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ABSTRACT 

This study explored the use of deep learning artificial intelligence, machine learning, and 

non-parametric statistics for successfully detecting various classes of malware attacks against 

Raspberry Pi hardware devices over unrestrained digital communication networks. Furthermore, 

the use of permutated tests of statistical significance were applied to these artificial intelligence 

and machine learning models for the purpose of providing scientific evidence for the statistical 

significance of the findings from the predictive classification models. 

Much effort has taken place in recent years to apply various types of machine learning 

(non-parametric statistical learning systems) to use case problems involving network intrusion 

detection and malware identification. This research provides thoroughly tested methodologies 

that provide a wealth of prediction capabilities for this problem space, with little if any attempt at 

scientific proof of the effectiveness of these predictions. Much was being predicted in the field of 

applied machine learning and artificial intelligence for digital communication systems, but little 

was being scientifically proven. 

In general, the application of scientific tests of falsifiability have been lacking in this field 

because of the gap that exists between the non-linear, non-parametric nature of machine learning 

models and the generally accepted methodologies for providing scientific evidence of causal 

relationships. Scientific tests of falsifiable hypothesis testing are rooted in the general linear 

model, such as linear regression, logistic regression, ANOVA, MANOVA, etc. Because those 

classical statistical methods address linear relationships between the independent and dependent 
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variables, they are generally incapable of adequately analyzing relationships and predictions 

developed by these non-parametric statistical learning system models.  

Literature reviews support the principal concept for this research that non-parametric 

statistical learning systems can be the subject of statistical hypothesis testing based on classical 

general linear model-based statistical methods, under specific frameworks with which to create 

regularization effects. Thus, by incorporating permuted tests of statistical significance using 

methods such as PERMANOVA, scientific tests of statistical significance were able to take place 

over the course of this research. 

The net result was the development of a defense in depth study across a range of different 

types of non-parametric statistical learning models that analyzed various aspects and use cases of 

malware across Raspberry Pi networked devices. Various types of permuted tests of statistical 

significance took place to produce non-parametric p-values as well as measures of non-Euclidean 

distance tests of homogeneity between groups, to produce non-parametric visualization outputs. 

These non-parametric validation models successfully analyzed various cause and effect 

relationships responsive to the four separate research questions, addressed through null and 

alternative hypothesis statements. The permuted tests of statistical significance and non-

parametric measurement tests of homogeneity analyzed the predicted output from the cohort of 

supervised learning and unsupervised learning predictive models, providing strong scientific 

evidence for the effectiveness of artificial intelligence models applied to this specific domain. 
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CHAPTER 1 

 

INTRODUCTION 

Chapter Overview 

This research used deep learning and machine learning algorithms to investigate issues 

related to the detection of malware and network intrusion attacks against Raspberry Pi devices on 

unrestrained network connections, for the purpose of applying a novel application framework to 

conduct parametric, asymptotic hypothesis testing to nonparametric, non-asymptotically 

converged statistical learning models. This allowed for the application of scientific falsifiability 

testing to the findings of these nonparametric models as well as establishing causal relationships 

in the population. This research is potentially critical, as it addresses cyber defense shortcomings 

that impact a wide range of increasingly ubiquitous hardware devices that comprise the Internet 

of Things (IoT), including a growing use in some networked medical devices (Sengan et al., 

2022). 

However, there is an overall lack of research regarding the application of the scientific 

method in terms of the use of falsifiability hypothesis testing with which to determine the 

statistical significance for the effective application of deep learning and machine learning 

algorithms for this use case. This is due to a fundamental conflict between the nature of classic 

and inflexible linear regression models with which to conduct statistical hypothesis testing and 

nonparametric deep learning models. Because nonparametric statistical learning models such as 
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deep learning, multi-layer perceptron neural networks primarily utilize nonlinear representations 

within their hidden layers, there is to date little to no research that closes the gap between the 

interpretability of traditional statistical models and the flexibility of machine learning and deep 

learning systems, in the field of digital communication systems. 

The overall objective of this research is to provide a series of hybrid solutions that 

integrate the respective capabilities of deep learning systems and classical statistics, with the 

interpretability and causal inference ability of asymptotic general linear regression models. 

Technology Management Impacts 

This research integrates with the larger field of Technology Management by addressing 

an ongoing need in securing enterprise resources and maintaining competitive advantages. 

Enterprises are continuously subject to network attacks in the form of evolving malware threats 

directed at IoT network data. Digital communication network managers and administrators 

experience this growing problem in both industry and government. This research endeavors to 

prove with scientific efficacy that aspects of artificial intelligence systems can supply an 

effective defense in depth strategy to mitigate this management challenge. 

By addressing this ongoing threat to ever-increasing amounts of IoT data on homogenous 

classes of hardware over unrestrained networks utilizing aspects of artificial intelligence and 

machine learning, the research also addresses the human factor present in technology 

management. The research addresses complex features and patterns discovered by the AI/ML 

models in making the various classification predictions and employs a secondary series of 

AI/ML models to produce explainable characteristics about individual class predictions. 

These explainable features for specific class predictions address aspects of human 

resource development needs for human network administrators and technology managers within 
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the enterprise, thus leveraging the corporate AI/ML models as a mechanism to increase our 

understanding of the digital communication network threats. 

