a Type B method, which does not rely on 

statistical studies.  The selected method applied a Dietrich and Schulze (2011, pp. 208-

209)criteria assuming a normal distribution with two standard deviations equal to one-half the 
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range 𝑅𝑔.  For this calculation, a range𝑅𝑔 of 0.002 mm is assumed, 𝑢𝑆𝑇𝐴𝐵 = 𝜎 = 𝑅𝑔 4⁄ =

0.0005mm. 

Measurand feature variation uncertainty symbolized as 𝑢𝑂𝐵𝐽 is what ISO (2012) 

describes as inhomogeneity.  For shim selection static measurements CAR1, CAR2, and COV 

the locating datum is three-point contact on the faying surface between the Cover and Carrier 

housings.  The three-point contact does not accommodate the datum feature variation of flatness 

with a drawing tolerance of 0.100 mm.  An uncertainty analysis approach for part variation 

similar to that described by Dietrich and Schulze (2011, pp. 201-204) is applied to the static 

measurement.  This method applies the part tolerance based on the expected process capability of 

2.0 𝐶𝑝 and a normal distribution.  The uncertainty is equivalent to the process standard deviation, 

𝑢𝑂𝐵𝐽 = 𝑇𝑂𝐿 (6 ∗ 𝐶𝑝)⁄ = 0.05 (6 ∗ 2)⁄ = 0.00417 𝑚𝑚 included in Table 5, Table 6, and Table 

7.  In a similar manner the flatness tolerance of the shim is 0.0127 mm, 𝑢𝑂𝐵𝐽 = 0.00106 𝑚𝑚, 

included in Table 8. 

To account for uncertainty components not specifically categorized or included in the 

process ISO (2012)creates a category 𝑢𝑅𝐸𝑆𝑇.  For the static measurements, an uncertainty 

associated with the digital measurement probe is included in this classification.  The probe 

manufacturers published repeatability is 0.00015 mm, assuming a rectangular distribution the 

uncertainty is calculated, 𝑢𝑅𝐸𝑆𝑇 = 0.00015 √3⁄ = 0.00009 𝑀𝑀.  This value is not significant 

relative to other factors but it is included for reference. 

As stated earlier, the following Table 5 through Table 8 summarizes the uncertainty 

contribution from each independent static variable.  The last row in each table provides the 

resultant uncertainty for that variable which is included in the uncertainty analysis and the Monte 

Carlo simulation. 
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Table 5 

Standard uncertainty allocation for variable CAR1 

Symbol U Source u Type u Value Units 

𝑢𝐸𝑉𝑅 Repeatability on standard 

(master) 

Type B 0.00115 mm 

𝑢𝐸𝑉𝑂 Repeatability on workpiece Type A 0.00266 mm 

𝑢𝐴𝑉 Appraiser reproducibility Type A 0.00000 mm 

𝑢𝐼𝐴𝑖 Interactions Type A 0.00000 mm 

𝑢𝑆𝑇𝐴𝐵 Reproducibility over time Type B 0.00050 mm 

𝑢𝑂𝐵𝐽 Measurand non-homogeneity Type B 0.00417 mm 

𝑢𝑅𝐸𝑆𝑇 Other uncertainty contributors Type B 0.00009 mm 

𝑢𝐶𝐴𝑅1 Combined uncertainty  0.00510 mm 

 

Table 6 

Standard uncertainty allocation for variable CAR2 

Symbol u Source u Type u Value Units 

𝑢𝐸𝑉𝑅 Repeatability on standard 

(master) 

Type B 0.00115 mm 

𝑢𝐸𝑉𝑂 Repeatability on workpiece Type A 0.00045 mm 

𝑢𝐴𝑉 Appraiser reproducibility Type A 0.00000 mm 

𝑢𝐼𝐴𝑖 Interactions Type A 0.00000 mm 
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Symbol u Source u Type u Value Units 

𝑢𝑆𝑇𝐴𝐵 Reproducibility over time Type B 0.00050 mm 

𝑢𝑂𝐵𝐽 Measurand non-homogeneity Type A 0.00417 mm 

𝑢𝑅𝐸𝑆𝑇 Other uncertainty contributors Type B 0.00009 mm 

𝑢𝐶𝐴𝑅2 Combined uncertainty  0.00438 mm 

 

Table 7 

Standard uncertainty allocation for variable COV 

Symbol u Source u Type u Value Units 

𝑢𝐸𝑉𝑅 Repeatability on standard 

(master) 

Type B 0.00115 mm 

𝑢𝐸𝑉𝑂 Repeatability on workpiece Type A 0.00054 mm 

𝑢𝐴𝑉 Appraiser reproducibility Type A 0.00000 mm 

𝑢𝐼𝐴𝑖 Interactions Type A 0.00000 mm 

𝑢𝑆𝑇𝐴𝐵 Reproducibility over time Type B 0.00050 mm 

𝑢𝑂𝐵𝐽 Measurand non-homogeneity Type A 0.00417 mm 

𝑢𝑅𝐸𝑆𝑇 Other uncertainty contributors Type B 0.00009 mm 

𝑢𝐶𝑂𝑉 Combined uncertainty  0.00439 mm 
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Table 8 

Standard uncertainty allocation for variables 𝑃𝑆𝑀𝑒𝑎𝑠  and 𝐺𝑆𝑀𝑒𝑎𝑠  

Symbol u Source u Type u Value Units 

𝑢𝐸𝑉𝑅 Repeatability on standard 

(master) 

Type B 0.00115 mm 

𝑢𝐸𝑉𝑂 Repeatability on workpiece Type A 0.00328 mm 

𝑢𝑆𝑇𝐴𝐵 Reproducibility over time Type B 0.00050 mm 

𝑢𝑂𝐵𝐽 Measurand non-homogeneity Type A 0.00106 mm 

𝑢𝑅𝐸𝑆𝑇 Other uncertainty contributors Type B 0.00009 mm 

𝑢𝑆ℎ𝑖𝑚 𝑀𝑒𝑎𝑠 Combined uncertainty  0.00367 mm 

 

Dynamic Measurement Independent Variables 

The independent variables classified as dynamic measurements are measured while the 

test article is rotated.  These variables share common uncertainties associated with bearing and 

gear variability.  Three variables are included in this category, OAH, BF, and 𝛿𝐽.  Gauge 

repeatability studies provide an assessment of performance of the measurement apparatus and are 

included in Appendix B.  The standard uncertainties related to linearity and bias, 𝑢𝐿𝐼𝑁 and 𝑢𝐵𝐼 

are typically determined experimentally with linear regression methods by repeated measures on 

reference standards as outlined in the ISO (2012) 22514-7 standard.  Similar to static 

measurements, dynamic measurements include one mean master as the standard.  Linearity is not 

significant due to the limited range of each measurement, all are less than 0.200 mm.  Further, 

the utilization of digital probes excludes the effects of any gain related non-linearity.  This study 
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analysis followed the ISO (2012) standard method of combining bias 𝑢𝐵𝐼 and repeatability on 

masters with 𝑢𝐸𝑉𝑅 standard uncertainty.  A known set-up master serves as the reference standard 

and the uncertainty 𝑢𝐸𝑉𝑅 is categorized as a Type B uncertainty.  The uncertainty for each 

dynamic measurement was combined as a single standard uncertainty value following the 

published ISO (2012) method. 

 𝑢𝐷𝑌𝑁𝐴𝑀𝐼𝐶 = √𝑢𝐿𝐼𝑁
2 + 𝑢𝐵𝐼

2 + 𝑢𝐸𝑉𝑅
2 + 𝑢𝐸𝑉𝑂

2 + 𝑢𝐴𝑉
2 + 𝑢𝑆𝑇𝐴𝐵

2 + 𝑢𝑂𝐵𝐽
2 + 𝑢𝑅𝐸𝑆𝑇

2  

Assessing the uncertainty 𝑢𝐸𝑉𝑅 of the dynamic measurement process on a standard 

includes a compromise in that the standard measurements for OAH and BF do not include 

dynamic rotation.  The nature of the uncertainty fits the GUM 100:2008 Section 4.3(JCGM, 

2008a) description of a Type B uncertainty, one that involves insight based on experience and 

general knowledge.  Two factors were considered in establishing 𝑢𝐸𝑉𝑅 for the dynamic 

measurements.  The first is the impracticality of applying a dynamic master; static set-up masters 

are employed in all measurement applications.  The second is the nature of the shim selection 

process, the application of shim offsets make the process robust to bias associated with 

variability on the master.  To allocate this uncertainty, the value of the Master flatness variation 

of ±0.0015 mm is included to account for varying positioning of the Master.  A calculated 

rectangular distribution with 0.003 mm range provides a standard uncertainty  (JCGM, 2008c), 

𝑢𝐸𝑉𝑅 = 0.003 √3⁄ = 0.00173 𝑀𝑀.  This standard uncertainty value is applied to the dynamic 

measurements OAH and BF.   

A repeatability study on a standard was conducted for 𝛿𝐽 allowing a Type A 𝑢𝐸𝑉𝑅 

calculation.  The uncertainty was calculated as the standard error based on repeated measures on 

a standard gearset per ISO (2012) Statistical Methods Table 4, Instance 1.  The data for 
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calculation of 𝛿𝐽 𝑢𝐸𝑉𝑅applied 33 measurements to calculate 𝑢𝐸𝑉𝑅 = .00214is included in 

Appendix B. 

Uncertainties associated with repeatability and reproducibility (GR&R) studies were 

determined by Type A methods using repeated measurements.  The uncertainties of repeatability 

on the workpiece 𝑢𝐸𝑉𝑂 for the independent variables OAH and BF applied the Average and 

Range method in a Type 3 study (Dietrich & Schulze, 2011).  The independent variable δJ 

applied the ANOVA study method published in both the ISO (2012) 22514-7 Standard and the 

Fourth Edition of AIAG (2010) MSA to assess appraiser influence.  The appraiser 

reproducibility 𝑢𝐴𝑉 was significant F(2) = 11692 with p <.001, and appraiser workpiece 

interactions 𝑢𝐼𝐴𝑖 was not, F(18) = 0.59  with p = .90.  The resultant 𝑢𝐸𝑉𝑂 for each variable is 

summarized in Table 9 through Table 11. 

Stability uncertainty 𝑢𝑆𝑇𝐴𝐵 of the measurement process is included by both ISO (2012) 

and Dietrich and Schulze (2011) as an element of the combined uncertainty.  The same approach 

described for static measurements is applied.  The consideration for stability uncertainty applies 

a Type B method not relying on statistical methods.  The selected method applies Dietrich and 

Schulze (2011, pp. 208-209) assuming a normal distribution with two standard deviations equal 

to one-half the range 𝑅𝑔.  For this calculation, an estimate is based on the repeatability of 

individual studies where a range of 0.002 mm is typical, consequently𝑢𝑆𝑇𝐴𝐵 = 𝜎 = 𝑅𝑔 4⁄ =

0.002 4⁄ = 0.0005mm. 

Measurand inhomogeneity or feature variation uncertainty 𝑢𝑂𝐵𝐽 applies differently to 

each dynamic measurement.  The dynamic measurement variable OAH is measured and 

averaged over several part rotations and the bearings are precision manufactured.  This process 

accounts for inhomogeneity, 𝑢𝑂𝐵𝐽 = 0.00 for OAH.  The dynamic variable δJ is determined in a 
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Single Flank test machine with the gears rotated over several revolutions, giving𝑢𝑂𝐵𝐽 = 0.00 for 

δJ.  The inhomogeneity in the dynamic variable BF is a measurement recorded and averaged, 

including a measurement of the variation of the BF measurement.  That is the difference between 

the max and minimum readings characterized as run-out of the BF parameter.  Repeatability 

studies using the Average and Range method in a Type 3 study (Dietrich & Schulze, 2011) of the 

run-out parameter are included in Appendix B, the standard deviation calculated from the 

repeatability studies is applied as the standard uncertainty for the BF 𝑢𝑂𝐵𝐽. 

The category of other uncertainty for OAH and BF follows the approach described for 

static measurements.  The digital measurement probe published repeatability is 0.00015 mm, 

assuming a rectangular distribution the uncertainty is 𝑢𝑅𝐸𝑆𝑇 = 0.00009 𝑚𝑚.  This value was not 

significant but is included for reference.  There is an uncertainty consideration for δJ relative to 

the position of the pinion in the single flank tester.  The allowable variation of the pinion 

mounting position in the tester is ±0.05 mm.  There is a known relationship of pinion position 

variation to backlash of 0.24(Mohsen Kolivand PhD - Manager AAM Gear Design and 

Research, personal communication, November 23, 2016).  Applying a Type B method to account 

for this uncertainty where the 0.10 mm range includes 90% probability normal distribution, 𝑧 =

±1.645, 𝑢𝑅𝐸𝑆𝑇𝛿𝐽 = 0.10 (2 ∗ 1.645) = 0.00729⁄  mm(Dietrich & Schulze, 2011). 

The following Tables 9 through 11 summarize the uncertainty contribution from each 

dynamic measurement independent variable.  The last row in each table provides the resultant 

uncertainty for that variable which is included in the uncertainty analysis and the Monte Carlo 

simulation. 
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Table 9 

Standard uncertainty allocation for variable OAH 

Symbol u Source u Type u Value Units 

𝑢𝐸𝑉𝑅 Repeatability on standard 

(master) 

Type B 0.00173 mm 

𝑢𝐸𝑉𝑂 Repeatability on workpiece Type A 0.00762 mm 

𝑢𝑆𝑇𝐴𝐵 Reproducibility over time Type B 0.00050 mm 

𝑢𝑂𝐵𝐽 Measurand non-homogeneity Type B 0.00000 mm 

𝑢𝑅𝐸𝑆𝑇 Other uncertainty contributors Type B 0.00009 mm 

𝑢𝑂𝐴𝐻 Combined uncertainty  0.00783 mm 

 

Table 10 

Standard uncertainty allocation for variable BF 

Symbol u Source u Type u Value Units 

𝑢𝐸𝑉𝑅 Repeatability on standard 

(master) 

Type B 0.00173 mm 

𝑢𝐸𝑉𝑂 Repeatability on workpiece Type A 0.00269 mm 

𝑢𝑆𝑇𝐴𝐵 Reproducibility over time Type B 0.00050 mm 

𝑢𝑂𝐵𝐽 Measurand non-homogeneity Type A 0.00046 mm 

𝑢𝑅𝐸𝑆𝑇 Other uncertainty contributors Type B 0.00009 mm 

𝑢𝐵𝐹 Combined uncertainty  0.00328 mm 
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Table 11 

Standard uncertainty allocation for variable δJ 

Symbol u Source u Type u Value Units 

𝑢𝐸𝑉𝑅 Repeatability on standard 

(Master) 

Type A 0.00214 mm 

𝑢𝐸𝑉𝑂 Repeatability on workpiece Type A 0.00189 mm 

𝑢𝐴𝑉 Reproducibility of  Appraiser Type A 0.00162 mm 

𝑢𝑆𝑇𝐴𝐵 Reproducibility over time Type B 0.00050 mm 

𝑢𝑂𝐵𝐽 Measurand non-homogeneity N/A 0.00000 

 

mm 

𝑢𝑅𝐸𝑆𝑇 Other uncertainty contributors Type B 0.00729 mm 

𝑢𝛿𝐽 Combined uncertainty  0.00801 mm 

 

Shim Selection Uncertainty Model 

To determine the uncertainty of the shim selection process, the independent variables 

combine with an uncertainty associated with the shim class selection for the process uncertainty.  

Shims are classified in 0.0254 mm (0.001 inch) increments.  There is an uncertainty 𝑢𝑆𝑇𝐸𝑃 

associated with the shim selected based on the classification requirement and the drawing 

tolerance ±0.013 mm.  The shim selection is analogous to resolution uncertainty per ISO 

(2012)Table 2 - Uncertainty from resolution, the shim selection increment is a rectangular 

distribution.  The uncertainty associated with shim class was calculated based on a rectangular 

distribution of one-half the shim class,  

𝑢𝐶𝐿𝐴𝑆𝑆 = (1 √3⁄ ) ∗ (𝑆ℎ𝑖𝑚 𝑆𝑡𝑒𝑝 2⁄ ) = 𝑆ℎ𝑖𝑚 𝑆𝑡𝑒𝑝 √12⁄ = 0.0254 √12⁄ = 0.00733 𝑚𝑚.  
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Standard uncertainty associated with tolerance applies the approach for part tolerance similar to 

that described by Dietrich and Schulze (2011, pp. 201-204).  The shim manufacturing process 

does not control to specific tolaerance.  The process manufacturers shims and then sorts them 

into classes.  To allocate uncertainty a 1.0 𝐶𝑝 and a normal distribution is applied.  The 

uncertainty is then equivalent to the process standard deviation, 𝑢𝑆𝑇𝐸𝑃 = 𝑇𝑂𝐿 6 ∗ 𝐶𝑝⁄ =

0.026 (6 ∗ 1)⁄ = 0.00433 𝑚𝑚.   

The uncertainty analyses for the individual elements are combined following the GUM 

guidelines using the methods described in Chapter 3.  The combined standard uncertainty for the 

Pinion Side shim selection 𝑢𝑃𝑆 is summarized in Table 12, the last row is the uncertainty 

calculated using Equation 4, 𝑢𝑃𝑆 = √𝑢𝐶𝐴𝑅1
2 + 𝑢𝐶𝐴𝑅2

2 + 𝑢𝑂𝐴𝐻
2 + 𝑢𝐵𝐹

2 + 𝑢𝛿𝐽
2 + 𝑢𝑆𝑡𝑒𝑝

2 .  The 

uncertainty propagation for backlash summarized in Table 13 excludes the variable uncertainty 

included the Pinion Side calculation, 𝑢𝐺𝑆−𝐿𝐴𝑆𝐻 = √𝑢𝐶𝑂𝑉1
2 + 𝑢𝑃𝑆𝑀𝑒𝑎𝑠

2 + 𝑢𝑆𝑡𝑒𝑝
2 .  The uncertainty 

propagation for DTR is separate as the Gear Side shim calculation effecting DTR is independent 

of the Pinion Side calculations.  The corresponding uncertainty associated with the Gear Side 

shim selection is summarized in Table 14, where the last row is the uncertainty calculated using 

Equation 5, 𝑢𝐺𝑆−𝐷𝑇𝑅 = √𝑢𝐶𝐴𝑅1
2 + 𝑢𝐶𝑂𝑉1

2 + 𝑢𝑃𝑆𝑀𝑒𝑎𝑠
2 +𝑢𝑂𝐴𝐻

2 + 𝑢𝑆𝑡𝑒𝑝
2 . 