Background 

In this chapter, the author provides an overview of the study by first providing a general 

background as well as context to the research problem as well as the research aims, questions, 

and objectives along with the significance of the research and, finally, the limitations. Likewise, 

this provides the summary information for this topic as it relates to the fitness and merit of the 

research focus as well as its potential for scientific contribution to the field of study. In the study, 

the author used deep learning and machine learning algorithms to model nonparametric network 

anomalies to predict as well as detect indications of the presence of malware on unrestrained 

network connections that are acting upon Internet of Things (IoT) devices that are Raspberry Pi-

compliant hardware devices. 

The problem for this study involves the use of nonparametric statistical learning methods, 

including machine learning and deep learning algorithms, to develop models for the detection of 

a wide range of known, distinct malware entities upon unrestrained network connections for 

Internet of Things (IoT) devices utilizing the Raspberry Pi family of single-board computer 

specifications (IoT-enabled industrial Raspberry Pi compatible devices). The dataset (IoT-23)  

used for this study incorporated human-labeled curated analysis of individual network traffic 

flows from IoT devices in controlled environments, consisting of 20 malware captures and 

three captures for benign IoT device traffic. The laboratory first published this dataset in 

January 2020, with captures ranging from 2018 spanning through 2019. 

First, the researcher describes the IoT network flow dataset, providing detailed analysis 

and summary statistics of the flow metadata. Next, a review of the history and methodology of 
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the capture processes used to obtain the IoT-23 dataset utilizing the Raspberry Pi family of 

single-board computer specifications (IoT-enabled industrial Raspberry Pi compatible devices is 

provided. The author reviews the research methodologies that consists of the problem statement, 

the research questions, and the hypotheses. A justification for the research need, as well as the 

assumptions and limitations underlying the proposed methodology is given. The author identifies 

major assumptions and limitations along with a review of key terms, discussed in context with 

the research problem. 

The objectives of this research are to use the findings to: 

Determine the effectiveness of an ensemble deep learning algorithm and statistical 

analysis framework at performing multinomial classification of IoT malware anomalies, utilizing 

network flow data. 

Identify the impacts of the various independent variables within the unrestrained IoT 

Internet traffic flows on the class detection accuracy for the various IoT malware threat 

anomalies. 

Quantify some of the benefits realized from the use of a deep neural network for 

supervised learning for this use case, including determining the effect of random chance through 

inter-rater reliability for the multinomial classification. 

Develop a model that can be used to classify with probability scoring in near real-time for 

a malware threat determination when an IoT device on an unrestrained Internet connection is 

subjected to various malware anomaly threats. 

Apply aspects of scientific falsifiability to the predictive classification ensemble model 

for rejecting or failing to reject the null hypothesis. The purpose of this objective is to 
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demonstrate that aspects of statistical significance testing are potentially applicable using novel 

methods applied to AI/ML models that have significant nonlinear sensitivities. 

Statement of the Problem 

As the Internet of Things vastly increased in size to 14.4 billion active connections in 

2022 (IoT.Business.News, 2022) representing an 18% annualized increase that is projected to 

reach approximately 27 billion active connections by 2025, a growing imperative exists to help 

secure this increasingly critical aspect of global digital infrastructure. Traditional rules-based and 

heuristic-based cyber defensive systems are often inadequate to address the unique challenges, 

risks, and limitations inherent in IoT communications architectures. Consequently, the need for 

sophisticated, adaptable defensive cyber systems as part of a defense in depth strategy that is 

scientifically proven to be demonstrably effective across a broad range of risk categories 

utilizing falsifiable hypothesis testing has never been greater. 

Research Questions and Hypothesis 

In this study, the researcher used hybrid linear and nonlinear statistical analysis to 

provide a framework to ascertain the statistical significance. Those statistically significant 

findings of the nonparametric machine learning and deep learning models investigate the ability 

of the AI/ML models to predict the presence of distinct classes of malware. Specifically, within 

an Internet of Things (IoT) unrestrained network traffic flow dataset in devices utilizing the 

Raspberry Pi family of single-board computer specifications (IoT-enabled industrial Raspberry 

Pi compatible devices). This development of research using innovative and traditional statistical 

hypothesis testing provided a measure of falsifiability for the machine learning and deep learning 

predictive models. This is conceptually novel to the field of deep learning and machine learning 

for digital communication network analytics. Such scientific findings have been a challenge in 
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the past, due to the highly nonparametric nature of machine learning and deep learning 

prediction models that often do not consistently produce simple linear relationships between 

independent and dependent variables to provide valid inferences. 

Since the purpose of this research is to propose an ensemble series of nonparametric 

statistical learning models to address various research questions that are addressed through novel 

adaptations of asymptotic hypothesis testing, the research addressed how these process models 

can be used to accurately identify and provide falsifiable predictive models. These models 

addressed research questions related to the inferences that lead to the detected presence of IoT 

malware and network intrusions instances that are known to or potentially might be actively 

attacking IoT devices of various architectures through an unrestricted Internet connection. The 

author utilized aspects of scientific reproducibility and falsifiability measures to statistically 

assess findings using a novel use of statistical significance testing that is applied to non-linear 

machine learning and deep learning models. The substantive research questions, therefore, are as 

follows: 

RQ1: What do the network flow variables reveal about the distribution of malware 

classifications in the IoT-23 dataset and the ability to construct non-parametric predictions for 

the known malware classes?  

RQ2: What are the distinct independent variable cohort relationships between the 

network traffic flow variables and specific individual IoT malware classes when conducting 

nominal Internet communications activities upon unrestrained networks?  

RQ3: What effect does a supervised nonparametric statistical learning model have on 

determining the presence of malware on human-curated datasets for Raspberry Pi devices using 

network flow data across an unrestrained network?  
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RQ4: What effect does an unsupervised, self-supervised predictive model have for 

predicting malware presence without utilizing human-curated labeled training data on Raspberry 

Pi devices using network flow data?  

The author augmented the exploration of supervised machine learning and deep learning 

models in the first three research questions by various non-parametric models to support a multi-

layer defense in-depth strategy driven by machine learning and artificial intelligence models. The 

research incorporated demonstrated falsifiability using the model findings to provide permuted 

statistical scientific evidence for the effectiveness and applicability of these statistical learning 

models. 

The first research question is primarily exploratory, to allow for the investigation of the 

association between the network traffic flow attributes and the various labeled individual 

malware classes. The research examined the parametric and nonparametric relationships of the 

independent variables in the IoT-23 network flows to the dependent variable (malware class) of 

the dataset to understand their ability to contribute to a nonparametric statistical learning 

predictive model. This process represents the linear and nonlinear statistical significance of each 

independent variable in terms of the relative effect on the model, transformed and scaled to show 

relative importance on a percentile basis. 

As such, it is effectively a proof of a precursor or “pathfinder” method for determining 

the suitable presence of a non-parametric statistical signal being present in the dataset between 

one or more independent variables and the curated dependent variable in the network flow data. 

This pathfinder method can potentially demonstrate the suitability for the employment of AI/ML 

predictive classification models that can produce a more refined non-parametric statistical 
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classification model, including the determination of the optimal key response indicator 

independent variables in the model. 

This first research question required construction of a non-parametric multivariate 

analysis of variance (NPMANOVA), also known as a permuted multivariate analysis of variance 

(PERMANOVA) model. Specifically, the researcher employed a one-way NPMANOVA to 

address the research question, as a one-way MPMANOVA is the non-linear (non-parametric) 

extension of the one-way multivariate analysis of variance (one-way MANOVA). Like the 

MANOVA, the NPMANOVA is primarily used to determine if statistically significant 

differences exist between two or more independent groups (in this case, our labeled malware 

class groups represented by a categorical (nominal type) independent variable, in relation to two 

or more continuous dependent variables. The one-way MANOVA is an extension of the one-way 

ANOVA, used when analyzing only one dependent variable at a time. 

NPMANOVA is thus a non-parametric multivariate test used to compare the multivariate 

distribution of multiple independent groups and is useful for adapting to machine learning 

prediction models, which are primarily asymptotic prediction methods. This research used the 

NPMANOVA model for this first research question to test the following hypotheses: 

H10: The centroids of each of the distinct malware groups’ multivariate dependent 

network flow variables in the IoT-23 dataset are equal. 

 H1a: There is at least one pair of malware groups with significantly unequal multivariate 

dependent variable centroids in the network flow dataset. 

Research question two involved a more detailed exploration of the non-parametric 

classification predictive model relationships of the multiple independent variables as they relate 

to each specific class label prediction (dependent variable) by the primary predictive 
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classification machine learning/artificial intelligence model. This exploratory analysis utilized 

SHAP (SHapley Additive exPlanations) calculations to provide in-depth explanations for each 

class label prediction. A confirmation of the statistical significance of the SHAP model 

explanation output was made with a gradient-boosted machine learning algorithm-based model, 

used to create a baseline multinomial classification prediction. The author then analyzed this 

classification model to discover Shapley values based on calculated coalition relationships 

(between IV coalitions), for each of the marginal contributions of F, and then finding the mean F 

marginal contribution for each coalition across the dataset. This set of Shapley values, where K is 

the sum of all features in the model represent a metadata subset of 2K potential coalitions, with 

the Shapley values scaling exponentially with the number of features (F) contained in the 

dataset. 

The researcher conducted a hypothesis test for this research question by first using a k-

fold cross-validation testing of SHAP (SHapley Additive exPlanations) calculations produced 

by a non-parametric gradient-boosted machine (GBM) algorithm. This method employed 

asymptotic normal predictions using subsampled prediction values to approximate normal 

predictions for exploitation using hypothesis tests and confidence intervals analogous to a 

parametric framework. The use of a permuted multiple linear regression model established that a 

statistically significant relationship exists between the continuous type data contained within the 

Shapley coalition contribution score permutations and the categorical type dependent variable 

containing the various labeled malware classes. 

The hypothesis to address the second research question is: 
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H20: An independent variable as it contributes to the asymptotic prediction for the 

dependent variable of malware class (nominal categorical factor variable) is not important, i.e. 

ψ0,0,j = 0 for some j. 

H2a: An independent variable as it contributes to the asymptotic prediction for the 

dependent variable of malware class (nominal categorical factor variable) is important, i.e. ψ0,0,j 

> 0 for some j. 

The author addressed the third research question through an analysis of the nonparametric 

statistical learning methods utilized in RQ1 and RQ2, utilizing subsampled prediction output 

averaging to produce asymptotically normalized predictions. By estimating the variance of these 

predictions, the research exploited model output properties that produced normalized hypothesis 

tests and confidence intervals analogous to linear statistical tests produced within traditional, 

parametric frameworks. Next, a deep learning multinomial (multiple) classification predictive 

model to create an asymptotic model based on subsampled gradient boosted machine predicted 

model non-parametric output. The deep learning predictive model output was addressed with a 

permuted multiple analysis of variance (PERMANOVA) model to produce a pseudo-F statistic 

and a p-value from which to test the hypothesis test for the third research question: 

H30: All coefficients in the multinomial logistic regression equation will take the value of 

zero. 