Table 12 

Standard uncertainty summary for Pinion Side Shim Selection 

Symbol u Source Source u Value Units 

𝑢𝐶𝐴𝑅1 Carrier Measure CAR1 Table 5 0.00510 mm 
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Symbol u Source Source u Value Units 

𝑢𝐶𝐴𝑅2 Carrier Measure CAR2 Table 6 0.00438 mm 

𝑢𝑂𝐴𝐻 Dynamic Differential OAH Table 9 0.00783 mm 

𝑢𝐵𝐹 Dynamic Differential BF Table 10 0.00328 mm 

𝑢𝛿𝐽 Dynamic Gearset δJ Table 11 0.00801 mm 

𝑢𝐶𝐿𝐴𝑆𝑆 Shim Class – Pinion Side  0.00733 mm 

𝑢𝑇𝑂𝐿 Shim Tolerance – Pinion Side  0.00433 mm 

𝑢𝑃𝑆 Pinion Side Shim Uncertainty  0.01594 mm 

 

Table 13 

Standard uncertainty summary for Gear Side Shim Selection Backlash 

Symbol u Source Source u Value Units 

𝑢𝐶𝑂𝑉 Cover Measure COV Table 7 0.00439 mm 

𝑢𝑃𝑆 𝑀𝐸𝐴𝑆 Pinion Side Measurement Table 8 0.00367 mm 

𝑢𝐶𝐿𝐴𝑆𝑆 Shim Class – Gear Side  0.00733 mm 

𝑢𝑇𝑂𝐿 Shim Tolerance – Gear Side  0.00433 mm 

𝑢𝐺𝑆−𝐿𝐴𝑆𝐻 Gear Side Shim Uncertainty 

(Backlash) 

 0.01026 mm 
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Table 14 

Standard uncertainty summary for Gear Side Shim Selection DTR 

Symbol u Source Source u Value Units 

𝑢𝐶𝐴𝑅1 Carrier Measure CAR1 Table 5 0.00510 mm 

𝑢𝐶𝑂𝑉 Cover Measure COV Table 7 0.00439 mm 

𝑢𝑂𝐴𝐻 Dynamic Differential OAH Table 9 0.00783 mm 

𝑢𝑃𝑆 𝑀𝐸𝐴𝑆 Pinion Side Measurement Table 8 0.00367 mm 

𝑢𝐶𝐿𝐴𝑆𝑆 Shim Class – Gear Side  0.00733 mm 

𝑢𝑇𝑂𝐿 Shim Tolerance – Gear Side  0.00433 mm 

𝑢𝐺𝑆−𝐷𝑇𝑅 Gear Side Shim Uncertainty 

DTR 

 0.01388 mm 

 

Shim Uncertainty Correlation 

The influence of shim standard uncertainty on the dependent variables of Differential 

Torque to Rotate(DTR) and Backlash includes interaction of bearing preload force and backlash 

due to relative stiffness of the assembled components.  This relationship was determined 

empirically through post processing data from re-shimmed axles.  An empirical model was 

derived through analysis of the response of Backlash and Total Torque to Rotate (TTR) to shim 

changes.  The response of both dependent variables is as expected due to the linear 

characteristics of the components.  The static components are all in the linear elastic range of 

materials, bearing torque responds linearly to load (Timken, 2011), and backlash response is 

linear (Stadtfeld, 2014). 
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Data collected from forty-three reworked axles were studied to determine the effects of 

shim change on the two dependent variables, Backlash and DTR.  Each axle assembly was 

audited measuring backlash and DTR and rejected as outside the tolerance limits for one of the 

two parameters.  Subsequently, the Pinion-side and Gear-side shims were changed and the axle 

reprocessed through the assembly system.  The shims for the first time through and after change 

are measured along with the assembly Backlash and TTR for both configurations.  This provides 

a method to determine the response to the variable of the change in shim.  The shim change is the 

control variable while all other variables are unchanged.  This data, included in Appendix C, 

enables analysis of the effects of independent variable shim delta on the dependent variables. 

An evaluation of the effects of change in the total shim was calculated by summing 

Pinion-side and Gear-side shims.  The sum variable influence on the dependent variable DTR 

was analyzed using SPSS Version 23 linear regression.  To provide data consistent between 

ratios, the differential torque was calculated by multiplying the measured torque on the pinion by 

the ratio.  Linear regression analysis of the data confirmed the relationship between DTR and 

total shim is linear, F(41) = 382.3, (p<.001).  The model calculated coefficients result in the 

equation; 𝐷𝑖𝑓𝑓 𝑇𝑇𝑅 = 11.83 ∗ 𝑇𝑂𝑇 𝑆𝐻𝐼𝑀𝛿 − .008, with the regression model explaining 

greater than 90% of the variance, 𝑅2=.901.  The coefficient 11.83 is significant, t = 19.55 (p 

<.001), while the constant is not, t = -.251 (p >.80).  The intercept non-significance was 

expected, the intercept theoretically is zero.  The effects of shim change on DTR are dependent 

on incremental change and are affected only by the slope coefficient.  The linear nature of the 

data and model is shown in Figure 15. 



80 

 

Figure 15. Linear model DTR responses to shim size change 

Following the guidelines provided in GUM Section 5.2, the values of Pinion Side (PS), 

Gear Side (GS) are independent, and the covariance term is eliminated in the propagation 

derivative.  The response of Differential Torque is linear, 𝐷𝑇𝑅 = 𝑓(𝑘𝐷𝑖𝑓𝑓(𝑃𝑆 + 𝐺𝑆)) = 11.83 ∗

(𝑃𝑆 + 𝐺𝑆).  The process selects the Gear Side Shim to provide differential bearing preload by 

including the measured Pinion Side Shim such that the error contributing to DTR is part of the 

Gear Side Shim uncertainty.  Applying this relationship and the uncertainty propagation equation 

derives a differential torque to rotate process uncertainty 𝑢𝑇𝑇𝑅 , 𝑢𝑇𝑇𝑅
2 = 11.832(𝑢𝐺𝑆−𝐷𝑇𝑅

2 ).  This 

value was used for the uncertainty framework calculation and the Monte Carlo Method (MCM) 

simulation. 

The effects of shim changes on the dependent variable Backlash was analyzed by SPSS 

multiple linear regression methods.  The analysis included Pinion-side and Gear-side shim 

change as independent variables and Backlash as the dependent variable.  Linear regression 
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analysis of the data confirmed the relationship between Backlash and shim changes was linear, 

F(40) = 404.7, (p<.001).  The model result; 𝐵𝑎𝑐𝑘𝑙𝑎𝑠ℎ = (−0.489) ∗ 𝐺𝑆𝛿 + 0.474 ∗ 𝑃𝑆𝛿 −

0.001 explained greater than 95% of the variance, 𝑅2=0.95.  The Gear-side coefficient -.489 is 

significant, t = -12.80 (p <.001), the Pinion-side coefficient .474 is significant, t = 12.25 (p 

<.001), while the constant is not, t = -0.71 (p >.48).  The intercept non-significance is expected, 

the intercept theoretically is zero.  The backlash model prediction is compared to actual data in 

Figure 16. 

 

Figure 16. Model backlash prediction to shim change correlation 

Following the guidelines provided in GUM Section 5.2, the values of Pinion Side (PS), 

Gear Side (GS) are independent eliminating the covariance term in the propagation derivative.  

The response of Backlash is linear, 𝐵𝑎𝑐𝑘𝑙𝑎𝑠ℎ = 𝑓(𝑘𝑃𝑆𝐺𝑆 + 𝑘𝐺𝑆𝑃𝑆) = (−0.489) ∗ 𝐺𝑆 +

0.474 ∗ 𝑃𝑆.  Applying this relationship and the uncertainty propagation equation derives a 
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backlash process uncertainty 𝑢𝐵𝑎𝑐𝑘𝑙𝑎𝑠ℎ , 𝑢𝐵𝑎𝑐𝑘𝑙𝑎𝑠ℎ
2 = (−0.489)2𝑢𝐺𝑆−𝐿𝐴𝑆𝐻

2 + (0.474)2𝑢𝑃𝑆
2 .  The 

results of this were applied in the uncertainty framework and MCM simulation. 

Audit Measurement Uncertainty 

As stated above, the dependent variables in this study are backlash and differential torque 

to rotate.  The measurement apparatus is fully automatic, and so is not susceptible to appraiser or 

interaction uncertainties.  This obviated consideration of appraiser uncertainty 𝑢𝐴𝑉 and 

interactions with appraiser uncertainty 𝑢𝐼𝐴𝑖 as part of gauge repeatability studies assessing 

uncertainty.  The audit measurement apparatus includes high-resolution devices for backlash and 

torque measurement eliminating resolution uncertainty 𝑢𝑅𝐸  as a contributor to the audit 

uncertainty.  The measurement devices’ high stability removed consideration of time based 

stability uncertainty 𝑢𝑆𝑇𝐴𝐵 associated with measurement drift and so was not included in the 

combined audit uncertainty.   

The application of standard uncertainties related to linearity and bias, 𝑢𝐿𝐼𝑁 and 𝑢𝐵𝐼is 

established by repeated measures on reference standards as outlined in the ISO (2012) 22514-7 

standard but were not applicable to the process.  First is the consideration of the limited range of 

each measurement, backlash less than 0.200 mm, and torque range of less than 2.0 Nm.  This 

combined with the utilization of high-resolution measurement devices eliminate linearity and 

resolution as discernable uncertainty contributors.  As a result, 𝑢𝐿𝐼𝑁 and 𝑢𝑅𝐸  were modeled at 

zero in these instances.   

The primary audit measurement system assessment method was repeatability studies used 

to establish 𝑢𝐸𝑉𝑂.  The uncertainty from repeatability on test parts𝑢𝐸𝑉𝑂 equals the estimated 

standard deviation determined by Average and Range method in a Type 3 study (Dietrich & 

Schulze, 2011).  The average range applied five measurements on each part to mitigate the 
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influence of part variability.  Data from the repeatability studies is included in Appendix B, the 

results are summarized in Table 16 and Table 17. 

The standard uncertainty related to location of measurement in the process 𝑢𝐺𝑉 has 

application in torque measurement.  The assembly system identifies the various steps in the 

assembly process as operations shown previously in Figure 3.  Each process step is identified as 

an Operation (OP) and sequential number.  For the torque process, the first step is Operation 90 

(OP90) that measures the Pinion Torque to Rotate (PTR).  The second is Operation 120 (OP120), 

which measures Differential Torque to Rotate (DTR), the same operation that measures OAH 

and BF.  The final step in the torque measurement process is the Audit operation, Operation 180 

(OP180), which measures Total Torque to Rotate (TTR).  The process for torque measurement is 

shown in Figure 17.  During the OP120 process, a measured torque for each part becomes the 

unique process target for that assembly.  Limits for the audit measurement on each individual 

axle are set as ±0.58 Nm about that process target.  The following example calculation where the 

gear ratio is 3.727 corresponds to the values shown in Figure 17. 

 𝐷𝑇𝑅 𝐴𝑢𝑑𝑖𝑡 = (𝑇𝑇𝑅 − 𝑃𝑇𝑅) ∗ 𝐺𝑒𝑎𝑟 𝑅𝑎𝑡𝑖𝑜 

 𝐷𝑇𝑅 𝐴𝑢𝑑𝑖𝑡 𝐸𝑟𝑟𝑜𝑟 = (𝐷𝑇𝑅 𝐴𝑢𝑑𝑖𝑡) − (𝐷𝑇𝑅 𝑓𝑟𝑜𝑚 𝑂𝑃120) 

Calculation example: 

 𝐷𝑇𝑅 𝐴𝑢𝑑𝑖𝑡 = (2.163 − 1.561) ∗ 3.727 = 2.244Nm 

 𝐷𝑇𝑅 𝐴𝑢𝑑𝑖𝑡 𝐸𝑟𝑟𝑜𝑟 = (2.244 − 2.566) = −0.322Nm 
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Figure 17. Torque measurement process for determining audit measurement of DTR 

As previously stated the upper and lower limits for differential bearing torque are 

established for each part based on differential torque to rotate (DTR) that is measured in 

Operation 120.  The assembled product does not permit isolation of this torque for the audit 

measurement of DTR in Operation 180.  The audit process measures torque at the Pinion on the 

assembled axle.  This torque includes the pinion bearing and differential bearing torque, referred 
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to as total torque to rotate (TTR) in the audit process.  Hence, that measurement includes the 

pinion torque to rotate (PTR), also measured on each part in the process.  The differential bearing 

torque to rotate is calculated as, 𝐷𝑇𝑅 = (𝑇𝑇𝑅 − 𝑃𝑇𝑅) ∗ 𝐺𝑒𝑎𝑟 𝑅𝑎𝑡𝑖𝑜.  Rearranging to permit 

evaluation uncertainty 𝑢𝐺𝑉, 𝑇𝑇𝑅 = 𝐷𝑇𝑅 𝑅𝑎𝑡𝑖𝑜⁄ + 𝑃𝑇𝑅.  Applying GUM (JCGM, 2008a) 

uncertainty propagation method the resultant uncertainty on the audit measurement was 

derived,𝑢𝐺𝑉−𝑇𝑇𝑅
2 = 𝑢𝐷𝑇𝑅

2 (𝑅𝑎𝑡𝑖𝑜)2⁄ + 𝑢𝑃𝑇𝑅
2 .   

Determining the process uncertainty contribution of interim uncertainties 

𝑢𝑃𝑇𝑅 𝑎𝑛𝑑 𝑢𝐷𝑇𝑅included two elements.  The repeatability on workpiece𝑢𝐸𝑉𝑂 applied Type A 

uncertainty methods with repeatability studies by the Average and Range method in a Type 3 

study (Dietrich & Schulze, 2011) that are included in Appendix B.  There is a known uncertainty 

associated with stability of the DTR and PTR that was included as a standard uncertainty 𝑢𝑆𝑇𝐴𝐵.  

This part stability uncertainty is known to be significant and is difficult to quantify.  It is related 

to the bearing torque sensitivity to the rust preventative that is applied to the bearings during 

bearing manufacture (Johns, Kamping, Krueger, Mynderse, & Riedel, 2016).  For this study a 

Type A approach of reviewing three repeatability studies of bearing torque variation on similar 

bearings was used.  The average standard deviation from the studies indicated a standard 

deviation in torque of 0.025 Nm per tapered roller bearing.  With this criteria the PTR 𝑢𝑆𝑇𝐴𝐵 =

0.025 and DTRP 𝑢𝑆𝑇𝐴𝐵 = 0.05.  The standard uncertainty of 𝑢𝐷𝑇𝑅 and 𝑢𝑃𝑇𝑅 and the effect on 

the audit measurement is summarized in Table 15. 
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Table 15 

Standard uncertainty summary for in-process measurements PTR and DTR 

Symbol u Source u Type 𝑢𝑃𝑇𝑅 𝑢𝐷𝑇𝑅 Units 

𝑢𝐸𝑉𝑂 Repeatability on workpiece Type A 0.0199 0.0212 Nm 

𝑢𝑆𝑇𝐴𝐵 Part Stability Type A 0.0250 0.0500 Nm 

𝑢𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 
√𝑢𝐸𝑉𝑂

2 + 𝑢𝑆𝑇𝐴𝐵
2 + 𝑢𝑂𝐵𝐽

2  
 0.0320 0.054 Nm 

  RATIO 3.23 

(42/13) 

  

𝑢𝐺𝑉−𝑇𝑇𝑅 
√𝑢𝐷𝑇𝑅

2 (𝑟𝑎𝑡𝑖𝑜)2⁄ + 𝑢𝑃𝑇𝑅
2   0.0361  Nm 

 

The standard uncertainty of part inhomogeneity for backlash is associated with the 

hunting tooth gear geometry requiring a large number of gear rotations to measure all possible 

tooth combinations (Kish, 1997).  The backlash is measured over one revolution of the ring gear 

resulting in less than 10% of the possible combinations.  A Type B method is applied to include 

the uncertainty of backlash due to the hunting tooth design.  The total number of mesh 

possibilities is the product of the pinion and gear tooth count is, 13 ∗ 42 = 546 for the 3.23 

ratio, one gear revolution includes 42 of the total mesh possibilities.  Applying the standard error 

theory that the sample mean is normally distributed about the true mean including all mesh 

possibilities, the standard error may be approximated as published by Miller and Freund (1977) 

as, 𝜎 √𝑛⁄ .  Applying the gear manufacturing drawing tolerance of ±0.025 mm rectangular 

distribution as outlined by Dietrich and Schulze (2011)the standard deviation is estimated as 

0.05 √3⁄ = 0.0289mm.The audit sample distribution standard error is used to estimate the 

standard uncertainty, 𝑢𝑂𝐵𝐽−𝐿𝐴𝑆𝐻 = 0.0289 √42⁄ = 0.00445. 
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This study analysis follows the ISO (2012) method of combining bias 𝑢𝐵𝐼 and 

repeatability on masters in the 𝑢𝐸𝑉𝑅 standard uncertainty.  The audit measurements of backlash 

and TTR are both dynamic and do not apply a standard or master.  The process validation for 

backlash compares equipment readings to manual measurements.  The process validation for 

TTR is a comparison of equipment readings to a reference measurement device.  To account for 

this uncertainty a Type A torque audit  𝑢𝐸𝑉𝑅 was estimated using a fifteen-part correlation of 

OP180 Total Torque measurement and the reference torque measurement device.  The 

uncertainty was determined by a regression error method adapted from that described in Section 

A.1.3 of the ISO (2012) 22514-7 Standard.  Analyzing the sum of squares residual from the 

correlation study a variance can be determined.  The standard deviation calculated from this 

variance was the value for TTR 𝑢𝐸𝑉𝑅 = 0.0266.  The data and results are included in Appendix 

B Table B48, and Table B49. 

The axle audit process includes two backlash uncertainties 𝑢𝑅𝐸𝑆𝑇 identified in the ISO 

(2012) as a category of other uncertainties specific to the measurement process under analysis.  

The first is an uncertainty associated with variation in the pinion position.  A separate uncertainty 

study is provided in Appendix E, based on that study the resultant standard uncertainty of the 

pinion position in the assembly, 𝑢𝑃𝑖𝑛𝑖𝑜𝑛−𝑃 = 0.0101 𝑚𝑚.  Applying the 0.24 relationship of P 

variation to backlash the𝑢𝑅𝐸𝑆𝑇1−𝐿𝐴𝑆𝐻 = 0.0101 ∗ 0.24 = 0.0024 𝑚𝑚. 

The second𝑢𝑅𝐸𝑆𝑇 is a result of the gear manufacturing process that includes a Single 

Flank Test (SFT) process that does not measure δJ at the nominal normal backlash value of 0.18 

mm, but offsets to accommodate total accumulated pitch variation and pitch line run-out (Smith, 

1985).  The gear drawing indicates a value ranging from 0.13 to 0.18 mm for normal backlash 

during SFT testing.  Applying a Type B method to account for this uncertainty where the 0.05 
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mm range includes 90% probability normal distribution, 𝑧 = ±1.645, 𝑢𝑅𝐸𝑆𝑇2−𝐿𝐴𝑆𝐻 =

0.05 (2 ∗ 1.645) = 0.0152⁄  𝑚𝑚(Dietrich & Schulze, 2011).    

The standard uncertainty allocations for the audit dependent variable measurements are 

summarized below and tabulated in Table 16 backlash and Table 17 differential torque to rotate 

(DTR).  The uncertainty for each audit measurement is combined as a single standard uncertainty 

value following the published ISO (2012)method as, 𝑢𝐴𝑢𝑑𝑖𝑡 = √𝑢𝐸𝑉𝑂
2 + 𝑢𝐺𝑉

2 + 𝑢𝑂𝐵𝐽
2 + 𝑢𝑅𝐸𝑆𝑇

2 . 

Table 16 

Standard uncertainty summary for backlash audit measurement 

Symbol u Source u Type u Value Units 

𝑢𝐸𝑉𝑂 Repeatability on workpiece Type A 0.00933 

 

mm 

𝑢𝑂𝐵𝐽 Measurand non-homogeneity Type B 0.00445 mm 

𝑢𝑅𝐸𝑆𝑇1 Pinion Position “P” Type A 0.00240 mm 

𝑢𝑅𝐸𝑆𝑇2 SFT Backlash uncertainty Type B 0.01520 mm 

𝑢𝐿𝐴𝑆𝐻 Combined uncertainty  0.01854 mm 

 

Table 17 

Standard uncertainty summary for 3.23 ratio torque audit measurement 

Symbol u Source u Type u Units 

𝑢𝐸𝑉𝑂 Repeatability on workpiece Type A 0.0151 Nm 

𝑢𝐺𝑉 Process location  Type A 0.0361 Nm 
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Symbol u Source u Type u Units 

𝑢𝐸𝑉𝑅 Other torque correlation PTR Type A 0.0266 Nm 

𝑢𝑇𝑇𝑅𝐴 Combined uncertainty at Pinion  0.0473 Nm 

𝑢𝐷𝑇𝑅𝐴 Combined uncertainty DTR 

for 3.23 Ratio 𝑢𝑇𝑇𝑅𝐴 ∗ 𝑅𝑎𝑡𝑖𝑜 

 0.1529 

 

Nm 

 

Uncertainty model summary. 

Propagating the standard uncertainty predictions in the model provides prediction of 

process capability on Backlash and Differential torque to rotate (DTR).  The uncertainty equation 

for the Pinion Side Shim Call, 𝑢𝑃𝑆
2 = 𝑢𝐶𝐴𝑅1

2 + 𝑢𝐶𝐴𝑅2
2 + 𝑢𝑂𝐴𝐻

2 + 𝑢𝐵𝐹
2 + 𝑢𝛿𝐽

2 + 𝑢𝑆𝑡𝑒𝑝
2  is applied to 

determine the resultant standard uncertainty𝑢𝑃𝑆.  The uncertainty equation for the Gear Side 

Shim Call, 𝑢𝐺𝑆
2 = 𝑢𝐶𝑂𝑉

2 + 𝑢𝑃𝑆𝑀𝑒𝑎𝑠
2 + 𝑢𝑆𝑡𝑒𝑝

2  is used to determine resultant standard uncertainty 

𝑢𝐺𝑆.  The equations below summarize the uncertainty contributions from the shim selection 

process that affect backlash.  

𝑢𝑃𝑆 = √𝑢𝐶𝐴𝑅1
2 + 𝑢𝐶𝐴𝑅2

2 + 𝑢𝑂𝐴𝐻
2 + 𝑢𝐵𝐹

2 + 𝑢𝛿𝐽
2 + 𝑢𝑆𝑡𝑒𝑝

2 .  

𝑢𝑃𝑆 = √. 00510𝐶𝐴𝑅1
2 +. 00438𝐶𝐴𝑅2

2 +. 00783𝑂𝐴𝐻
2 +. 00328𝐵𝐹

2 +. 00801𝛿𝐽
2 + 0.00852𝑆𝑡𝑒𝑝

2  

𝑢𝑃𝑆 = 0.01594 mm 

𝑢𝐺𝑆−𝐿𝐴𝑆𝐻 = √𝑢𝐶𝑂𝑉1
2 + 𝑢𝑃𝑆𝑀𝑒𝑎𝑠

2 + 𝑢𝑆𝑡𝑒𝑝
2  

𝑢𝐺𝑆−𝐿𝐴𝑆𝐻 = √0.00439𝐶𝑂𝑉1
2 + 0.00367𝑃𝑆𝑀𝑒𝑎𝑠

2 + 0.00852𝑆𝑡𝑒𝑝
2  

𝑢𝐺𝑆−𝐿𝐴𝑆𝐻 = 0.01026 mm 

The combined uncertainty for the backlash process is,  
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𝑢𝐵𝑎𝑐𝑘𝑙𝑎𝑠ℎ−𝑃𝑟𝑜𝑐𝑒𝑠𝑠 = √(−0.489)2𝑢𝑃𝑆
2 + (0.474)2𝑢𝐺𝑆

2 = 0.00919 mm 

The uncertainty equation for the shim error related to DTR, 𝑢𝐺𝑆−𝐷𝑇𝑅
2 = 𝑢𝐶𝐴𝑅1

2 + 𝑢𝐶𝑂𝑉
2 +

𝑢𝑂𝐴𝐻
2 + 𝑢𝑃𝑆𝑀𝑒𝑎𝑠

2 + 𝑢𝑆𝑡𝑒𝑝
2  is used to determine shim 𝑢𝐺𝑆−𝐷𝑇𝑅.  The equations below summarize 

the uncertainty contributions from the shim selection process that affect DTR. 

𝑢𝐺𝑆−𝐷𝑇𝑅 = √𝑢𝐶𝐴𝑅1
2 + 𝑢𝐶𝑂𝑉1

2 + 𝑢𝑃𝑆𝑀𝑒𝑎𝑠
2 +𝑢𝑂𝐴𝐻

2 + 𝑢𝑆𝑡𝑒𝑝
2  

𝑢𝐺𝑆−𝐷𝑇𝑅 = √0.00510𝐶𝐴𝑅1
2 + 0.00438𝐶𝑂𝑉1

2 + 0.00367𝑃𝑆𝑀𝑒𝑎𝑠
2 +0.00783𝑂𝐴𝐻

2 + 0.00852𝑆𝑡𝑒𝑝
2  

𝑢𝐺𝑆−𝐷𝑇𝑅 = 0.01388 mm 

The combined uncertainty for the DTR process is, 

𝑢𝐷𝑇𝑅 = √(11.83)2𝑢𝐺𝑆
2 = 0.1642 Nm 

The measured process capability combines the process and measurement uncertainty.  

The audit standard uncertainty for DTR varies by ratio, 𝑢𝐷𝑇𝑅𝐴−3.23 = 0.1684Nm, 𝑢𝐷𝑇𝑅𝐴−3.73 =

0.1911Nm.  The backlash audit standard uncertainty is 𝑢𝐿𝐴𝑆𝐻 = 0.01854mm.  The process 

observed variation is the combination of process variation and measurement variation, Table 18 

summarizes the uncertainties associated with each process and audit. 

Table 18 

Combined standard uncertainty process capability 

Symbol u Source Backlash DTR 3.23 Units 

𝑢𝑃𝑟𝑜𝑐𝑒𝑠𝑠 Process standard uncertainty 0.00919 0.1642 mm/Nm 

𝑢𝐴𝑢𝑑𝑖𝑡 Audit standard uncertainty  0.01854 0.1529 mm/Nm 

𝑢𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 Observed standard uncertainty 

√𝑢𝑃𝑟𝑜𝑐𝑒𝑠𝑠
2 + 𝑢𝐴𝑢𝑑𝑖𝑡

2  

0.02069 0.2244 mm/Nm 
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Symbol u Source Backlash DTR 3.23 Units 

 Acceptance Limits |𝑈 − 𝐿| 0.100 1.16 mm/Nm 

𝐶𝑝 Predicted process capability 
|𝑈 − 𝐿| (6 ∗ 𝑢𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑)⁄  

0.806 0.862 

 

 

 Predicted % Rework 

𝑧 = ± (
|𝑈 − 𝐿|

2
𝑢𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑⁄ ) 

 

1.6% 1.0%  

 

Research Question 2 

Research Question 2 asks, can a measurement system uncertainty model be used to 

predict the backlash and torque-to-rotate capability of a shim-selection measurement system?  

The method to answer this question is a comparison of product data to a MCM simulation 

applying the uncertainties developed answering Research Question 1. 

Statistical Power and Effect Size 

Research Question 2 compares model results with production data collected from the 

Supervisory Control and Data Acquisition (SCADA) system.  This system permits the 

acquisition of a significant amount of data.  To perform the comparison analysis it is desirable to 

collect data that is not influenced by variables not included in the study, ideally data collected for 

a continuous production run isolated to one part type.  Given the study criteria of a Type I error 

of p<.05 an analysis of the amount data required to detect an effect for both variables of interest 

is required. 

Effect size in literature is often classified as small, medium, and large (Cohen, 1992).  

Warner (2013) recommends distinguishing between statistical significance and practical 

significance for a study effect.  It was possible to estimate a practical effect that is meaningful to 
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the shim selection process.  The shim selection process often operates at less than 100% first 

time acceptance (FTA), a value of 97.5% is common, resulting in 2.5% of the axles requiring 

replacement of the shims to achieve audit acceptance.  The production shim selection process of 

this study typically operates near this FTA level.  To establish an effect size for this system, a 

shift of ±1.5% in first time acceptance would be a meaningful change, for example the difference 

between 96% and 97.5%, or between 97.5% and 99% first time acceptance.  Applying this as 

criteria, a standard deviation is calculated for the acceptance upper and lower acceptance limits 

assuming a centered two-tailed distribution.  For 99% first time acceptance z(.995) = 2.58, for 

97.5% first time acceptance z(.9875) = 2.241.  The process standard deviation corresponding to 

99% acceptance is calculated by dividing the half of the tolerance limit by the z value.  The 

result is this ratio of standard deviation is the ratio of z values, the square of this ratio is the 

variance ratio that may be used to calculate a meaningful effect size for the F-Test of variances.  

To move from 97.5% FTA to 99% FTA a variance ratio of 0.76 is required, to move from 96% 

FTA to 97.5% FTA a variance ratio of 0.84 is required.  The effect size for the F-Test is 

considered as the greater value of 0.84. 

A similar approach is used to determine the Cohen d value for the mean comparison.  A 

mean shift that corresponds to a 1.5% change in FTA, a single tail change from z(.9875) = 2.241 

to 97.25% calculated, z(.9725) = 1.92.  This change in z value multiplied by the standard 

deviation provides a measure of the mean shift corresponding to this change, 0.007 mm in 

backlash and 0.08 Nm in DTR can be used to calculate a Cohen d for each variable.  The Cohen 

d for Backlash and DTR is 0.31.  These values are used for further analysis of effect and power.   
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Production Data Screening 

To validate the data a screening process was used to identify outliers and assess the 

normality of the data.  The data was acquired by collecting results for 2,000 consecutive parts 

during normal production.  The data included three separate axle models differing by gear ratio.  

A sort was conducted to include only parts first time through the process and to exclude parts 

with incomplete data sets.  This resulted in 1,721 cases, 964 cases of 3.23 ratio models and 757 

cases of 3.73 ratio models.  The 3.23 ratio model data set was selected for analysis as providing 

the largest number of cases.   

Initial data screening of the independent measurement variables identified a bimodal 

distribution in the independent variable CAR1 shown in Figure 18.  The Carrier bimodal 

distribution is common to all models, attributed to two separate machine sources that produce the 

Carrier.  For the purpose of data validation, the CAR1 is divided into two groups, Group A 

below 102.240 mm, and Group B above 102.240 mm.  

 

Figure 18. Production data bimodal distribution of CAR1 measurements 
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The independent variable distributions all appeared normally distributed, excess kurtosis 

for variables was less than 1.01 units.  To eliminate data outliers the approach of 1.5 times the 

difference between the 25th and 75th percentile, defined as H-Spread, is added to the 75th 

percentile and subtracted from the 25th percentile (Warner, 2013, p. 156).  This process 

eliminated 41 cases as independent variable outliers.  The remaining 923 cases included two 

dependent variable outliers.  Case 619 is an outlier in both DTRERR with a 3.4 H-Spread ratio 

and AVGLASH with a 2.7 H-Spread ratio.  The second case excluded as a dependent variable 

outlier was case 593 with an AVGLASH H-Spread ratio of 3.0.  The final data set included 921 

cases. 

The statistical power based on the 921 data sample size is calculated using G*Power 

Version 3.1 (Faul, Erdfelder, Lang, & Buchner, 2007).  The t-test power analysis uses 921 

samples for the data and an assumed 3,000 samples from the MCM and the Cohen d effect size 

of 0.31 previously determined for comparison of sample means.  The calculated power is >.999, 

the risk of Type II error is negligible.  For the variance F-Test, power is calculated again 

assuming 921 samples and 3,000 samples from the MCM, the variance ratio effect of 0.84 

previously calculated is used for the power calculation.  The calculated power of .91 indicates an 

acceptable 9% risk of Type II error.  This verified that the sample set of 921 cases provided 

adequate power for this analysis. 

The independent variable data statistics with the outliers eliminated is shown in Table 19.  

The CAR2 and CAR1 Group A variables exceed the 2.0 z ratio of skewness divided by Standard 

Error of skewness,  zCAR2= 2.4 and zCAR1-GRPA= 2.2.  This slight skew does not affect the results 

as each case is separately evaluated.  All of the independent variable distributions are platykurtic, 

with CAR1 is the most significant with excess kurtosis of -0.844 and standard error of kurtosis 
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0.216.  This is acceptable and is attributed to the small spread in the variable, 25 microns total, 

relative to the resolution of the data. 

Table 19 

Production data Independent Variable statistical summary 

Variable 

 Mean Std. Dev. Skewness Kurtosis 

N Statistic Statistic Statistic Std. Err. Statistic Std. Err. 

CAR1GRPA 509 102.221 mm .00532 -.239 .108 -.844 .216 

CAR1 GRP B 412 102.262 mm .00618 .065 .120 -.327 .240 

CAR2 921 42.019 mm .00735 -.196 .081 -.190 .161 

COV 921 55.532 mm .01791 .054 .081 -.327 .161 

DELTAJ 921 0.1508 mm .02671 -.008 .081 -.262 .161 

OAH 921 151.644 mm .02551 -.073 .081 -.120 .161 

BF 921 48.991 mm .02904 .104 .081 -.250 .161 

 

The statistics for the dependent variables of AVGLASH and the error in setting 

differential torque DTRERR are summarized in Table 20.  Both dependent variables are 

normally distributed with z ratio of kurtosis and skewness less than 2.0.  Backlash mean of 0.187 

mm is 0.007 mm above the target, while the mode is at the target of 0.18 mm.  The data mean 

shift or bias in the resultant backlash average in the data is at the effect size threshold of 0.007 

mm established as part of this study.  This indicates that the production process is not centered at 

0.18 mm.  The variation of differential torque to rotate from the target is 0.007 Nm, less than 

0.6% of the total range and well below the practical effect size of 0.083 Nm established.  The 

data set of 921 cases was the baseline for comparison with the Monte Carlo simulation for the 

two dependent variables. 
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Table 20 

Production data Dependent Variable statistical summary 

Variable 

 Mean Std. Dev. Skewness Kurtosis 

N Statistic Statistic Statistic Std. Err. Statistic Std. Err. 

AVGLASH (mm) 921 .187 .02191 -.114 .081 -.218 .161 

DTRERR (Nm) 921 .007 .21926 -.048 .081 -.137 .161 

 

Monte Carlo simulation. 

The simulation process follows the production gauging process for each case or part in 

the simulation.  The simulation starts with a true value for each independent variable.  An error 

based on the combined standard uncertainty is added to the true value to create an observed 

value.  The simulation Excel spreadsheet follows the assembly process propagating error that 

results in a value for the two dependent variables of Differential Torque to Rotate Error and 

Backlash.  A sample calculation from the simulation is included in Appendix D. 

For each independent measurement, variable true values are simulated based on a normal 

distribution.  To generate the true values a process Capability Index defined by; 𝐶𝑝 =

|𝑈 − 𝐿|/(6 ∗ 𝜎) where σ is the process standard deviation (AIAG, 2010) was used.  The target  

process control at this manufacturer is𝐶𝑝 = 2.0, this value is applied to the upper and lower 

limits for each variable true value.  The analysis is based on the uncertainty around the 

measurements so that the process and analysis is robust to the MCS true values.  Table 21 

summarizes the upper (U) and lower (L) product limits averaged to determine the mean and the 

standard deviation for each variable true value determined by 𝜎 = |𝑈 − 𝐿| (6 ∗ 𝐶𝑝)⁄ .  