H3a: The model currently under consideration is accurate in that it differs significantly 

from the null coefficient values of zero; it gives significantly better than random chance 

predictive strength relative to the null hypothesis. 

The fourth research question involved the concept of self-supervised, unsupervised deep 

learning models and their ability to determine the presence of human-curated malware classes 
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without having pre-training on the labeled class identities. This research question served as the 

cornerstone of a machine learning/artificial intelligence-driven defense-in-depth strategy. My 

primary research goal was to prove the ability of these ensemble supervised and unsupervised 

systems to identify novel malware classes without necessarily having to be pre-trained to do so. 

This research question addressed, through hypothesis testing, the use of a permuted 

testing framework based on a PERMANOVA (permuted multiple analysis of variance) a non-

parametric test of statistical significance between two groups (benign versus malicious) in a post-

hoc test. In this situation, the unsupervised deep learning anomaly scoring model will analyze the 

network flow data in a blind study configuration (e.g., the human-labeled curated malware class, 

if any, will be withheld in the data provided to the model). Anomaly scoring took place using the 

self-supervised/unsupervised deep learning algorithm and network flow observations determined 

highly anomalous. In turn, the scores were encoded as positive for malware as an outcome 

prediction. 

The original curated network flow dataset used to train the model recoded the binary 

classification (0/1) variable for the presence or non-presence of a malware event in each network 

flow. The test of statistical significance determines if the unsupervised model anomaly findings 

represented by one set of categorical (binary) variables related to the “ground truth” human-

curated labeled malware events in the data, and a test of statistical significance were made based 

on this analysis. A beta dispersion test was conducted between the two groups to generate a 

visual representation of non-Euclidean centroid distances between the two groups (benign versus 

malicious) across transformed principal component spaces. 

This took place using Anderson's PERMDISP2 procedure for the analysis of multivariate 

homogeneity of group dispersions (variances). This included the “betadisper” (beta dispersion) 
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functionality within the Vegan library package, a multivariate analogue of Levene's test for 

homogeneity of variances. Optimization of non-Euclidean distances between objects and group 

centers (centroids or medians) through by reducing the original distances to the principal 

coordinates. The researcher used this procedure to assess beta diversity between distinct groups. 

The hypothesis for this fourth and final research question is: 

H40: There is no statistically significant relationship between the predictor variables and 

the response variable in the anomaly-driven response variable groups. 

H4a: There is a statistically significant relationship between the predictor variables and 

the anomaly-driven response variable groups. 

Statement of the Need 

Previous research on the security design and unique aspects of Internet of Things (IoT) 

devices indicated an ongoing challenge in detecting and classifying a growing range of malware 

threats. Recent studies indicated several static-based methods for IoT malware detection, 

including analysis of opcode features, string data, ELF headers from binary data files as well as 

other methods related to the analysis of binary executable machine language code and function 

calls. 

Thus, much of the current state of the art for static-based detection of malware for multi-

architecture IoT platforms involves the analysis of machine language instructions and related 

byte code elements that are already present on the IoT device, presumably after the malware has 

been installed through a network connection. Several dynamic-based methods for IoT malware 

detection and mitigation frameworks have also been proposed, including the use of a hybrid 

combination of machine learning algorithms operating within a Software Defined Networking 

(SDN)-based secure IoT framework. 
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While these studies have been significant in moving the state of the art forward, the rapid 

growth in the adoption and use of IoT platforms connected directly to unrestrained Internet 

connections necessitates an increased focus on preemptive malware detection and classification 

for these devices before malicious opcode instructions can be installed and executed by threat 

actors. 

Because of the complex nature of IoT network traffic, coupled with the increasing 

number of malware attack scenarios and the multi-architecture nature of many IoT devices, 

multiple modeling techniques are most suitable. Experimentation using a combination of 

statistical analysis techniques and supervised deep learning algorithms created models for linear 

and nonlinear feature extraction to perform multinomial classification with probability scoring of 

the known labeled malware threat classes. From the models produced, a new framework could 

allow the continued use of IoT devices on unrestrained Internet connections by intercepting IoT 

network traffic flows that are associated with the presence of a malware threat in real time. 

Purpose of Study 

The purpose of this study was to conduct research in digital communication systems to 

effectively utilize machine learning and deep learning methodologies, for the purpose of creating 

a defense-in-depth strategy for securing IoT devices in enterprise network systems that 

incorporates self-adapting, nonparametric statistical learning systems. This incorporated aspects 

of internal and external validity as well as falsifiable hypothesis testing into the research 

discipline. 

The use of novel methods for incorporating statistical hypothesis testing provided 

scientific evidence for the effectiveness of the supervised as well as the unsupervised learning 

models, demonstrating the effectiveness of these models against labeled threat malware classes 
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in unrestrained network connections. The research ultimately explored frameworks and 

methodologies for establishing scientific validity for the effectiveness of machine learning and 

deep learning models for an effective use in defense in-depth strategies for IoT hosts in 

unrestrained network environments. 

This study contributes to the academic literature on digital communication systems by 

addressing critical limitations involving falsifiability and the use of statistical learning systems 

for IoT malware analysis and cyber defense. Historically, hypothesis testing has rarely been 

attempted for research that utilized machine learning and deep learning prediction models 

because the nonparametric nature of these algorithms was often in conflict with linear 

relationships required between dependent and independent variables for the development of valid 

inferences for hypothesis testing. Recent developments in “explainable AI” technology 

frameworks and advances in the use of subsampling techniques and variance estimation, under 

suitable conditions, can potentially allow for the creation of asymptotically normal predictions 

that can meet the criteria for some forms of hypothesis testing. The research incorporated these 

advanced frameworks into this study for addressing the research question hypotheses. 

Significance of the Study 

The need for adaptable, robust, and scalable real-time malware detection and 

classification for Raspberry Pi IoT devices in unrestrained Internet-connected networks is 

apparent, especially given the tremendous growth and near-omnipresence of these devices in 

industry, hospitals, and home network environments. The most adaptable and scalable technique 

for detecting a growing number of malware threat classes that are specifically targeted at IoT 

hardware variations is potentially a robust ensemble deep learning algorithm that is fast enough 
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to work in near-real time and more accurate than traditional signature-based and anomaly-

detection or heuristic-based methods. 

The utilization of these methodologies exclusively trained on network flows as opposed 

to the more detailed packet capture for network traffic analysis, potentially provides a significant 

enhancement in network defense in-depth strategies. Such an enhancement has the opportunity to 

optimize significantly network defense in-depth strategies by creating a potentially more self-

adapting active malware detection system that is less expensive in terms of storage and 

processing requirements than statistically based or rules-based malware detection systems that 

rely on packet capture analysis. 

Assumptions 

The intent was to develop an ensemble of deep learning classification and prediction 

models based on various cutting-edge advanced neural networks, for the purpose of classification 

and probabilistic scoring of known types of IoT malware network intrusion for the Raspberry Pi 

ARM-based processor hardware. The datasets for the quasi-experiments consisted of hundreds of 

gigabytes of unencrypted TCP and UDP internet protocol network traffic data freely provided 

via the Stratosphere Laboratory, using the Aposemat IoT-23 labeled dataset with malicious and 

benign IoT network traffic. The research used pre-seeded randomization to allow maximized 

reproducibility within the various predictive classification models, as well as document data 

sources, base versions of the R statistical programming language, and the versions of all R 

library packages utilized in this research effort. 

Limitations 

The primary limitation of this study is that it utilizes the IoT-23 dataset, and thus be an 

ex-post facto experiment with relatively limited (but still substantial) network flow data. While 
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this dataset is robust and well-curated, the characterization of findings obtained from the models 

produced from the relationships in this data may not adequately capture a comprehensive state-

of-the-art or fully global perspective on the most modern IoT malware threats. 

A broader view of IoT malware adaptability and suitability for enterprise network 

defense systems that utilize a defense-in-depth strategy as outlined in the research questions for 

this study could potentially be conducted by obtaining a more comprehensive dataset using 

controlled networks and honeypot systems than made possible by relying solely on the IoT-23 

dataset for ex-post facto research. This dataset capture process might potentially involve the use 

of network telescopes in partnership with academia, industry, and law enforcement agencies for 

comprehensively cataloging and curating IoT network traffic flows across the globe, but this 

methodology would exceed the scope and confines of this research. 

Likewise, new methodologies, frameworks, and technologies are constantly being 

researched and presented in journals and conferences while this study is in progress, it is not 

possible to incorporate all of these concurrent findings during the course of this research. Thus, 

the limitations of this study incorporate the scope of the data available to it in the IoT-23 

published dataset, and in the algorithms chosen and the methods selected to address the selected 

research questions. 

Key Terms 

This research used the following terms for the purposes of this study. 

Asymptotic: Refers to the large sample theory in statistics. It is related to the central limit 

theorem in probability theory. Asymptotic theory states that with a sufficiently large sample size 

of n, that elements drawn randomly from identically distributed and independent (of each other) 
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variables from the population converged to the overall population mean for those respective 

variables. 

Autoencoding Neural Network: An “autoencoder” is a type of multi-layer perceptron 

neural network, designed to learn to encode data that does not contain a labeled dependent 

variable. It is therefore a form of unsupervised learning, often referred to as self-supervised 

learning because of its use of nonparametric feature reduction to reduce dimensionality as well as 

provide a reconstruction of the mean square of the error for each observation within a dataset 

(e.g., a pseudo-dependent variable score). The intended use of the autoencoding neural network 

(ANN) is primarily to reduce the dimensional features within a dataset to determine statistically 

insignificant noise from useful signal that exists within the data. It is therefore a potentially 

efficient mechanism for determining the key response indicators taking place in complex data. 

Dimensionality reduction via ANNs was one of the first deep-learning applications (Goodfellow 

et al., 2016). It also provides potentially significant advantages over other legacy unsupervised 

dimensionality reduction methods such as principal component analysis (PCA), which is based 

on more traditional, parametric orthogonal transformations (Jolliffe, 2002). 

Centroids: The centroids of a dataset refer to the vector mean, typically used in reference 

to the mean of multiple continuous independent variables in a dataset. Commonly used in 

clustering methodologies such as k-means, as well as in multiple analysis of variance 

(MANOVA) and analysis of variance (ANOVA). Judson (2005) refers to the use of the Nearest-

Neighbor Centroid Method, using a specific variable chosen for pair matching such as with 

simple or squared Euclidean distances. Conversely, Mahalanobis distances when utilized are re-

scaled Euclidean distances based on the use of standard deviations and accounting for inter-

correlation between paired variables. Conversely, Mohanty et al. (2013) discussed the use of 
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Discrete Fourier Transforms (DFT) when faced with variable feature vectors between objects for 

classification problems. DFT is able to account for data objects of disparate sizes, utilizing 

lower-order coefficients to provide the overall shape representation per object, while the higher-

order coefficients provide the details for each shape. In this way, a mathematical approximation 

of the shape features from which to compute centroids. 