Independent Variable OAH and BF true values were calculated by adding the tolerance of each 

individual component.  Variable DELTAJ has no specific tolerance, a mean of 0.15 mm and 
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range |𝑈 − 𝐿| of 0.30 mm were included for calculation of DELTAJ true values in the 

simulation.  The individual case simulated true values are developed using the NORMINV 

function in Excel.  The distribution is based on the mean and standard deviation of Table 21, 

𝑁𝑂𝑅𝑀𝐼𝑁𝑉(𝑅𝐴𝑁𝐷( ), 𝜇, 𝜎).  The RAND Excel function generates a random true number 

between 0 and 1, providing a probability for each case calculation.  This method is used in the 

simulation to generate the normal distribution true values for each independent variable. 

Table 21 

Independent variable true value MCM simulation characteristics 

Variable U (mm) L (mm) Mean μ (mm) Std. Dev. σ (mm) 

CAR1 102.300 102.100 102.200 0.016667 

CAR2 42.025 41.975 42.000 0.004167 

COV 55.580 55.480 55.530 0.008333 

DELTAJ 0.300 0.000 0.150 0.025000 

OAH 152.000 151.400 151.700 0.050000 

BF 49.335 48.935 49.135 0.033333 

 

To simulate the independent variable observed measured values the measurement 

uncertainty error is added to a simulated true value (Coleman & Steele, 2009).  The uncertainty 

error is based on the standard uncertainty for each independent variable developed in answering 

Research Question 1.  The individual simulation case measurement errors are developed using 

the NORMINV function in Excel, applying a mean of 0.0 and standard deviation value that 

corresponds to the standard uncertainty, and the RAND function to generate the normal 

distribution, 𝑁𝑂𝑅𝑀𝐼𝑁𝑉(𝑅𝐴𝑁𝐷( ), 0.0, 𝑢𝑖).  The uncertainty for each independent variable is 

listed in Table 22. 
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Table 22 

Independent variable MCM simulation measurement standard uncertainty 

Variable Reference RQ1 standard uncertainty u Units 

CAR1 Table 5 0.00510 mm 

CAR2 Table 6 0.00438 mm 

COV Table 7 0.00439 mm 

OAH Table 9 0.00783 mm 

BF Table 10 0.00328 

 

mm 

DELTAJ Table 11 0.00800 mm 

Shim Measure Table 8 0.00367 mm 

 

The simulation uses observed values to select a shim from the incremental shims 

available and calculates an installed shim for each case.  This installed shim is then compared 

with the True Value ideal shim gap.  The difference between the true value shim gap and the 

installed shim constitutes the shim call process error.  Applying the coefficients developed in 

answering Research Question 1, the effects on Differential Torque to Rotate and Backlash 

attributed to the shim error are calculated for each case in the simulation as,  𝐷𝑇𝑅𝐸𝑅𝑅𝑆𝐻𝐼𝑀 =

11.83 ∗ (𝐺𝑆𝐸𝑅𝑅𝑂𝑅), and 𝐿𝐴𝑆𝐻𝐸𝑅𝑅𝑆𝐻𝐼𝑀 = (−0.489) ∗ 𝐺𝑆𝐸𝑅𝑅𝑂𝑅 + 0.474 ∗ 𝑃𝑆𝐸𝑅𝑅𝑂𝑅 . 

The process uncertainty simulated for each case includes in-process torque measurements 

that contribute to error in reported torque results.  Two in-process measurements contribute to 

measurement uncertainty; Pinion Torque to Rotate (PTR) and Differential Torque to Rotate 

Process (DTRP).  To represent the distribution for PTR and DTRP true values, a normal 

distribution is applied to the simulation.  The mean selected for the simulated true value was the 

mean of the larger data set of 1953 cases.  The standard deviation is based on the bearing 
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manufacturers projected Upper and Lower limits as a six standard deviation range 𝜎 =

|𝑈 − 𝐿| (6)⁄ .  The individual simulation cases are populated using 

the𝑁𝑂𝑅𝑀𝐼𝑁𝑉(𝑅𝐴𝑁𝐷( ), 𝜇, 𝜎) function in Excel in the same manner described for the 

independent variables.  For PTR a mean true value of 1.7 Nm and 𝜎 = 0.14, and DTRP 2.6 Nm 

and 𝜎 = 0.14 is used in the simulation.  Table 23 summarizes the in-process variable limits used 

in the MCM simulation. 

Table 23 

In-process variable true value MCM simulation characteristics 

Variable U (Nm) L (Nm) Mean (Nm) Std. Dev. 

PTR 2.125 1.275 1.7 0.14 

DTRP 3.025 2.175 2.6 0.14 

 

To represent the distribution for PTR and DTRP uncertainty values and error for each 

case the normal distribution is applied to the simulation.  The individual simulation case PTR 

and DTRP measurement errors are developed using the NORMINV function in Excel.  Applying 

a mean of 0.0 and standard deviation value that corresponds to the standard uncertainty, and the 

RAND Excel function to generate the normal distribution, 𝑁𝑂𝑅𝑀𝐼𝑁𝑉(𝑅𝐴𝑁𝐷( ), 0.0, 𝑢𝑖).  

From Table 15 above, the uncertainty for the in-process measurement variable PTR is 0.0320 

Nm, and for DTRP is 0.0542 Nm. 

The process uncertainty simulated for each case also includes uncertainty resulting from 

the gear manufacturing process.  The process targets a mean backlash and the process variation is 

about that mean value.  As part of answering research Question 1, a Type B uncertainty 𝑢𝑅𝐸𝑆𝑇2 

based on normally distributed process limits was included in determining the backlash audit 

uncertainty shown previously in Table 16.  The MCM simulation provides a method to include 
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this uncertainty based on a Type A analysis.  To simulate that variance production data available 

from Single Flank Test (SFT) of the hypoid gears included in this study was applied.  The SFT 

data includes a Total Run-out measurement that combines total accumulated pitch variation and 

pitch line run-out (Smith, 1985).  For the simulation data, this was applied to simulate the error 

effects on backlash measurement production using SFT total run-out data for the study 3.23 ratio 

axles.  SFT data for 1337 parts were analyzed using SPSS to assess normality of the distribution 

that is shown in Figure 19.  Applying the normality assessment criteria of 2.0 z ratio of skewness 

0.729 divided by Standard Error of skewness 0.067,  zSFT RUNOUT = 10.9 does not pass the 

normality test.  To provide a simulation input for this uncertainty SPSS Descriptive Statistics Q-

Q Plots is applied to model Shape Factor α and Scale Factor θ for a Gamma Distribution fit to 

the SFT data.  The SPSS output estimates Shape Factor of 8.860, a Scale Factor of 195.973, and 

Median of 0.043 mm for the Gamma distribution.  To simulate this variable in the Monte Carlo 

simulation two Excel functions are combined.  The GAMMAINV function is applied to simulate 

error values.  A random probability number provides a probability input to the GAMMAINV 

function to generate a random error that follows a Gamma distribution, 

𝐺𝐴𝑀𝑀𝐴𝐼𝑁𝑉(𝑅𝐴𝑁𝐷( ), 𝛼, 1/𝜃).  The increase in Total Run-out value results in a decrease in 

measured backlash for the assembly (Smith, 1985).  To include this error the inverse random 

value is distributed about the median value around the target backlash of 0.180 mm.  The result 

is the True Value of the backlash prior to assembly.   
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Figure 19. Single Flank gear run-out data histogram for 3.23 Ratio axle 

The simulation proceeds to calculate a True Value for both dependent variables for each 

case.  To calculate the True Value for the assembly DTR measured at the Pinion, the error 

resulting from shim call is added to the DTRP true value, creating a DTR True value in the 

assembly.  This value is divided by the ratio and then added to the PTR true value to provide a 

true value for the measured total torque to rotate (TTR).  To calculate the True Value for the 

assembly backlash the process error resulting from shim call is added to the SFT backlash true 

value. 

The observed value for each dependent variable is calculated by adding the audit 

measurement error to the true value for each case based on the standard uncertainty.  The 

standard for backlash excludes the Type B 𝑢𝑅𝐸𝑆𝑇2 associated with Single Flank Testing as 

described above.  For TTR, the standard uncertainty 𝑢𝐸𝑉𝑂 and𝑢𝐸𝑉𝑅 associated with TTR 
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measurement from Table 17 above is included.  The MCM observed DTR is determined by 

subtracting the observed process PTR from the observed audit TTR, multiplying time the ratio to 

determine the audit DTR.  The difference between the audit DTR and MCM process DTRP 

generates an error for each case.  The error is the result of the backlash variation about the target 

mean of 0.180 mm Normal Backlash. 

Table 24 

Audit measurement MCM simulation standard uncertainty 

Symbol u Source Reference RQ 1 u Units 

𝑢𝐿𝐴𝑆𝐻𝐴 Backlash Audit uncertainty Table 16* 0.0106 mm 

𝑢𝑇𝑇𝑅𝐴 TTR Audit uncertainty Table 17* 0.0306 Nm 

*Note.  Includes only standard uncertainties associated with the audit process 

 

Monte Carlo Simulation Validation 

Estimating the simulation model error is the objective of MCM validation (Coleman & 

Steele, 2009, p. 194).  The primary MCM validation is conducted by making a comparison of the 

MCM results to data in answering Research Question 2.  As additional validation several 

methods that are recommended in literature are used.  First is confirmation that the numerical 

code is accurate in calculating the results as part of MCM validation (Coleman and Steele, 2009).  

Second is the determination of the number of Monte Carlo trials necessary to achieve the 

required model accuracy (JCGM, 2008c).  Third, Coleman and Steele (2009) recommend 

determining error through multiple model iterations with varying input variables in repeated runs 

as a validation method.  Finally, the GUM (JCGM, 2008c) recommends validating the MCM 
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simulation by comparing results between the GUM uncertainty framework and Monte Carlo 

Method.  This study included all of the validation methods described. 

Numerical evaluation recommended by Coleman and Steele (2009) is relative to the 

convergence of complex iterative numerical calculations.  The MCM of this study is an additive 

model, not subject to numerical solution error.  The numerical validation consists of verification 

that the model functions are used properly.  To perform this validation, the MCM results and the 

numerical calculations were validated, the results are summarized in Appendix D.   

To validate the number of MCM iterations, an adaptive approach was selected by 

assessing the stability of the standard deviation of the desired parameter for stabilization 

(Coleman & Steele, 2009).  Coleman and Steele (2009) recommend evaluating the standard 

deviation of the MCM result for convergence within 1-5%.  Given that this simulation is an 

adaptation of the uncertainty method applied to shim selection where the parameters of interest 

include standard deviation, the percentage of change in standard deviation is monitored for 

stabilization.  The monitoring approach applies a 200 iteration running average of the change in 

standard deviation, % 𝑅𝑈𝑁 𝐴𝑉𝐸𝑅𝐴𝐺𝐸 = [∑ (𝜎𝑖 − 𝜎𝑖−1)/𝜎𝑖
𝑗+199
𝑖=𝑗 ]/200.  The results are shown 

in Figure 20 where after iteration 2180 the model percent running average is converged within 

0.005%, and after iteration 4000, the model is converged within 0.0025%.  Based on this study, 

the number of iterations selected is 4,000. 
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Figure 20. MCM simulation standard deviation stability based on number of iterations 

A comparison of the Independent Variable observed values from the MCM to Production 

Data provides another validation of the MCM simulation.  A statistical summary of the data 

results are shown in Table 25, and a comparable summary of the MCM observed values are 

shown in Table 26.  The production data sets all are platykurtic because of the small sample size, 

where the MCM large sample size distributions follow a normal distribution are normal or 

leptokurtic.  The difference in standard deviation and mean for CAR1 is a bias in the single 

machining center Carrier Group B data discussed earlier, both CAR1 distributions are normal.  

The COV production data includes a larger standard deviation than the MCM, attributed to 

multiple machining centers producing the part that are not centered about the same mean.  The 

MCM Independent variables normal distribution provided a seed to the simulation that 

adequately represents to process to evaluate the effects of uncertainty. 
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Table 25 

Production data Independent Variable observed value statistics 

 *CAR1 CAR2 COV DELTAJ OAH BF 

N Valid 412 921 921 921 921 921 

Mean (mm) 102.262 42.019 55.532 0.151 151.644 48.991 

Std. Error of Mean 0.0003 0.0002 0.0006 0.0009 0.0008 0.0010 

Median (mm) 102.262 42.020 55.531 0.151 151.644 48.991 

Std. Deviation 0.0062 0.0074 0.0179 0.0267 0.0255 0.0290 

Skewness 0.065 -0.196 0.054 -0.008 -0.073 0.104 

Kurtosis -0.327 -0.190 -0.327 -0.262 -0.120 -0.250 

Minimum (mm) 102.244 42.000 55.480 0.074 151.573 48.912 

Maximum (mm) 102.277 42.039 55.584 0.228 151.714 49.070 

 *CAR1 GROUP B 

 

Table 26 

MCM simulation Independent Variable observed value statistics 

 SIMCAR1 SIMCAR2 SIMCOV SIMδJ SIMOAH SIMBF 

N Valid 5000 5000 5000 5000 5000 5000 

Mean (mm) 102.200 42.000 55.530 0.150 151.699 49.135 

Std. Error of Mean 0.0002 0.0001 0.0001 0.0004 0.0007 0.0005 

Median (mm) 102.200 42.000 55.530 0.150 151.698 49.135 

Std. Deviation 0.0174 0.0060 0.0094 0.0262 0.0511 0.0336 

Skewness 0.044 -0.040 0.026 0.022 -0.072 -0.015 

Kurtosis 0.003 -0.085 0.096 0.138 1.310 -0.007 
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 SIMCAR1 SIMCAR2 SIMCOV SIMδJ SIMOAH SIMBF 

Minimum (mm) 102.139 41.978 55.497 0.049 151.232 49.009 

Maximum (mm) 102.274 42.021 55.565 0.286 151.875 49.260 

 

A comparison of the MCM in-process PTR and DTRP observed values to Production 

Data validate the MCM simulation as shown in Table 27.  The production data sets all are 

skewed positively where the MCM large sample size distributions follow a normal distribution.  

The MCM Independent variables normal distribution provides a representative distribution of the 

in-process variables to the simulation.  The accuracy in predicting the in-process variables 

provides further validation of the MCM simulation. 

Table 27 

Comparison of production data in-process variables to MCM observed values 

 PTR SIMPTR  DTRP SIMDTRP 

N Valid 921 5000  921 5000 

Mean (Nm) 1.70 1.70  2.59 2.60 

Std. Error of Mean 0.0046 0.0020  0.0054 0.0021 

Median (Nm) 1.69 1.70  2.58 2.60 

Std. Deviation 0.1385 0.1432  0.1639 0.1503 

Skewness 0.195 -0.012  0.180 0.026 

Kurtosis -0.364 0.093  0.277 -0.027 

Minimum (Nm) 1.31 1.08  2.04 2.01 

Maximum (Nm) 2.17 2.22  3.16 3.27 
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The stability of the MCM was validated using a modified approach of combined input 

variables as discussed by Coleman and Steele (2009).  The MCM model is run 150 separate trials 

of 4,000 iterations for each trial.  The results are summarized in Table 28.  This approach 

simulates varying input measurements, or independent variables, to the model.  Assessing the 

error of the predicted means and standard deviation of backlash and DTR was used to develop a 

confidence interval for each run of the model.  As part of the model validation, the MCM results 

for calculated standard deviation are compared to the GUM uncertainty framework using 

uncertainties previously listed in Table 18.  The Gum uncertainty framework prediction for 

backlash was 𝑢𝐿𝑎𝑠ℎ 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 = 0.02068.  Comparing this to the MCM 150 run value of SD = 

0.02036 results in less than 0.5% change in reject rate.  Similarly 𝑢𝐷𝑇𝑅 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 = 0.2249 

compared to the 150 run simulation SD=.2236 is less than 0.05% change in-process reject rate.     

Table 28 

Average MCM results for 150 simulation runs of 4,000 iterations 

Variable Mean Standard Error 

Average of Backlash (mm) 0.1783 0.00002 

Average SD Backlash (mm) 0.02036 0.00002 

Average of DTR Error (Nm) -0.0002 0.00029 

Average SD DTR Error (Nm) 0.2236 0.00021 

 

MCM Simulated Data for Research Question 2 

Research Question 2 asks if a measurement system uncertainty model can be used to 

predict the backlash and torque-to-rotate capability of a shim-selection measurement system?  

The question is answered by comparing the Monte Carlo simulation to the production data.  To 

answer research Question 2 a 4,000 case MCM was used to generate a comparison data set for 
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the hypothesis testing.  The comparison of MCM results and production data for the two 

dependent variables is shown in Table 29.  The simulation data tends to be more leptokurtic 

because of the larger sample size, kurtosis for average lash in the data is -.218 while the 

simulation is .163.  Both distributions are platykurtic for the differential torque error, with the 

production data more platykurtic with kurtosis of -.137 compared to the simulation value of -

.089.  The skew of backlash distribution is negative for both the simulation and the production 

data.  The source of the skew in the simulation is the gamma distribution for gear run-out 

contribution to uncertainty.  A comparison of the MCM and production data distributions of 

backlash and DTRERR are shown in Figure 21.  The backlash distributions appear similar, 

including the slight negative skew.  A comparison the MCM and production data distributions of 

DTRERR, both distributions appear normally distributed and centered about the mean of 0.0 

Nm. 

Table 29 

Dependent variables for Research Question 2 

 
Data 

DTRERR (Nm) 

MCM 

DTRERR (Nm) 

Data 

AVGLASH (mm) 

MCM 

AVGLASH (mm) 

N Valid 921 4000 921 4000 

Mean .0070 -.0005 .187 .178 

Median .0172 -.0004 .19 .18 

Std. Deviation .21926 .22508 .02191 .02039 

Skewness -.048 -.047 -.114 -.289 

Kurtosis -.137 -.017 -.218 .220 

Minimum -.573 -.992 .12 .08 

Maximum .787 .831 .24 .24 
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Figure 21. Dependent Variable production data and MCM Simulation histograms 

 

Hypotheses Testing 

The first hypothesis compares means of the two samples using t-Test for two sample 

means.      

HO1: There is no significant difference between the Means of the uncertainty prediction 
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model and actual test data in Backlash Audit. 

HA1: There is significant difference between the Means of the uncertainty prediction 

model and actual test data in Backlash Audit. 

To compare the means of the simulation to the production data a two-sample t-Test 

assuming unequal variance compares the mean values of the two tests.  The result, 

t(1312) = - 10.9 (p <.001) indicates a statistical difference in the means, rejecting the null 

hypotheses that the means are equal.  The statistical mean difference is analyzed using the 

standardized Cohen effect size d=.39 which is between a small and medium effect (Cohen, 

1992).  The actual Mean difference of 0.009 mm is above the practical effect size established for 

this study.  The MCM model is within .001 mm of the 0.18 mm target, the rejection is a result of 

the production process not being centered.   

The second hypothesis compares the variance of backlash for the two samples using the 

F-Test for two sample variances.   

HO2: There is no significant difference between the Variance of the uncertainty 

prediction model and actual test data in Backlash Audit. 

HA2: There is significant difference between the Variance of the uncertainty prediction 

model and actual test data in Backlash Audit. 

The F statistic for the samples, F(3999,920) = 0.87 (p = .002), less than F-Critical for the 

sample sizes, F-Critical (3999,920) =0.91.  This indicates a statistical difference, resulting in a 

rejection of the null hypotheses that the variances are equal.  The large amount of data from the 

MCM provides enough statistical power to detect small effects.  The practical significance is 

determined by the effect size.  This difference is not less than the practical variance ratio of 0.84 

previously established.  The standard deviation of the data would result in a predicted reject rate 
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of 2.2% for the production data and for the MCM 1.4%, this 0.8% difference is not practically 

significant.    

The third hypotheses compares the means of the two samples for error in measuring 

differential torque to rotate using the t-test for two sample means.   

HO3: There is no significant difference between the Means of the uncertainty prediction 

model and actual test data in Audit Total Torque to Rotate. 

HA3: There is significant difference between the Means of the uncertainty prediction 

model and actual test data in Total Torque to Rotate. 

To compare the means of the simulation to the production data a two-sample t-Test 

assuming unequal variance compares the mean values of the two tests.  The result  

t (1402) = -0.93 (p = .35) indicates no statistical difference in the means and a failure to reject the 

null hypotheses that the means are equal.  The mean error of the simulation and the sample data 

are both centered about zero.  This indicates the process is targeted properly for the production 

data, and that the MCM is producing the correct result.   

The hypothesis compares the variance of differential torque error for the two samples 

using the F-Test for two sample variances.   

HO4: There is no significant difference between the Variance of the uncertainty 

prediction model and actual test data in Total Torque to Rotate. 

HA4: There is significant difference between the Variance of the uncertainty prediction 

model and actual test data in Total Torque to Rotate. 

The F statistic for the samples, F(920,3999) = 0.95 (p = .16), greater than F-Critical for 

the sample sizes, F-Critical (920,3999) =0.902.  This indicates there is no statistical difference, 

resulting in a failure to reject the null hypotheses that the variances are equal.  The practical 
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significance determined by the effect size is not less than the practical variance ratio of 0.84 

previously established.  The standard deviation of the data would result in a predicted reject rate 

of 0.8% and for the MCM 1.0%.  This difference is not practically significant, the model 

predicted the performance of the system first time acceptance with less than 0.5% difference.  

 

Research Question 3 

Research Question 3 asks can a measurement system uncertainty model be used to 

determine the acceptance limits for an individual in-process shim-selection measurement 

apparatus?  The question is answered by comparing results of two iterations of the Monte Carlo 

simulation.  The first iteration is run with a repeatability GR&R of 10% over the 0.100 mm 

tolerance range for the COV Independent variable, the second with GR&R of 50%.   

The Monte Carlo simulation results are compared from two separate runs varying 

repeatability on a workpiece μEVO.  The first run applies the 10% GR&R assumption in the 

equation for repeatability studies, %𝐺𝑅&𝑅 = (5.15 ∗ 𝜇𝐸𝑉𝑂) |𝑈 − 𝐿|⁄ .  Rearranging to determine 

the associated workpiece repeatability uncertainty for varying %GR&R, 𝜇𝐸𝑉𝑂 =

|𝑈 − 𝐿| ∗ %𝐺𝑅&𝑅 (5.15)⁄ .  The specification limit for COV |𝑈 − 𝐿| is 0.10 mm, the resultant 

μEVO for 10% GR&R is 0.001942, for 50% GR&R 0.009709.  Substituting these values into the 

overall uncertainty for COV in Table 7 above the μCOV for 10% GR&R is 0.00477 and for 50% 

GR&R is 0.01064.  By comparison, the 10% GR&R run for backlash resulted in a Mean=0.178, 

SD=0.02018, and the 50% GR&R run Mean=0.178, SD=0.02124.  The 10% run for DTR error 

resulted in a Mean=0.004, SD=0.2245, the 50% GR&R run Mean=-.001, SD=0.2545.  This data 

was used to analysis the following hypotheses. 
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HO5: There is no significant difference between the Means of the uncertainty prediction 

model Audit Backlash with COV measurement capability at 10% and 50%. 

HA5: There is significant difference between the Means of the uncertainty prediction 

model Audit Backlash with COV measurement capability at 10% and 50%. 

The means of the two simulation runs are analyzed using a t-Test to compare the mean 

values of the two MCM simulation runs assuming unequal variance.  The result  

t(7977) = 0.09 (p = .93) indicated there is no statistical difference in the mean in backlash which 

results in a failure to reject the null hypothesis that the means are equal.  This is as expected, 

uncertainty is centered about zero for both runs, and the variation on the average result is 

expected to be insignificant.   

To analyze hypotheses 6 the variance of backlash for the two samples used the F-Test for 

two sample variances.   

HO6: There is no significant difference between the Variance of the uncertainty prediction 

model and Audit Backlash with COV measurement capability at 10% and 50%. 

HA6: There is significant difference between the Variance of the uncertainty prediction 

model Audit Backlash with COV measurement capability at 10% and 50%.   

The F statistic for the two simulation runs, F(3999,3999) = 0.903 (p = .001), indicating 

that there is a statistical difference and rejecting the null hypotheses that the variances are equal.  

The practical significance is determined by the effect size, this difference is not less than the 

practical variance ratio of 0.84 previously established.  The standard deviation of the data would 

result in a predicted reject rate of 1.3% for the 10% GR&R data and 1.9% for the 50% GR&R 

data, this difference is not practically significant.  A degradation in performance of that gauge 

would not a result in a discernable difference in backlash process performance.     
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The two separate simulation runs were evaluated to compare means of DTR error to test 

hypotheses 7. 

HO7: There is no significant difference between the Means of the uncertainty prediction 

model Audit Torque-to-Rotate with COV measurement capability at 10% and 50%. 

HA7: There is significant difference between the Means of the uncertainty prediction 

model Audit Torque-to-Rotate with COV measurement capability at 10% and 50%. 

The means of the two simulation runs are analyzed using a t-Test to compare the mean 

values of the two simulation runs assuming unequal variance.  The result, t(7876) = 1.01 (p=.32) 

indicated there is no statistical difference in the mean which results in a failure to reject the null 

hypotheses that the means are equal.  This result is as expected, a difference in GR&R 

performance should not result in a process mean shift. 

To analyze hypotheses 8 the variance of DTR error for the two samples used the F-Test 

for two sample variances. 

HO8: There is no significant difference between the Variance of the uncertainty prediction 

model Audit Torque-to-Rotate with COV measurement capability at 10% and 50%. 

HA8: There is significant difference between the Variance of the uncertainty prediction 

model and Audit Torque-to-Rotate with COV measurement capability at 10% and 50%.  

The F statistic for the two simulation runs, F(3999, 3999) = 0.78 (p <.001), indicated that 

there is statistical evidence to reject the null hypotheses that the variances are equal.  The 

variance is significantly affected by the GR&R of the cover dimension measurement.  The 

practical significance is determined by the effect size, this difference is less than the practical 

variance ratio of 0.84 previously established.  The standard deviation of the data would result in 

a predicted reject rate of 1.2% for the 10% GR&R simulation, and 2.3% for the 50% GR&R 
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MCM simulation.  This result is predictable when reviewing the uncertainty framework for DTR 

error.  The uncertainty associated with DTR error includes fewer variables, the individual 

component of Cover measurement uncertainty is a significant portion of the process uncertainty.  

This is magnified when considering the sensitivity of DTR to shim selection error.  Degradation 

in performance of the Cover gauge would result in a discernable practical difference in-process 

performance. 
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 CHAPTER 5 

 

SUMMARY, FINDINGS AND DISCUSSION 

In automotive axle assembly, select fit shims or spacers are a common practice to control 

gear position and set bearing preload.  The assembly equipment for this style axle typically 

integrates a complex measurement system into the assembly process to select the required shims.  

Such a measurement system combines component and subassembly measurements with post 

assembly audit measurements that audit gear position by measuring gear backlash, and bearing 

preload by measuring torque to rotate.  To determine the shim-selection process suitability, a 

predictive measurement system analysis (MSA) method that correlates independent 

measurement variables to dependent output variables is required.  In manufacturing, 

measurement systems are commonly assessed by GR&R studies that analyze measurement 

capability to process or drawing limits of an upstream manufacturing process.  In automotive 

axle shim selection processes the measurement system is an integral part of the manufacturing 

process, therefore, there is a need to assess the measurement system based on the overall process 

capability.  The lack of an identified performance prediction method to correlate input and audit 

measurements is the problem this research sought to address. 

A review of the literature on the topic of measurement uncertainty confirmed that the 

techniques are commonly applied.  A typically application is the expression of confidence 

intervals for reported measurements.  Uncertainty methods used include conventional 
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repeatability studies and other statistical analysis based on a series of observations, classified as 

Type A.  A second classification not based on statistical analysis, classified as Type B, provides 

a method to include factors that contribute to measurement error but are not readily analyzed by 

statistical methods.  Published literature on uncertainty analysis provides a framework for 

defining and propagating uncertainties, including the application of Monte Carlo Methods 

(MCM).  This established uncertainty framework, though typically applied to determining 

measurement confidence intervals, appeared applicable as a predictive tool in automotive axle 

shim selection.  This study sought to determine if uncertainty analysis methods are suitable as a 

predictive tool to correlate input and output measurements in automotive axle shim selection. 

This study applied measurement uncertainty methods in a correlation study of component 

input measurements as independent variables, and resulting audit measurements as dependent 

variables in the axle shim-selection process.  The uncertainty framework provided a technique to 

include factors beyond traditional repeatability studies that affect the process, including those not 

directly part of the measurement system.  The purpose of this research was to apply and assess 

this method as a capability prediction tool of an axle shim-selection measurement system.  The 

study included three sequential steps.  First, the study developed an uncertainty model to 

characterize the relationship between independent variables and the dependent variables of 

backlash and bearing preload as measured by torque to rotate.  Second, a Monte Carlo simulation 

compared the model prediction to a production measurement system.  Third, the study applied 

the approach by assessing the effects of changing measurement capability for a specific 

independent variable on the output of the audit dependent variables.  The study sought to answer 

the primary research question; can the application of uncertainty principles in measurement 

provide a method to predict performance of the shim-selection process in controlling backlash 
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and torque to rotate for an axle shim-selection measurement process? 

Findings 

Research Question 1 asks how can uncertainty methods be applied to the axle shim 

selection process.  To answer this question, an uncertainty model for a specific axle shim 

selection process was developed applying standard uncertainty categories described in Statistical 

methods in process management -- Capability and performance -- Part 7: Capability of 

measurement processes, Standard No. 22514  (ISO, 2012).  The measurement uncertainty 

included Type A and Type B methods using propagation techniques published by; ISO Standard 

No. 22514, the Evaluation of measurement data — Guide to the expression of uncertainty in 

measurement No. 100:2008 (JCGM, 2008a), and Dietrich and Schulze Measurement process 

qualification (2011).  The results of this study indicate this approach can be applied as a 

framework to identify the elements of uncertainty and sources of error for each variable in the 

process.  Uncertainty methods permit consideration of multiple factors that are not included in a 

GR&R repeatability study.  For several variables, uncertainty not normally associated with the 

measurement was a significant contributor to the process uncertainty.  For example, the study 

indicated that uncertainty associated with controlling backlash in the shim selection process 

includes a significant contribution of error associated with gear lapping and Single Flank 

Testing. 

Published uncertainty methods were used to propagate independent measurement 

uncertainty through the shim call equation to correlate error associated with the selected shim on 

the dependent variables.  The uncertainty associated with the Pinion Side Shim was 𝑢𝑃𝑆 =

0.01594 mm and includes five of the independent measurement variables.  The uncertainty 

associated with the 0.0254 mm incremental shim steps is the largest single contributor.  
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Similarly, the Gear Side Shim uncertainty that affects backlash was 𝑢𝐺𝑆−𝐿𝐴𝑆𝐻 = 0.01026mm.  

Again, the largest single contribution is from the incremental shim step.  The uncertainties in the 

shim call process that affect DTR are calculated through the Gear Side Shim call with a 

propagation equation that includes the elements that affect the bearing preload only.  The 

uncertainty contribution of the shim selection process 𝑢𝐺𝑆−𝐷𝑇𝑅 = 0.01387mm, again the largest 

single contributor being the uncertainty associated with the incremental shim step.  

Linear regression analysis confirmed the relationship between DTR and total shim is 

linear, the regression model explaining greater than 90% of the variance.  Using multiple 

regression analysis of the data confirmed the relationship between Backlash and shim changes is 

linear.  The regression model explains greater than 95% of the variance and both the Gear-side 

coefficient and the Pinion-side coefficient were statistically significant.   

The calculated uncertainty in backlash associated with shim selection process was 𝑢 =

0.00904 mm.  Comparing the backlash SD of the production process data sample 0.0219 mm, it 

is evident that more than 50% of the process variability is not part of the process for selecting the 

shim.  Similarly, the DTR error from the process of determining the shim selection results in 𝑢 =

0.164 Nm for Differential Torque while the production sample DTR error SD is 0.219 Nm.  In 

this case, the shim selection process contributes 75% of the process variability.  Combining this 

process uncertainty with the audit measurement uncertainties for the 3.23 ratio resulted in an 

expected uncertainty for backlash audit of 𝑢𝐵𝐴𝐶𝐾𝐿𝐴𝑆𝐻 = 0.02062 mm, and DTR audit of 𝑢𝐷𝑇𝑅 =

0.2309 Nm.  The uncertainty model developed in Research Question 1 predicted a first time 

process audit acceptance for backlash of 98.5% and for DTR 98.8%. 

Research Question 2 asks, can a measurement system uncertainty model be used to 

predict the backlash and torque-to-rotate capability of a shim-selection measurement system?  To 
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answer this question the measurement uncertainties developed in answering Research Question 1 

were included in a Monte Carlo Method (MCM) data simulation tool.  A comparison of MCM 

simulated data to production data provided a validation for the uncertainty model.  The large 

amount of data from the MCM simulation resulted in an “over-powered” study that detected 

statistical significance in hypothesis testing that was not practically significant.  The study 

established practical significance for each hypothesis that is used to identify meaningful 

significance.   

The first hypothesis was used to assess the simulation capability in predicting the 

backlash average.  The null hypotheses that there is no significant difference between the Means 

of the uncertainty prediction model and actual test data in Backlash Audit was rejected.  The 

model mean of 0.178 mm with a sample standard deviation 0.0204 and the data Mean of 0.187 

mm with a sample standard deviation of 0.0219 results in a mean difference of 0.009 mm, which 

was significant having a probability of Type I error less than 0.001.  This difference is associated 

with the production data not being centered on the target of 0.18 mm backlash whereas the 

simulation mean is nearly at the target.  The standardized effect size of this difference d=.39 is 

between a small and medium effect (Cohen, 1992).  The practical effect size determined to detect 

a 1.5% shift in first time quality is equivalent at 0.007 mm, the data and simulation mean 

difference is practically significant.  The non-central data bias is not simulated by the MCM 

model, and may be part of a bias in one of the measurements during the production run that 

could have been compensated by refining the production offset.  The purpose of this hypothesis 

test was an assessment of the model at targeting to the desired mean, the conclusion is that the 

model is adequately simulating the process mean for backlash.   

The second hypothesis was used to determine the simulation capability to predict the 
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variance of backlash.  The null hypotheses that there is no statistical difference between the 

variance of the uncertainty prediction model and actual test data in Backlash Audit was rejected.  

The difference of the model mean variance of 0.000416 and the data variance of 0.000480 is 

significant, with probability of a Type 1 error less than .002.  This is an indication that the model 

does not predict the shim selection backlash process variance.  For this study an F-Ratio less than 

0.84 was determined to have a significant effect of ±1.5% in first time acceptance.  There is 

statistical significance but the effect is not practically significant.  Quantifying the effect as an 

impact on process capability, for the data Cp (= 0.761) and the MCM is Cp (= 0.817), 

corresponding to a predicted process reject rate of 2.2% for the data and 1.4% for the MCM.  

Therefore, the conclusion is that though the null hypothesis is rejected, the effect of the 

difference is not significant and the model is a valuable tool in estimating backlash variance. 

   The third hypothesis was used to determine the simulation capability to predict the 

resultant DTR average.  The result failed to reject the null hypotheses that there is no significant 

difference between the Means of the uncertainty prediction model and actual test data in DTR 

Audit error.  The model mean of -0.0005 Nm with sample standard deviation of 0.225 and the 

data Mean of 0.007 Nm with a sample standard deviation 0.219 have a difference of 0.0075 Nm, 

which is not statistically significant considering the .18 probability of Type I error.  The 

standardized effect size of this difference d=.034 is insignificantly small (Cohen, 1992).  For this 

dependent variable, the process is targeted at the desired mean of 0.0 Nm.  The purpose of the 

hypotheses test was an assessment of the model at targeting to the desired mean, the conclusion 

is that the model is adequately simulating the process mean for DTR.   

The fourth hypothesis was used to determine the simulation capability to predict the 

variance of DTR error.  The null hypotheses that there is no statistical difference between the 
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variance of the uncertainty prediction model and actual test data in DTR Audit was accepted.  

The difference between the model mean of variance of 𝜎2 = 0.0507 and the data variance of 

𝜎2 = 0.0481 is not significant based on the Type I error probability of .16.  This is an indication 

that statistically the model does predict the shim selection DTR process variance.  To determine 

the practical significance, an F-Ratio less than 0.84 was determined to have a significant effect of 

±1.5% in first time acceptance.  Quantifying the effect as an impact on process capability, for the 

data Cp(= 0.88) and the MCM is Cp(= 0.86), corresponding to a predicted process reject rate of 

0.8% for the data and 1.0% for the MCM.  The conclusion confirms a failure to reject the null 

hypothesis.  The effect of the difference is not significant and the model is a valuable tool in 

estimating DTR variance.  The results for Research Question 2 are summarized in Table 30. 