Categorical Variable: Categorical data is a form of qualitative information in which a 

given variable is capable of taking on finite values associated with a group of nominal or ordinal-

type statistical information. Categorical factor levels refer to each distinct qualitative value 

within a categorical variable’s range of nominal-type observations. 

Deep Learning: Deep learning is a subset of machine learning (nonparametric statistical 

learning algorithms) that utilizes multi-layer perceptron neural networks, in one or more various 

designs. Deep learning models can perform unsupervised, supervised, or semi-supervised tasks 

and include various architectures such as multi-layer perceptrons, convolutional neural networks, 

autoencoding neural networks, recurrent neural networks, and more. While initially inspired by 

information processing structures in biological organisms, artificial neural networks commonly 

now deviate from their biologically-based models in order to be more efficient in terms of both 

understandability and trainability features for specific tasks. The “deep” element of artificial 

learning neural networks refers to the multiple layers found within all of these neural network 

architectures that serve as various symbolic representations of nonpolynomial activation 

functions for enhanced classification capability. 

Gradient Boosted Machine: A gradient-boosted machine (GBM) is a supervised learning 

regression or classification heuristic ensemble algorithm. GBMs are based on the concept of 

random forests but strive to improve upon the forest algorithm by increasingly refining 



 

 

19 

approximations of the features contained in the regression trees. This refinement utilizes the 

principle of gradient boosting within the random forest based on the work of Friedman (2001) 

which incorporated a functional gradient boost to the original bagging principle of decision trees. 

This provided the net effect of an iterative gradient descent as a cost function over function space 

that produces a negative gradient direction that potentially combines a large series of weak 

learners into a single strong learner in an iterative manner, similar in some manners to a least-

squares regression. Gradient boosting has been applied to other areas of machine learning 

besides random forests, including deep learning neural networks. 

Inference: In statistics, inference refers to a methodology of drawing conclusions about a 

larger population of entities utilizing only a subset of the drawn sample. This method is used to 

draw some conclusions based on hypothesis testing for this larger population, within a qualified 

test of statistical significance. 

IoT: Internet of Things, refers to technological objects that contain embedded sensors and 

onboard computer processing ability along with independent network connectivity that allows 

these objects to communicate over the internet (although not necessarily the public Internet). 

These objects collectively are often referred to as “smart devices”, such as lighting fixtures, 

appliances, digital video cameras, etc. as well as hospital healthcare systems. IoT devices allow 

for a revolution in fields such as healthcare, transportation, factory and home automation, 

agriculture, military operations, and many other fields due to the ability of these complex 

machines to be monitored and controlled remotely by advanced software systems in near real-

time. Various standards exist to govern IoT usability including addressability, application layers, 

and wireless and wired communication protocols. 
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IoT-23: The Aposemat IoT-23 dataset refers to a combined set of unlabeled and labeled 

datasets consisting of a range of both benign and malicious IoT network traffic flows. It contains 

both detailed, unlabeled (no dependent variable class) packet capture logs as well as class-

labeled human-curated traffic capture flow metadata from twenty distinct types of malware 

across IoT devices and three types of benign IoT device network flow captures. Stratosphere 

Laboratory at CTU University in the Czech Republic curated this dataset with human-labeled 

malware event classifications from 2018–2019 and consists of approximately 21 gigabytes of 

labeled network flow data. The laboratory executed each of the curated event observations using 

Raspberry Pi hardware, recording where specific protocols performed specific actions on these 

devices. The purpose of this dataset was to facilitate machine-learning research into IoT malware 

phenomena. 

Maximal Information Coefficient: The Maximal Information Coefficient or MIC is a 

measure of the linear or nonlinear relationship between two variables. Reshef et al. (2011) 

referred to the MIC as belonging to a larger class of statistical measures known as maximal 

information-based nonparametric exploration (MINE) statistics. The potential advantage of the 

use of MIC as opposed to a more traditional correlation coefficient such as the Pearson 

correlation coefficient (commonly referred to as Pearson’s r) is that the MIC can be sensitive to 

both linear and nonlinear relationships between two variables. 

Network Traffic Flow: Unlike a packet capture log, a network traffic analysis is at a more 

summary level of detail of packet switching communication activities that have taken place 

across a digital network. Packet capture logs contain a much greater level of detail, with all 

portions of a message recorded from origination to final destination as packet segments, 

combined at the final destination address and allowing a full reconstruction of the original 
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message from this log file. Conversely, network traffic flows consist of seven distinct attributes 

that are recorded at the summary statistical level, but do not provide the more expensive and far 

larger amount of detailed information as exists in the packet capture. Flow analysis is therefore 

much less expensive (computationally and in terms of storage), but at the cost of information 

richness. 

Nonparametric Statistics: Nonparametric statistics refer to a branch of statistics not 

primarily based on the concept of a normalized probability distribution. That is, one may 

consider nonparametric statistical analysis to be distribution-free, or within an unspecified 

distribution domain. Both descriptive statistics and inferential predictions can potentially be 

made with nonparametric statistics, utilizing various nonparametric tests including a Non-

Parametric ANOVA (NPANOVA) or Permuted Multivariate Analysis of Variance 

(PERMANOVA), as per Anderson (2001, 2006, 2017). Nonparametric (often referred to as 

nonlinear) model methodologies are also typically determined by their specific datasets, rather 

than being fixed in advance a priori. 