Table 30 

Summary of Results – Research Question 2 

 Data MCM Statistic Probability 

Backlash Mean (mm) 0.187 0.178 t(1312) = -10.9 p<.001 

Backlash SD (mm) 0.0219 0.0204 F(3999,920) = 0.87 P<.002 

DTR Error (Nm) 0.0070 -0.0005 t (1402) = -0.93 p=.35 

DTR Error SD (Nm) 0.2193 0.2251 F(920,3999) = 0.95 p=.16 

 

A desired outcome of this research is the development of a technology management tool 

to assess shim selection measurement systems.  Hypotheses five through eight were aimed at this 

goal by applying the simulation as a tool to predict the impact of a variation in the repeatability 

and reproducibility %GR&R on the independent variable COV.  The null hypotheses five and 

seven concerned the variation on the means of Backlash and DTR error, that there is no 

significant difference between the Means of the uncertainty prediction model for the dependent 
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variables with variation in COV %GR&R.  For both dependent variables there was no significant 

statistical difference in the mean, Backlash [t(7977) = 0.09 (p = .92), and DTR error t(7876) = 

1.01 (p = .32)].  There was a failure to reject the null hypotheses.  The difference in Backlash 

Audit was negligible with less than 0.001 mm in backlash and 0.001 Nm in DTR.  This 

confirmed that an unbiased increase in uncertainty in measurement does not result in a mean 

shift in the dependent variables. 

 The sixth and eighth hypotheses were used to determine the simulation capability to 

predict the variance of Backlash and DTR error.  Null hypothesis six stated there is no significant 

difference between the Variance of the uncertainty prediction model and Audit Backlash with 

COV measurement capability at 10% and 50% was not rejected.  The model mean of variance at 

10% COV GR&R, i.e. 𝜎2 = 0.00040 and the variance at 50% COV GR&R, i.e. 

𝜎2 = 0.00044 was statistically significant, [F(3999, 3999) = 0.90 (p<.001)].  Though 

statistically significant, the practical effect was negligible resulting less than 1% change in first 

time acceptance.  This is an example of applying the model to establish criteria for the 

measurement apparatus acceptance.  If the criteria is controlling backlash in the process, the 

change introduced by this measurement apparatus error is not significant.  The technology 

manager could apply this information to optimize the system based on capital and operating cost. 

Null hypothesis eight states there is no significant difference between the Variance of the 

uncertainty prediction model and Audit DTR error with COV measurement capability at 10% 

and 50% was rejected, the alternative hypotheses is accepted.  The model mean of variance at 

10% COV GR&R, i.e. 𝜎2 = 0.0504 and the variance at 50% COV GR&R, i.e.𝜎2 = 0.0648 is 

significant, [F(3999, 3999) = 0.78 (p<.001)].  The F-Ratio is less than 0.84 criteria established, 

indicating a practical significance.  The predicted reject rate for 10% GR&R is 1.0%, and for 
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50% GR&R it is 2.3%.  This provides another example of applying the model to establish criteria 

for the measurement apparatus acceptance.  For criteria of controlling DTR in the process, the 

error introduced by this measurement is statistically significant and has some practical 

significance. 

Table 31 

Summary of Results – Research Question 3 

 
COV GR&R 

10% 

COV GR&R 

50% 
Statistic Probability 

Backlash Mean (mm) 0.178 0.178 t(7977) = 0.09 p=.92 

Backlash SD (mm) 0.0202 0.0212 F(3999,3999) = 0.90 p<.001 

DTR Error (Nm) 0.004 -0.001 t (7876) = 1.01 p=.32 

DTR Error SD (Nm) 0.224 0.254 F(3999,3999) = 0.78 p<.001 

 

Implications of This Study 

This correlation study indicates that the input and output measures of the shim selection 

process are influenced by a number of factors that are not part of the measurement system direct 

measurement process.  Based on this research, the indirect process measurements, torque as a 

measure of bearing preload and backlash as a measure of gear position, contribute significantly 

to the process uncertainty and therefore process capability.  The dynamic variability of the test 

article torque is a significant contributor to overall process uncertainty in assessing the actual 

bearing axial preload.  The contribution of the workpiece repeatability (𝑢𝐸𝑉𝑂), typically the only 

measurement assessment, explains less than half of the process uncertainty.  The indirect 

measure of backlash to assess gear position, while the gear manufacturing uses position, 

contributes to uncertainty and process variation.  The implication of this study is that a method to 
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quantify and improve the control of these factors will be required to improve process capability. 

The answers to Research Question 3 provide an example where a significant difference in 

percent GR&R makes no statistical difference in the predicted process capability in controlling 

backlash.  The implication is that an analysis beyond GR&R studies for equipment is necessary 

to understand the sources of process variability.  The results of the study support that 

measurement uncertainty propagation is a method to evaluate and analyze these factors.  Based 

on the hypothesis testing, improving the existing measurement system apparatus GR&R will 

produce minor process capability improvements.  The implication is that axle designs and axle 

manufacturing processes will need to consider control and measure of variables currently not 

included to improve this process.  The technology manager could apply this information to 

influence the product design, optimize the system, and make trade-offs on capital and operating 

cost. 

This study applied uncertainty methods to correlate input and output measures for an 

automotive axle shim selection process.  Implicitly, the technique of allocating standard 

uncertainty to a select fit process outside of the automotive axle industry is possible.  For 

example, the technique may have application in assessing measurement systems and binning 

strategies for select fit assembly processes.  Manufacturing processes where a correlation of in 

process measurement accuracy to the assembled product final tolerance distribution is a potential 

application for this methodology.  

Suggestions for Further Study 

This study selected a single axle shim-selection system to model and validate.  A 

suggestion for further research would be to apply the approach to the correlation of other shim 

selection systems using the uncertainty framework and the standard uncertainties developed in 
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this study.  Evaluating other systems would permit validation and refinement of the uncertainty 

process.   

The results of this research indicate that a significant amount of the uncertainty is 

attributable to factors not directly measured in the process.  The approach did predict the shim 

selection process capability; this serves as validation that there are significant contributors not in 

the direct measurement process.  An example is bearing torque variation, the uncertainty 

𝑢𝑆𝑇𝐴𝐵 = 0.025 Nm per bearing.  This source of error was based on a Type A statistical study.  It 

is not a measured variable, but it is the most significant contributor to the torque uncertainty.  A 

topic for further research is to quantify and validate these indirect elements.  Further research 

might assess the stability of the bearing torque through the process by detailed in-process 

measurements on sample parts. 

Another topic would be to study the influence of a specific independent variable as a 

control to compare the response of the system to the uncertainty model.  By varying a specific 

variable in a design of experiments, the response of the system to the variable change could be 

studied.  For example, a significant contributor to backlash uncertainty in this study was the 

Single Flank Test runout parameter.  A Type A method fitting a gamma distribution to this 

parameter was an assumption in the model but the true effect on process capability for this one 

parameter was not validated.  A study linking the parameter from the SFT through the process 

could be designed as validation, or as a method to develop a more accurate correlation of this 

variation to the shim selection process capability. 

Conclusion 

The results of this study support the conclusion that uncertainty principles in 

measurement and the uncertainty framework provide a method to correlate independent variables 
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and predict performance of the shim-selection process dependent variables of backlash and 

torque to rotate.  The study applied measurement uncertainty methods defined in literature to 

model the axle shim-selection measurement process.  The uncertainty framework was found to 

be a viable approach to include known error sources, both those based on statistical analysis, and 

those determined by non-statistical methods.  For the axle shim selection process studied, the 

difference between the uncertainty model prediction and the actual production system 

performance, though statistically significant, did not have a practical significance.  The study 

demonstrated the application of an uncertainty model is a method to estimate the effects of 

varying acceptance limits on the independent process variable measurements.  Acceptance limits 

for an individual in-process shim-selection measurement apparatus can be assessed using this 

technique.  The research indicates that the method is a viable tool for the technology manager to 

make tradeoffs and optimize an automotive axle shim selection measurement system.  
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APPENDIX A: IN-PROCESS MEASUREMENT IMAGES 

 

Figure A22. Front axle cross section 

 

Figure A23. Carrier independent static input measurement variables 
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Figure A24. Cover independent static input measurement variable 

 

Figure A25. Differential Case dynamic input measurement variables 

 

The dynamic measurement 𝛿𝐽 is a measure of the variation of the true gear mounting 

distance deviation from the theoretical mounting distance. 

𝐴𝑐𝑡𝑢𝑎𝑙 𝐺𝑒𝑎𝑟 𝑀𝑜𝑢𝑛𝑡𝑖𝑛𝑔 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝐺 + 𝛿𝐽 

 

Figure A26. Single Flank Test (SFT) input measurement variable  
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APPENDIX B: TYPE A REPEATABILITY AND REPRODUCIBILITY STUDIES 

CAR1 standard uncertainty from repeatability studies 

Independent Variable:  CAR1   Uncertainty:  𝑢𝐸𝑉𝑂 

Method:  ISO 22514-7 ANOVA Study Appendix A (ISO, 2012) 

Appraiser not significant -  𝑢𝐸𝑉𝑂 = 𝜎𝑅𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑏𝑖𝑙𝑖𝑡𝑦 

Nominal Value 102.XXXX mm (all measurements units are mm) 

Table B32 

GR&R data collection summary for variable CAR1 

 
    

Part 

     
 

1 2 3 4 5 6 7 8 9 10 

A  1 0.2178 0.2213 0.2405 0.2300 0.2384 0.2408 0.2276 0.2380 0.2396 0.2393 

2 0.2196 0.2224 0.2308 0.2285 0.2414 0.2411 0.2283 0.2388 0.2397 0.2394 

3 0.2183 0.2231 0.2254 0.2280 0.2430 0.2412 0.2289 0.2388 0.2398 0.2391 

           B  1 0.2183 0.2219 0.2405 0.2306 0.2390 0.2407 0.2282 0.2382 0.2396 0.2395 

2 0.2201 0.2229 0.2308 0.2306 0.2427 0.2408 0.2288 0.2387 0.2396 0.2392 

3 0.2195 0.2230 0.2254 0.2295 0.2437 0.2409 0.2288 0.2389 0.2396 0.2392 

           C  1 0.2190 0.2224 0.2405 0.2293 0.2408 0.2412 0.2283 0.2382 0.2398 0.2394 

2 0.2208 0.2227 0.2252 0.2291 0.2427 0.2405 0.2288 0.2388 0.2397 0.2392 

3 0.2200 0.2237 0.2399 0.2289 0.2437 0.2409 0.2287 0.2387 0.2397 0.2391 
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Table B33 

GR&R ANOVA results for variable CAR1 

Source DF SS MS F p 

Part 9 0.00524 0.00058 504 .00 

Appraiser 2 7.2*10-6 3.6*10-6 3.12 .051 

Interaction 18 2.1*10-5 1.2*10-6 0.16 1.00 

Reproducibility 60 0.000426 7.10*10-6   

 

    

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝜎𝐶𝐴𝑅1
2 = 7.10 ∗ 10−6 

𝑢𝐸𝑉𝑂−𝐶𝐴𝑅1 = 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝜎𝐶𝐴𝑅1 =  √𝜎𝐶𝐴𝑅1
2 = 0.00266 mm 

CAR2 standard uncertainty from repeatability studies 

Independent Variable:  CAR2  Uncertainty:  𝑢𝐸𝑉𝑂 

Method:  22514-7 ANOVA Study Appendix A (ISO, 2012) 

Appraiser not significant -  𝑢𝐸𝑉𝑂 = 𝜎𝑅𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑏𝑖𝑙𝑖𝑡𝑦 

Nominal Value 42.XXXX mm (all measurements units are mm) 

Table B34 

GR&R data collection summary for variable CAR2 

 
    

Part 

     
 

1 2 3 4 5 6 7 8 9 10 

A  1 0.0084 0.0028 -0.0054 0.0077 0.0021 -0.0065 -0.0088 0.0148 0.0032 -0.0017 

2 0.0089 0.0032 -0.0055 0.0076 0.0021 -0.0068 -0.0093 0.0131 0.0026 -0.0018 

3 0.0080 0.0024 -0.0058 0.0073 0.0018 -0.0072 -0.0089 0.0136 0.0020 -0.0020 

           B  1 0.0083 0.0026 -0.0052 0.0074 0.0027 -0.0075 -0.0092 0.0139 0.0023 -0.0027 

2 0.0084 0.0031 -0.0060 0.0079 0.0014 -0.0062 -0.0096 0.0142 0.0030 -0.0022 

3 0.0094 0.0032 -0.0057 0.0079 0.0010 -0.0071 -0.0096 0.0135 0.0022 -0.0028 
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           C  1 0.0076 0.0023 -0.0054 0.0075 0.0029 -0.0073 -0.0089 0.0138 0.0018 -0.0024 

2 0.0083 0.0029 -0.0063 0.0077 0.0018 -0.0069 -0.0089 0.0136 0.0030 -0.0020 

3 0.0085 0.0029 -0.0051 0.0081 0.0017 -0.0064 -0.0092 0.0138 0.0025 -0.0019 
 

 

Table B35 

GR&R ANOVA results for variable CAR2 

Source DF SS MS F p 

Part 9 0.00439 0.00049 4076 .00 

Appraiser 2 1.8*10-7 9.1*10-8 0.76 .71 

Interaction 18 2.2*10-6 1.2*10-7 0.58 .90 

Reproducibility 60 1.24*10-5 2.06*10-7   

 

    

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝜎𝐶𝐴𝑅2
2 = 2.06 ∗ 10−7 

𝑢𝐸𝑉𝑂−𝐶𝐴𝑅2 = 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝜎𝐶𝐴𝑅2 =  √𝜎𝐶𝐴𝑅2
2 = 0.00045 mm 

COV standard uncertainty from repeatability studies 

Independent Variable:  COV  Uncertainty:  𝑢𝐸𝑉𝑂 

Method:  22514-7 ANOVA Study Appendix A (ISO, 2012) 

Appraiser not significant -  𝑢𝐸𝑉𝑂 = 𝜎𝑅𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑏𝑖𝑙𝑖𝑡𝑦 

Nominal Value 55.XXXX mm (all measurements units are mm) 

Table B36 

GR&R Data collection summary for variable COV 

 
    

Part 

     
 

1 2 3 4 5 6 7 8 9 10 

A  1 0.5197 0.5197 0.5209 0.5526 0.5526 0.5502 0.5233 0.5404 0.5514 0.5221 

2 0.5197 0.5184 0.5221 0.5526 0.5526 0.5514 0.5233 0.5404 0.5502 0.5221 

3 0.5197 0.5184 0.5209 0.5526 0.5538 0.5526 0.5233 0.5404 0.5514 0.5221 
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           B  1 0.5197 0.5197 0.5221 0.5526 0.5526 0.5514 0.5233 0.5404 0.5514 0.5221 

2 0.5197 0.5184 0.5221 0.5526 0.5538 0.5514 0.5233 0.5392 0.5514 0.5233 

3 0.5197 0.5184 0.5209 0.5526 0.5538 0.5526 0.5233 0.5392 0.5514 0.5221 

           C  1 0.5197 0.5184 0.5209 0.5526 0.5526 0.5514 0.5233 0.5404 0.5514 0.5233 

2 0.5197 0.5184 0.5209 0.5526 0.5526 0.5514 0.5233 0.5404 0.5514 0.5233 

3 0.5197 0.5184 0.5209 0.5526 0.5538 0.5526 0.5233 0.5416 0.5502 0.5221 
 

 

Table B37 

GR&R ANOVA results for variable COV 

Source DF SS MS F p 

Part 9 0.0197 0.00218 7453 .00 

Appraiser 2 2.22*10-7 1.11*10-7 0.38 .90 

Interaction 18 5.27*10-6 2.9*10-7 1.00 .47 

Reproducibility 60 1.76*10-5 2.94*10-7   

 

  𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝜎𝐶𝑂𝑉
2 = 2.94 ∗ 10−7 

 𝑢𝐸𝑉𝑂−𝐶𝑂𝑉 = 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝜎𝐶𝐴𝑅2 =  √𝜎𝐶𝐴𝑅2
2 = 0.00054 mm 

OAH standard uncertainty from repeatability studies 

Independent Variable:  OAH  Uncertainty: 𝑢𝐸𝑉𝑂 

Method:  Study Type 3 Average Range Method (Dietrich & Schulze, 2011) 

25 Parts, 2 Measurements each (measurements units are mm) 

 

Table B38 

GR&R Data collection summary for variable OAH 

Part Measure 1 Measure 2 Difference 

1 134.583 134.581 0.002 
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2 134.582 134.581 0.001 

3 134.513 134.579 0.066 

4 134.581 134.583 0.002 

5 134.581 134.582 0.001 

6 134.582 134.581 0.001 

7 134.581 134.582 0.001 

8 134.583 134.579 0.004 

9 134.582 134.581 0.001 

10 134.584 134.582 0.002 

11 134.600 134.600 0.000 

12 134.601 134.549 0.052 

13 134.597 134.602 0.005 

14 134.601 134.606 0.005 

15 134.600 134.604 0.004 

16 134.570 134.570 0.000 

17 134.569 134.573 0.004 

18 134.572 134.569 0.003 

19 134.589 134.568 0.021 

20 134.578 134.567 0.011 

21 134.563 134.587 0.024 

22 134.536 134.534 0.002 

23 134.534 134.535 0.001 

24 134.535 134.534 0.001 

25 134.536 134.535 0.001 

Average Range 𝑅̿ = 0.0086 mm 

Groups>20, subgroup=2:  d_2^*=1.12838 

 𝑢𝐸𝑉𝑂−𝑂𝐴𝐻 = 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝜎𝑆𝐻𝐼𝑀 = 𝑅̿ 𝑑2
∗⁄ = 0.00762 mm 

BF standard uncertainty from repeatability studies 

Independent Variable:  BF  Uncertainty:  𝑢𝐸𝑉𝑂 

Method:  Study Type 3 Average Range Method (Dietrich & Schulze, 2011) 

25 Parts, 2 Measurements each (measurements units are mm) 

Table B39 

GR&R Data collection summary for variable BF 

Part Measure 1 Measure 2 Difference 
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Part Measure 1 Measure 2 Difference 

1 37.431 37.429 0.002 

2 37.432 37.430 0.002 

3 37.432 37.429 0.003 

4 37.430 37.432 0.002 

5 37.431 37.431 0.000 

6 37.431 37.430 0.001 

7 37.436 37.410 0.026 

8 37.436 37.435 0.001 

9 37.436 37.437 0.001 

10 37.438 37.437 0.001 

11 37.479 37.480 0.001 

12 37.479 37.478 0.001 

13 37.477 37.481 0.004 

14 37.481 37.482 0.001 

15 37.477 37.482 0.005 

16 37.393 37.395 0.002 

17 37.395 37.399 0.004 

18 37.396 37.395 0.001 

19 37.393 37.391 0.002 

20 37.402 37.392 0.010 

21 37.338 37.338 0.000 

22 37.338 37.336 0.002 

23 37.336 37.339 0.003 

24 37.338 37.337 0.001 

25 37.337 37.337 0.000 

Average Range 𝑅̿ = 0.00304 mm 

Groups>20, subgroup=2:  𝑑2
∗ = 1.12838 

 𝑢𝐸𝑉𝑂−𝐵𝐹 = 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝜎𝑆𝐻𝐼𝑀 = 𝑅̿ 𝑑2
∗⁄ = 0.00269 mm 

BF Runout standard uncertainty from test part inhomogeneity 

Independent Variable:  BF Runout  Uncertainty:  𝑢𝑂𝐵𝐽 

Method:  Study Type 3 Average Range Method (Dietrich & Schulze, 2011) 

25 Parts, 2 Measurements each (measurements units are mm) 
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Table B40 

GR&R data collection summary for BF Runout 

Part Measure 1 Measure 2 Difference 

1 0.035 0.034 0.001 

2 0.033 0.033 0.000 

3 0.034 0.033 0.001 

4 0.033 0.033 0.000 

5 0.033 0.033 0.000 

6 0.033 0.033 0.000 

7 0.014 0.013 0.001 

8 0.013 0.014 0.001 

9 0.013 0.014 0.001 

10 0.013 0.013 0.000 

11 0.025 0.025 0.000 

12 0.025 0.025 0.000 

13 0.026 0.026 0.000 

14 0.027 0.027 0.000 

15 0.026 0.027 0.001 

16 0.035 0.034 0.001 

17 0.035 0.036 0.001 

18 0.035 0.035 0.000 

19 0.035 0.035 0.000 

20 0.037 0.035 0.002 

21 0.014 0.013 0.001 

22 0.013 0.013 0.000 

23 0.014 0.013 0.001 

24 0.012 0.013 0.001 

25 0.013 0.013 0.000 

Average Range 𝑅̿ = 0.00052 mm 

Groups>20, subgroup=2:  𝑑2
∗ = 1.12838 

 𝑢𝐸𝑉𝑂−𝐵𝐹 = 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝜎𝑆𝐻𝐼𝑀 = 𝑅̿ 𝑑2
∗⁄ = 0.00046 mm 

δJ standard uncertainty from repeatability studies 

Independent Variable:  δJ  Uncertainty:𝑢𝐸𝑉𝑂,  𝑢𝐴𝑉 

Method:  22514-7 ANOVA Study Appendix A (ISO, 2012) 
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Appraiser is significant -  𝑢𝐸𝑉𝑂 = √𝜎𝑅𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑏𝑖𝑙𝑖𝑡𝑦
2 ,  𝑢𝐸𝑉𝑂 = √𝜎𝐴𝑝𝑝𝑟𝑎𝑖𝑠𝑒𝑟

2  

10 Parts, 3 Appraisers, 3 Measurements each (measurements units are mm) 

Table B41 

GR&R data collection summary for variable δJ 

 
    

Part 

     
 

1 2 3 4 5 6 7 8 9 10 

A  1 -0.144 -0.272 -0.124 0.010 -0.126 -0.125 -0.133 -0.142 -0.109 -0.109 

2 -0.144 -0.271 -0.122 0.010 -0.123 -0.122 -0.128 -0.143 -0.103 -0.105 

3 -0.141 -0.273 -0.120 0.013 -0.120 -0.118 -0.128 -0.141 -0.101 -0.106 

           B  1 -0.142 -0.272 -0.119 0.013 -0.119 -0.118 -0.127 -0.139 -0.104 -0.105 

2 -0.139 -0.274 -0.120 0.013 -0.120 -0.120 -0.128 -0.142 -0.101 -0.104 

3 -0.141 -0.272 -0.121 0.012 -0.116 -0.119 -0.126 -0.138 -0.101 -0.104 

           C  1 -0.142 -0.27 -0.120 0.012 -0.115 -0.119 -0.127 -0.141 -0.101 -0.105 

2 -0.137 -0.271 -0.119 0.012 -0.116 -0.12 -0.127 -0.138 -0.100 -0.103 

3 -0.138 -0.267 -0.119 0.015 -0.119 -0.118 -0.126 -0.139 -0.102 -0.104 
 

 

Table B42 

GR&R ANOVA results for variable δJ 

Source DF SS MS F p 

Part 9 0.375 0.0417 19900 .00 

Appraiser 2 1.62*10-4 8.08*10-5 38.6 .03 

Interaction 18 3.77*10-5 2.1*10-6 0.59 .89 

Reproducibility 60 2.14*10-4 3.57*10-6   

 

  𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝜎𝐴𝑝𝑝𝑟𝑎𝑖𝑠𝑒𝑟
2 = (𝑀𝑆𝐴 − 𝑀𝑆𝐼𝑛𝑡) (10 ∗ 3)⁄ = 2.62 ∗ 10−6 

 𝑢𝐸𝑉𝑂−𝛿𝐽 = 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝜎𝑅𝑒𝑝𝑟𝑜 =  √3.57 ∗ 10−6 = 0.00189 mm 

 𝑢𝐴𝑉−𝛿𝐽 = 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝜎𝐴𝑝𝑝𝑟𝑎𝑖𝑠𝑒𝑟 =  √2.62 ∗ 10−6 = 0.00162 mm 
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δJ standard uncertainty from repeatability on standards 

Independent Variable:  δJ  Uncertainty:  𝑢𝐸𝑉𝑅 

Method:  Repeatability on a Standard (ISO, 2012) 

33 Measurements (measurements units are mm) 

Table B43 

GR&R data collection summary for δJ repeatability on a standard 

Trial Measure Trial Measure 

1 0.121 18 0.120 

2 0.128 19 0.119 

3 0.125 20 0.120 

4 0.126 21 0.118 

5 0.122 22 0.122 

6 0.123 23 0.120 

7 0.122 24 0.123 

8 0.125 25 0.121 

9 0.121 26 0.120 

10 0.119 27 0.122 

11 0.121 28 0.120 

12 0.122 29 0.121 

13 0.122 30 0.121 

14 0.120 31 0.121 

15 0.121 32 0.124 

16 0.121 33 0.121 

17 0.119 
   

Sum of Squares = 1.462 ∗ 10−4 

𝑢𝐸𝑉𝑅−𝛿𝐽 = 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝜎𝐸𝑉𝑅 = 0.00214 mm 

Shim Verify standard uncertainty from repeatability on test parts 

In-process Measurement:  Shim Verify Uncertainty:𝑢𝐸𝑉𝑂 

Method:  Study Type 3 Average Range Method (Dietrich & Schulze, 2011) 

25 Parts, 2 Measurements each (measurements units are mm) 
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Table B44 

GR&R data collection summary for shim verification 

Part Measure 1 Measure 2 Difference 

1 2.4491 2.4987 0.0496 

2 2.5234 2.5254 0.0020 

3 2.5520 2.5530 0.0010 

4 2.5757 2.5787 0.0030 

5 2.6103 2.6083 0.0020 

6 2.6350 2.6340 0.0010 

7 2.6468 2.6488 0.0020 

8 2.6705 2.6725 0.0020 

9 2.6962 2.6952 0.0010 

10 2.7268 2.7268 0.0000 

11 2.7475 2.7455 0.0020 

12 2.7870 2.7801 0.0069 

13 2.8078 2.8058 0.0020 

14 2.8315 2.8315 0.0000 

15 2.8601 2.8631 0.0030 

16 2.8779 2.8769 0.0010 

17 2.9095 2.9095 0.0000 

18 2.9134 2.9164 0.0030 

19 2.9608 2.9598 0.0010 

20 2.9697 2.9697 0.0000 

21 3.0023 2.9993 0.0030 

22 3.0260 3.0280 0.0020 

23 3.0566 3.0586 0.0020 

24 3.0813 3.0833 0.0020 

25 3.1069 3.1060 0.0009 

 

Average Range 𝑅̿ = 0.00370 mm 

Groups>20, subgroup=2:  𝑑2
∗ = 1.12838 

 𝑢𝐸𝑉𝑂−𝑆𝐻𝐼𝑀 = 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝜎𝑆𝐻𝐼𝑀 = 𝑅̿ 𝑑2
∗⁄ = 0.00328 mm 

PTR standard uncertainty from repeatability on test parts 

In-process Measurement:  PTR Uncertainty:𝑢𝐸𝑉𝑂 

Method:  Study Type 3 Average Range Method (Dietrich & Schulze, 2011) 
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5 Parts, 5 Measurements each (measurements units are Nm) 

Table B45 

GR&R data collection summary for in-process variable PTR 

Trial Part 1 Part 2 Part 3 Part 4 Part 5 

1 4.200 4.294 3.693 3.615 3.613 

2 4.205 4.295 3.715 3.642 3.650 

3 4.204 4.321 3.720 3.648 3.650 

4 4.209 4.341 3.715 3.645 3.681 

5 4.223 4.345 3.726 3.660 3.696 

Range 0.023 0.051 0.033 0.045 0.083 

 

Average Range 𝑅̿ = 0.047 Nm 

Groups=5, subgroup=5:  𝑑2
∗ = 2.3578 

 𝑢𝐸𝑉𝑂−𝑃𝑇𝑅 = 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝜎𝑃𝑇𝑅 = 𝑅̿ 𝑑2
∗⁄ = 0.0199 Nm 

DTRP standard uncertainty from repeatability on test parts 

In-process Measurement:  DTRP Uncertainty:𝑢𝐸𝑉𝑂 

Method:  Study Type 3 Average Range Method (Dietrich & Schulze, 2011) 

5 Parts, 5 Measurements each (measurements units are Nm) 

Table B46 

GR&R data collection summary for in-process variable DTRP 

Trial Part 1 Part 2 Part 3 Part 4 Part 5 

1 2.780 2.670 2.750 2.720 2.720 

2 2.810 2.630 2.720 2.700 2.690 

3 2.850 2.640 2.730 2.740 2.700 

4 2.800 2.670 2.740 2.730 2.700 

5 2.830 2.670 2.790 2.740 2.690 

Range 0.070 0.040 0.070 0.040 0.030 

 

Average Range 𝑅̿ = 0.050 Nm 

Groups=5, subgroup=5:  𝑑2
∗ = 2.3578 
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 𝑢𝐸𝑉𝑂−𝐷𝑇𝑅 = 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝜎𝑃𝑇𝑅 = 𝑅̿ 𝑑2
∗⁄ = 0.0212 Nm 

TTR standard uncertainty from repeatability on test parts 

Audit Measurement:  TTR (Audit Total Torque to Rotate) Uncertainty:𝑢𝐸𝑉𝑂 

Method:  Study Type 3 Average Range Method (Dietrich & Schulze, 2011) 

10 Parts, 5 Measurements each (measurements units are Nm) 

Table B47 

Repeatability study data collection summary for dependent variable DTR 

Trial Part 1 Part 2 Part 3 Part 4 Part 5 Part 6 Part 7 Part 8 Part 9 Part 10 

1 3.113 2.887 2.630 2.930 2.740 2.097 2.777 2.684 2.893 2.634 

2 3.181 2.870 2.678 2.933 2.712 2.092 2.763 2.650 2.869 2.616 

3 3.139 2.855 2.634 2.932 2.717 2.089 2.776 2.639 2.891 2.610 

4 3.138 2.868 2.651 2.953 2.739 2.076 2.776 2.665 2.886 2.627 

5 3.139 2.872 2.661 2.961 2.741 2.097 2.792 2.673 2.896 2.612 

Range 0.068 0.032 0.048 0.031 0.029 0.021 0.029 0.045 0.027 0.024 

 

Average Range 𝑅̿ = 0.035 Nm 

Subgroups=10, subgroup Size =5:  𝑑2
∗ = 2.3419 

 𝑢𝐸𝑉𝑂−𝑇𝑇𝑅 = 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝜎𝑇𝑇𝑅 = 𝑅̿ 𝑑2
∗⁄ = 0.0151 Nm 

TTR standard uncertainty from repeatability on standards 

Audit Measurement:  TTR (Audit Total Torque to Rotate) Uncertainty:𝑢𝐸𝑉𝑅 

Method:  Linear regression residuals adapted from ISO Appendix A.1.3 (ISO, 2012) 

15 Reference Parts (measurements units are Nm) 

Table B48 

TTR repeatability on a reference standard part study 

Part 
Reference 

Standard Value OP180 Value 

1 2.564 2.510 

2 2.254 2.285 

3 2.429 2.421 
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Part 
Reference 

Standard Value OP180 Value 

4 2.403 2.400 

5 2.448 2.447 

6 2.420 2.427 

7 2.332 2.344 

8 2.188 2.269 

9 2.180 2.187 

10 2.151 2.141 

11 2.549 2.504 

12 2.820 2.716 

13 2.832 2.678 

14 2.773 2.661 

15 2.738 2.616 

 

Table B49 

TTR Repeatability on standard uncertainty regression model and residuals 

Model 
Sum of 

Squares 
df Mean Square F Sig. 

Regression .430 1 .430 562.6 .000b 

Residual .010 13 .001   

Total .440 14    

Model 

Unstandardized Coefficients 

t Sig. B Std. Error 

(Constant) .596 .078 7.64 .000 

REF .746 .031 23.7 .000 

Residuals Statisticsc 

 Minimum Maximum Mean Std. Deviation N 

Predicted Value 2.201 2.709 2.440 .1752 15 

Residual -.0599 .0405 .0000 .0266 15 

a. Dependent Variable: OP180 

b. Predictors: (Constant), REF 

c. Dependent Variable: OP180 

 𝑢𝐸𝑉𝑅−𝑇𝑇𝑅 = 𝜎𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = 0.0266 Nm 

LASH standard uncertainty from repeatability on test parts 

Audit Measurement:  LASH (Audit Backlash) Uncertainty:𝑢𝐸𝑉𝑂 
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Method:  Study Type 3 Average Range Method (Dietrich & Schulze, 2011) 

15 Parts, 5 Measurements each (measurements units are mm) 

Table B50 

Repeatability data collection summary for dependent variable LASH 

Trial Part 1 Part 2 Part 3 Part 4 Part 5 

1 0.21 0.23 0.19 0.19 0.22 

2 0.20 0.21 0.20 0.19 0.23 

3 0.21 0.21 0.22 0.19 0.21 

4 0.21 0.21 0.22 0.20 0.20 

5 0.22 0.21 0.19 0.20 0.20 

Range 0.02 0.02 0.03 0.01 0.03 

 

Average Range 𝑅̿ = 0.022 mm 

Subgroups=5, subgroup Size =5:  𝑑2
∗ = 2.3578 

 𝑢𝐸𝑉𝑂−𝐵𝑎𝑐𝑘𝑙𝑎𝑠ℎ = 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝜎𝑇𝑇𝑅 = 𝑅̿ 𝑑2
∗⁄ = 0.0093 mm  



153 

 

 

 

APPENDIX C: CORRELATION COEFFICIENT DATA FOR SHIM DEVIATION 

 

Table C51 

Shim reprocess data for correlation coefficient analysis 

Case # 

PS δ 

(mm) 

GS δ 

(mm) 

TOT δ 

(mm) 

LASH δ 

(mm) 

TTR δ 

(Nm) Ratio 

CASE 

TTR 

(Nm) 

1 0.027 0.026 0.052 -0.01 0.098 3.231 0.317 

4 0.002 0.049 0.051 -0.04 0.171 3.231 0.553 

6 -0.041 0.003 -0.038 -0.04 -0.202 3.231 -0.652 

8 -0.004 0.052 0.048 -0.02 0.109 3.231 0.354 

10 -0.021 -0.019 -0.039 -0.01 -0.283 3.231 -0.915 

12 0.004 0.059 0.063 -0.03 0.190 3.231 0.615 

14 -0.050 -0.019 -0.069 -0.01 -0.247 3.231 -0.798 

16 -0.031 -0.021 -0.051 -0.01 -0.153 3.727 -0.569 

18 -0.026 -0.022 -0.047 0.00 -0.155 3.727 -0.579 

20 -0.029 -0.027 -0.055 0.00 -0.146 3.727 -0.543 

22 -0.046 -0.032 -0.078 -0.01 -0.223 3.727 -0.831 

24 -0.023 -0.025 -0.047 0.00 -0.146 3.727 -0.544 

28 -0.016 -0.045 -0.061 0.01 -0.201 3.727 -0.751 

30 -0.027 -0.051 -0.078 0.02 -0.279 3.231 -0.903 

32 -0.016 -0.046 -0.062 0.02 -0.282 3.231 -0.910 

34 -0.033 -0.057 -0.090 0.01 -0.316 3.231 -1.020 

36 -0.050 -0.014 -0.064 -0.01 -0.294 3.231 -0.949 

38 -0.002 -0.073 -0.075 0.03 -0.256 3.231 -0.827 

40 0.076 -0.079 -0.003 0.08 0.014 3.231 0.046 

42 -0.020 -0.052 -0.072 0.01 -0.296 3.231 -0.956 

44 -0.002 -0.045 -0.047 0.03 -0.136 3.231 -0.440 

46 -0.026 -0.039 -0.065 -0.01 -0.147 3.231 -0.474 

48 0.104 -0.101 0.003 0.08 -0.021 3.727 -0.077 

50 0.003 -0.050 -0.047 0.02 -0.162 3.727 -0.603 

52 0.052 -0.085 -0.033 0.07 -0.084 3.727 -0.311 

54 0.084 -0.077 0.007 0.07 0.055 3.231 0.179 

56 0.111 -0.133 -0.022 0.10 -0.063 3.231 -0.204 

58 0.052 -0.083 -0.031 0.06 -0.026 3.231 -0.085 
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Case # 