Nonlinear Statistics: See Nonparametric Statistics (above). 

Neural Network: In statistical learning systems, a neural network is a computational 

construct that is inspired in principle by biological neural processes that operate with forms of 

electrochemical stimuli information. Also known as an ANN (artificial neural network), these 

systems can be applied to a broad range of supervised and unsupervised learning processes, 

including forecasting (regression and classification) with highly complex data, novelty, or 

anomaly detection as well as signal filtering and data compression. Many different types of 

neural network configurations exist, including versions designed for advanced time series 

regression and object recognition in digital video, audio, or still images. 
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Machine Learning: Considered a branch of the study of artificial intelligence, machine 

learning broadly refers to statistical learning algorithms, and more commonly nonparametric 

statistical learning algorithms. Machine learning algorithms can take the form of supervised, 

unsupervised, or semi-supervised learning and commonly conduct operations such as regression 

forecasting, classification forecasting, or data clustering. A subset of machine learning is Deep 

Learning. 

One-hot encoding: With one-hot encoding, numerical representations of each multi-level 

categorical data factor is represented by a new binary feature (“column”) in the dataset to convert 

this categorical qualitative data to quantitative binary values that can be processed by the 

machine learning algorithm(s) desired. This of course has the potential to result in a vast 

explosion of dataset size and complexity when a large number of highly complex qualitative 

variables are in use with a machine-learning dataset. 

Parametric Statistics: Also commonly referred to as “traditional” statistics, parametric 

models assume that data drawn randomly from a population sample conform to a variety of 

assumptions of normality associated with aspects of linear regression, including conformity to 

the family of normal distributions as originally defined by Fisher (1946). Fisher’s work cited 

above forms a majority of the basis for modern, classical linear statistical analysis. Conversely, 

modern machine learning algorithms typically do not conform to parametric statistical 

assumptions (see: Nonparametric Statistics). 

SHAP Coefficient: Also known as a SHAP Value, SHAP stands for SHapley Additive 

exPlanations. Based on research from Lundberg and Lee (2017), SHAP Coefficients arguably 

represent one of the current state-of-the-art in “Explainable AI”. Based on research on coalition 

game theory established in the 1950s by Shapley, SHAP Coefficients are potentially able to 
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determine marginal contributions from cohorts of independent variables that contribute to 

nonparametric model predictive strength for a given predictive observation (known as local 

interpretability) as well as to the collective dataset in the model as a whole (known as global 

interpretability). Global interpretability for each IV is on a continuous range that is either 

positive or negative, in order to provide substantial model transparency for the features present. 

Supervised Learning: Supervised learning (SL) is a machine learning process that utilizes labeled 

training data (human-curated) where the dependent variable, consisting of either ratio, interval, 

nominal or ordinal data, is known. This training data can create a predictive model, either a type 

of classification or regression, to produce an inferred function based on methods utilized within a 

given nonparametric statistical learning algorithm. Examples of common supervised learning 

algorithms include random forests and gradient-boosted machines. 

Self-Supervised Learning: Self-supervised learning (SSL) is a form of unsupervised 

learning where the model self-selects the independent variables to be retained in generating a 

useful prediction. Various mechanisms exist for this to take place, but in all cases, self-

supervised learning takes place where unlabeled (no dependent variable) exists or is at least 

unutilized by the model. Self-supervised learning is often used for nonparametric multivariate 

anomaly detection as well as some aspects of computer vision, speech recognition, and in some 

forms of natural language processing such as in Google’s BERT algorithm (Xie et al., 2021). 

Generally, SSL allows for the optimization and use of complex, lower-quality, unlabeled 

datasets. 

Spectral Encoding: Also known as Eigenfactor Encoding, spectral encoding is a 

methodology for numerically encoding multi-level factor categorical data features into lower 

dimensional space compared to traditional one-hot encoding methods. Whereas with one-hot 
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encoding, numerical representations of multi-level categorical factor data are represented by a 

new binary feature (“column”) in the dataset to convert this categorical qualitative data to 

quantitative binary values that can be processed by the machine-learning algorithm desired. This 

of course has the potential to result in a vast explosion of dataset size and complexity when a 

large number of highly complex qualitative variables are in use with a machine-learning dataset. 

Spectral Encoding conversely approaches this dataset explosion issue by mapping Laplacian 

distance measurements between categorical features using Eigen factors in a decomposition 

matrix for each categorical independent variable. This results in a necessary quantitative 

conversion of categorical features in a much more efficient relationship matrix for each 

categorical feature without loss of statistical information or the far more cumbersome and 

computationally expensive one-hot feature encoding process. 

Unsupervised Learning: As opposed to a supervised learning methodology, unsupervised 

learning utilizes unlabeled datasets, which are structured datasets that contain no labeled 

dependent variable. As such, unsupervised algorithms rely on self-organization based on a 

combination of statistical features and various types of probability densities in order to determine 

relationships in the dataset. Examples of probabilistic algorithms include k-means clustering and 

DBSCAN clustering (Density-based spatial clustering of applications with noise), and 

unsupervised anomaly detection methods such as isolation forests, or principal component 

analysis, which is an unsupervised dimensionality reduction technique based on orthogonal 

linear transformations. 
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CHAPTER 2 

 

REVIEW OF LITERATURE 

Bodies of Knowledge in Digital Communication Systems 

IoT devices are largely computationally resource constrained and have access to 

relatively little onboard memory, while also contending with small power supplies due to 

constrained energy storage, diminutive power distribution, and restrictive power scavenging 

capabilities (Raj & Steingart, 2018). Likewise, some of the challenges related to malware 

detection and classification for Internet of Things (IoT) devices using a network intrusion 

detection system (NIDS) is that IoT network traffic largely consists of homogenous protocols, 

hardware, and software components (Anthi et al., 2019). 