PS δ 

(mm) 

GS δ 

(mm) 

TOT δ 

(mm) 

LASH δ 

(mm) 

TTR δ 

(Nm) Ratio 

CASE 

TTR 

(Nm) 

60 0.102 -0.102 0.000 0.11 0.116 3.231 0.376 

62 -0.053 0.053 0.000 -0.06 0.006 3.231 0.018 

64 -0.069 0.055 -0.014 -0.07 -0.060 3.231 -0.193 

66 -0.027 -0.045 -0.072 0.02 -0.326 3.231 -1.054 

68 -0.031 -0.037 -0.068 0.00 -0.198 3.727 -0.739 

70 0.003 0.076 0.079 -0.02 0.225 3.727 0.839 

73 -0.054 -0.006 -0.060 -0.02 -0.154 3.727 -0.572 

75 -0.049 -0.001 -0.050 -0.01 -0.177 3.727 -0.659 

77 -0.079 0.024 -0.055 -0.05 -0.236 3.727 -0.880 

79 -0.027 -0.055 -0.082 0.03 -0.309 3.727 -1.151 

81 0.017 0.037 0.054 0.00 0.259 3.231 0.837 

83 -0.050 -0.030 -0.080 -0.02 -0.330 3.727 -1.232 

85 0.055 -0.076 -0.021 0.06 -0.012 3.231 -0.039 

87 0.075 -0.078 -0.003 0.09 0.048 3.231 0.154 

89 -0.083 0.064 -0.019 -0.08 -0.011 3.231 -0.036 

 

Table C52 

Backlash (LASH) correlation model summary 

Model R 

R 

Square 

Adjusted 

R Square 

Std. Error 

of the 

Estimate 

Change Statistics 

R Square 

Change 

F 

Change df1 df2 

Sig. F 

Change 
LASH .976a .953 .951 .0100 .953 405 2 40 .000 

Backlash Unstandardized Coefficientsb 

Model  B Std. Error t Sig. 
LASH 

 

 

(Constant) -.001 .002 -.710 .482 

PS δ .474 .039 12.254 .000 

GS δ -.489 .038 -12.804 .000 

a. Predictors: (Constant), GS δ, PS δ 

b. Dependent Variable: LASH δ 
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Table C53 

Differential Torque to Rotate (DTR) correlation model summary 

Model R 

R 

Square 

Adjusted 

R Square 

Std. Error 

of the 

Estimate 

Change Statistics 

R Square 

Change 

F 

Change df1 df2 

Sig. F 

Change 
DTR .950a .903 .901 .175312 .903 382 1 41 .000 

DTR Unstandardized Coefficientsb 

Model  B Std Error t Sig. 

DTR 

 

 

(Constant) -.008 .033 -.251 .803 

TOT δ 11.833 .605 19.55 .000 

a. Predictors: (Constant), TOT δ 

b. Dependent Variable: DIFF TTR 
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APPENDIX D: MONTE CARLO SIMULATION SAMPLE 

Independent Variable Simulation 

Independent Variable True Values are simulated using Excel NORMINV and RAND 

functions and the product feature upper and lower limits. 

𝑇𝑟𝑢𝑒 𝑉𝑎𝑙𝑢𝑒 = 𝑁𝑂𝑅𝑀𝐼𝑁𝑉(𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦, 𝑀𝑒𝑎𝑛, 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛) 

 Where: 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑅𝐴𝑁𝐷() 

   𝑀𝑒𝑎𝑛 = 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑀𝑒𝑎𝑛 

   𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = (𝑈𝑝𝑝𝑒𝑟 𝐿𝑖𝑚𝑡 − 𝐿𝑜𝑤𝑒𝑟 𝐿𝑖𝑚𝑡)/12 

Independent Variable error for each simulation case is simulated using Excel NORMINV 

and RAND functions and the feature standard uncertainty 𝑢𝐼𝑉. 

𝐸𝑟𝑟𝑜𝑟 = 𝑁𝑂𝑅𝑀𝐼𝑁𝑉(𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦, 𝑀𝑒𝑎𝑛, 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛) 

Where:  𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑅𝐴𝑁𝐷()𝑀𝑒𝑎𝑛 = 0.0 

 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 𝑢𝐼𝑉 

Observed Values are simulated by adding the True Value and the measurement error for 

that case using Excel add function. 

𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑉𝑎𝑙𝑢𝑒 = 𝑇𝑟𝑢𝑒 𝑉𝑎𝑙𝑢𝑒 + 𝐸𝑟𝑟𝑜𝑟 

Table D54 

Sample Independent Variable True and Observed Values 

Variable True Value Error Observed Value 

CAR1 (mm) 102.2045 -0.0038 102.2007 
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Variable True Value Error Observed Value 

CAR2 (mm) 41.9977 -0.0037 41.9940 

COV (mm) 55.5287 -0.0048 55.5239 

DELTAJ (mm) 0.2105 -0.0041 0.2064 

OAH (mm) 151.7184 -0.0062 151.7122 

BF (mm) 49.1411 -0.0050 49.1361 

 

Pinion Side Shim Simulation 

"G" 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 45.50 mm 

𝑃𝑆𝑇𝑟𝑢𝑒 𝑉𝑎𝑙𝑢𝑒 = (102.2045 − 41.9977 + (45.50 + .2105) − (151.7184 − 49.1411) =

3.3400 mm 

𝑃𝑆 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 = (102.2007 − 41.9940 + (45.50 + .2064) − (151.7122 − 49.1361) =

3.3370 mm 

Select Shim Class (0.001-inch increments) 

𝑆ℎ𝑖𝑚 𝐶𝑙𝑎𝑠𝑠 = 𝑅𝑂𝑈𝑁𝐷(3.3370 25.4,3) ∗ 25.4⁄ = 3.3274 mm (0.131 inch) 

Shim True value is a random shim from shim class  

𝑃𝑆 𝑆ℎ𝑖𝑚𝐶𝐿𝐴𝑆𝑆 𝐸𝑅𝑅𝑂𝑅 = 𝑁𝑂𝑅𝑀𝐼𝑁𝑉(𝑅𝐴𝑁𝐷( ), 0,0.00433) = −0.0053 mm 

𝑃𝑆 𝑆ℎ𝑖𝑚𝑇𝑟𝑢𝑒 𝑉𝑎𝑙𝑢𝑒 = 3.3274 + (−0.0053) = 3.3221 mm 

Pinion Side Shim Error 

𝑃𝑆 𝑆ℎ𝑖𝑚𝐸𝑟𝑟𝑜𝑟 = 3.3221 − 3.3400 = −0.0179 mm 

Pinion Side Shim observed value includes the measurement error 

𝑢𝑆ℎ𝑖𝑚 𝑀𝑒𝑎𝑠 = 𝑁𝑂𝑅𝑀𝐼𝑁𝑉(𝑅𝐴𝑁𝐷( ), 0,0.00367) = −0.00145 mm 

𝑃𝑆 𝑆ℎ𝑖𝑚𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑉𝑎𝑙𝑢𝑒 = 3.3221 + (−0.0015) = 3.3206 mm 
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Gear Side Shim Simulation 

𝐺𝑆𝑇𝑟𝑢𝑒 𝑉𝑎𝑙𝑢𝑒 = (102.2045 + 55.5287 − 151.7184 − 3.3221) = 2.6927 mm 

𝐺𝑆𝐶𝑎𝑙𝑐 𝑅𝑒𝑠𝑢𝑙𝑡 = (102.2007 + 55.5239 − 151.7122 − 3.3206) = 2.6918 mm 

Select Shim Class (0.001-inch increments) 

𝑆ℎ𝑖𝑚 𝐶𝑙𝑎𝑠𝑠 = 𝑅𝑂𝑈𝑁𝐷(2.6918 25.4,3) ∗ 25.4⁄ = 2.6924mm (0.106 inch) 

Shim True value is a random shim from shim class 

𝐺𝑆 𝑆ℎ𝑖𝑚𝐶𝐿𝐴𝑆𝑆 𝐸𝑅𝑅𝑂𝑅 = 𝑁𝑂𝑅𝑀𝐼𝑁𝑉(𝑅𝐴𝑁𝐷( ), 0,0.00433) = −0.0047 mm 

𝐺𝑆 𝑆ℎ𝑖𝑚𝑇𝑟𝑢𝑒 𝑉𝑎𝑙𝑢𝑒 = 2.6924 + (−0.0047) = 2.6877 mm 

Error in Gear Side Shim Call 

𝐺𝑆 𝑆ℎ𝑖𝑚𝐸𝑟𝑟𝑜𝑟 = 2.6877 − 2.6927 = −0.0049 mm 

Shim Selection Process Error 

𝐷𝑇𝑅𝐸𝑅𝑅𝑆𝐻𝐼𝑀 = 11.83 ∗ (𝐺𝑆𝐸𝑅𝑅𝑂𝑅) = 11.83 ∗ (−0.0049) = −0.0585 Nm 

𝐿𝐴𝑆𝐻𝐸𝑅𝑅𝑆𝐻𝐼𝑀 = −0.489 ∗ 𝐺𝑆𝐸𝑅𝑅𝑂𝑅 + 0.474 ∗ 𝑃𝑆𝐸𝑅𝑅𝑂𝑅 = −0.489 ∗ (−0.0049) +

0.474 ∗ (−0.0179) = −0.0061 mm 

Process Measurement Error 

Process Variable PTR and DTR True Values are simulated using Excel NORMINV and RAND 

functions and the process variable mean and limits based on typical bearing variation. 

𝑇𝑟𝑢𝑒 𝑉𝑎𝑙𝑢𝑒 = 𝑁𝑂𝑅𝑀𝐼𝑁𝑉(𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦, 𝑀𝑒𝑎𝑛, 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛) 

Where:  𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑅𝐴𝑁𝐷() 

   𝑀𝑒𝑎𝑛 = 𝑀𝑒𝑎𝑛 

   𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 0.14 

Process Variable PTR and DTR error for each simulation case is simulated using Excel 

NORMINV and RAND functions and the feature standard uncertainty 𝑢𝑃𝑉. 
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𝐸𝑟𝑟𝑜𝑟 = 𝑁𝑂𝑅𝑀𝐼𝑁𝑉(𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦, 𝑀𝑒𝑎𝑛, 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛) 

Where:  𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑅𝐴𝑁𝐷() 

   𝑀𝑒𝑎𝑛 = 0.0 

   𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 𝑢𝑃𝑉 

Observed Values for PTR and DTR are simulated by adding the True Value and the 

measurement error for that case using Excel add function. 

𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑉𝑎𝑙𝑢𝑒 = 𝑇𝑟𝑢𝑒 𝑉𝑎𝑙𝑢𝑒 + 𝐸𝑟𝑟𝑜𝑟 

Process Variable for Single Flank Test Backlash True Value is simulated using Excel 

GAMMAINV, RAND, and MEDIAN functions using derived parameters based on SFT data for 

Gamma distribution and the mean product backlash of 0.18 mm. 

𝑆𝐹𝑇 𝐿𝐴𝑆𝐻 𝐸𝑟𝑟𝑜𝑟 = 𝐺𝐴𝑀𝑀𝐴𝐼𝑁𝑉(𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦, 𝐴𝑙𝑝ℎ𝑎, 𝐵𝑒𝑡𝑎) 

Where:  𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑅𝐴𝑁𝐷() 

   𝐴𝑙𝑝ℎ𝑎 = 8.86 

   𝐵𝑒𝑡𝑎 = 0.0051027 

𝑆𝐹𝑇 𝐿𝐴𝑆𝐻 𝑇𝑟𝑢𝑒 𝑉𝑎𝑙𝑢𝑒 = 0.18 − 𝑀𝐸𝐷𝐼𝐴𝑁(𝑆𝐹𝑇 𝐿𝐴𝑆𝐻 𝐸𝑟𝑟𝑜𝑟) + 𝑆𝐹𝑇 𝐿𝐴𝑆𝐻 𝐸𝑟𝑟𝑜𝑟 

Table D55 

Process Random True values 

Variable True Value Error Observed Value 

OP90PTR (Nm) 1.6208 -0.0510 1.5698 

OP120DTRP (Nm) 2.2696 -0.0888 2.1807 

SFT LASH (mm) 0.1766 -0.0034 0.180 

RATIO 42/13 N/A N/A 
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Audit True Values 

Audit True Values include the Process variable true values and the shim selection process 

error. 

𝐷𝑇𝑅𝐴𝑆𝑆𝐸𝑀𝐵𝐿𝑌 𝑇𝑅𝑈𝐸 𝑉𝐴𝐿𝑈𝐸 = 2.2696 + (−0.0585) = 2.2111 Nm 

𝑇𝑇𝑅𝐴𝑆𝑆𝐸𝑀𝐵𝐿𝑌 𝑇𝑅𝑈𝐸 𝑉𝐴𝐿𝑈𝐸 = 1.6208 + [
2.2111

(42 13⁄ )
] = 2.3052 Nm 

𝐿𝐴𝑆𝐻𝐴𝑆𝑆𝐸𝑀𝐵𝐿𝑌 𝑇𝑅𝑈𝐸 𝑉𝐴𝐿𝑈𝐸 = 0.1766 + (−0.0061) = 0.1705 Nm 

Dependent Variable Observed Values 

Dependent Variable error for each simulation case is simulated using Excel NORMINV 

and RAND functions and the Audit Feature standard uncertainty 𝑢𝐼𝑉. 

𝐸𝑟𝑟𝑜𝑟 = 𝑁𝑂𝑅𝑀𝐼𝑁𝑉(𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦, 𝑀𝑒𝑎𝑛, 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛) 

Where:  𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑅𝐴𝑁𝐷() 

  𝑀𝑒𝑎𝑛 = 0.0 

  𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 𝑢𝐷𝑉 

Table D56 

Dependent Variable Observed Values 

Variable True Value Error Observed Value 

TTR (Nm) 2.3052 -0.0067 2.2985 

LASH (mm) 0.1705 0.0132 0.1837 

 

𝐷𝑇𝑅𝑂𝐵𝑆𝐸𝑅𝑉𝐸𝐷 = (2.2985 − 1.5698) ∗ (42 13⁄ ) = 2.354 Nm 

𝐷𝑇𝑅𝑂𝐵𝑆𝐸𝑅𝑉𝐸𝐷 𝐸𝑅𝑅𝑂𝑅 = 2.354 − 2.181 = 0.173 Nm 

𝐿𝐴𝑆𝐻 = 𝑅𝑜𝑢𝑛𝑑(0.1837, 2) = 0.18 mm 
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Table D57 

Monte Carlo Output Case #1 

Variable Value Target Error 

DTRERR (Nm) 0.173 0.000 0.173 

LASH (mm) 0.18 0.18 0.00 
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APPENDIX E: UNCERTAINTY OF ASSEMBLY PINION POSITION “P” 

The audit measurement of backlash includes an uncertainty associated with variation in 

the pinion position, or “P” as shown in Figure 26.  This Appendix derives the uncertainty or error 

of the assembled pinion position based on the process for assembling the pinion.  The 

relationship between hypoid backlash and pinion position “P” error is approximated by 0.24 to 1 

ratio, for every 0.010 mm “P” error, backlash will vary 0.0024 mm (Mohsen Koviland PhD, 

personal communication, November 23, 2016). 

 

Figure E27. Axle assembly pinion “P” mounting distance 

The Pinion Shim Gap Calculation 

𝑃𝑖𝑛𝑖𝑜𝑛 𝑆ℎ𝑖𝑚 𝐺𝑎𝑝 = 𝐶𝐴𝑅3 − 𝐻𝐷𝐵𝑅𝐺 − 𝑃 

Where:  P is a constant, the design pinion mounting distance (92 mm) 

 CAR3 is the measured distance gear centerline to bearing seat on the Carrier 

 HDBRG is the measured bearing height 
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Example calculation where 𝐶𝐴𝑅3 = 122.230mm and 𝐻𝐷𝐵𝑅𝐺 = 29.450 mm: 

𝑃𝑖𝑛𝑖𝑜𝑛 𝑆ℎ𝑖𝑚 𝐺𝑎𝑝 = 122.230 − 29.450 − 92 = 0.780 mm 

Shim classes are in 0.025 mm (0.001 inch) increments, closest shim class is 0.787 mm 

(0.031 inch). 

𝑃𝑖𝑛𝑖𝑜𝑛 𝑆ℎ𝑖𝑚 = 0.787 mm 

Pinion Position “P” Standard Uncertainty 

The selection of the pinion position shim includes two measurements, CAR3 and 

HDBRG.  The uncertainty for these measurements is estimated by Type 3 Study described by 

Dietrich and Schulze (2011)on test parts to determine𝑢𝐸𝑉𝑂.  Standard uncertainties associated 

with the process contribute to the pinion position variation in the assembly.  The selected shim 

that is installed is nominally at the shim class value analogous to resolution uncertainty per ISO 

(2012) Table 2 - Uncertainty from resolution, the shim selection increment is a rectangular 

distribution.  The uncertainty associated with shim class is, 𝑢𝐶𝐿𝐴𝑆𝑆 = (1 √3⁄ ) ∗

(𝑆ℎ𝑖𝑚 𝑆𝑡𝑒𝑝 2⁄ ) = 𝑆ℎ𝑖𝑚 𝑆𝑡𝑒𝑝 √12⁄ = 0.0254 √12⁄ = 0.00733 mm 

The selected shim includes variation within the tolerance range of ±0.0125 mm.  A Type 

B approach applies the part tolerance to determine uncertainty.  Given that the tolerance range 

covers ± 3 standard deviations, the uncertainty is equivalent to the process standard deviation, 

𝑢𝑆𝐻𝐼𝑀 = 0.025 6⁄ = 0.00423 mm. 

The process for pinion assembly contributes to position variability resulting from the 

pinion-bearing preload that is created by tightening the pinion nut.  The process for setting pinion 

bearing preload includes measuring the torque to establish a target, and then setting to that target.  

Three uncertainties are associated with the process, measurement uncertainty of the targeting and 

setting process, and process capability of the setting process are analyzed using Type A methods.  
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