Bobrovnikova et al. (2019) stated that the vast (and rapidly growing) number of IoT 

devices, inherently poor network security processes, and their typical reliance on unrestrained 

permanent Internet connections have made IoT devices a convenient tool for threat actors to 

infect these devices and then organize them for powerful cyberattacks. Murphy (2017) expanded 

on this by discussing how many IoT device manufacturers are focused on enhancing profitability 

by making these devices as inexpensive and quickly manufactured as possible and sacrificing 

many security elements in their design as a result. 

Based on Garcia et al. (2020), the IoT-23 dataset is a dataset based on curated, human-

labeled network flow data that consists of internet protocol network traffic flow observations 
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from Internet of Things (IoT) devices. These IoT devices are all based on the Raspberry Pi 

hardware architecture standards as applied to a range of specific consumer electronic devices that 

were connected to network host devices. 

The dataset itself contains a mixture of 20 curated malware captures that took place on 

these IoT devices as well as labeled benign network flow traffic, plus three specific sets of 3 

captures for benign IoT devices traffic. First released in the first quarter of 2020, this curated 

dataset included network flow traffic that dates from the timeframe of the years 2018 and 2019. 

The Stratosphere Laboratory and the AIC group within CTU University of the Czech Republic 

then produced the curated IoT network flow data for future utilization in the quasi-experiments. 

The stated objective for this human-labeled dataset is to provide a substantial collection 

of actual, organized, and classified IoT executable malware infestations with simultaneous IoT 

benign-classified network flow traffic for scientific research to potential detection and mitigation 

strategies, primarily utilizing artificial intelligence and machine learning algorithm-driven 

adaptable software solutions. Avast Software in Prague, Czech Republic provided the funding to 

capture and organize this dataset collection. 

According to Avast Software via their partnership with the Stratosphere Laboratory, “The 

IoT-23 dataset consists of twenty-three captures (called scenarios) of different IoT network 

traffic. These scenarios comprised twenty network captures (pcap files) from infected IoT 

devices (which had the name of the malware sample executed on each scenario). Three 

additional network captures provided real IoT devices network traffic that have the name of the 

devices where the traffic were produced.” The Laboratory executed a specific malware sample 

for each malicious scenario on a Raspberry Pi that used several protocols and performed 

different actions. 
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The Laboratory further stated that “Table 1 shows the characteristics of the IoT botnet 

scenarios and Table 2 shows the protocols that were found in each network traffic capture. The 

network traffic captured for the benign scenarios obtained by capturing the network traffic of 

three different IoT devices: a Philips HUE smart LED lamp, an Amazon Echo home intelligent 

personal assistant and a Somfy smart door lock. It is important to mention that these three IoT 

devices are real hardware and not simulated. This allows us to capture and analyze real network 

behavior. Both malicious and benign scenarios run in a controlled network environment with 

unrestrained internet connection like any other real IoT device. Table 3 shows the network data 

of the IoT benign scenarios and Table 4 shows the protocols found in each network capture.” 

The primary type of IoT hardware platform utilized in this series of deep learning AI 

quasi-experiments for data capture and malware validation was the Raspberry Pi IoT device type, 

utilizing extensive third-party datasets of Internet network traffic data (Parmisano et al., 2020) 

for both benign and permutations of malware infestations on these devices. The quasi-

experiments utilized network traffic flow captures exclusively, to utilize inexpensively obtained, 

fulfilling a need to manage data storage volumes and cost requirements for available resources. 

In this research, the author addresses how network flow data may potentially contain sufficient 

attributes and variabilities for identifying potential malware events, while not relying on more 

costly packet capture storage and analysis systems. 

The Raspberry Pi Foundation GitHub (2020) documentation defined the Raspberry Pi as 

a series of small, inexpensive single-board computers, originally designed in the United 

Kingdom. Specifically, the Avast AIC laboratory utilized the raspberry pi to execute the 

malicious malware samples to validate the presence of threat actor malware. 
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Originally designed as inexpensive basic computer science aids in schools and 

developing countries soon outsold its original target market. By 2016 Raspberry Pi had sold over 

10 million units (Raspberry Pi Foundation, 2016). As of 2020, the Raspberry Pi platform has 

become a ubiquitous IoT device type, being a significant component in the overall IoT global 

device landscape which Hung (2017) estimated would be approaching 20 billion networked 

devices by 2020. With a wide range of diverse networked IoT applications including 

greenhouses and hydroponics (Lukito & Lukito, 2019), energy monitoring (Mudaliar & 

Sivakumar, 2020), health monitoring (Ganesh, 2019), smart traffic monitoring (Mehta & Patel, 

2019) and smart infant monitoring systems (Ibrahim et al., 2019), the Raspberry Pi represents a 

rapidly growing component within a vast and flourishing population of autonomous Internet-

connected devices. 

The consequences of malware anomalies attacking or infecting IoT devices including 

Raspberry Pi-based IoT are significant. Gupta et al. (2015) discussed a proposal for healthcare-

based IoT devices for use in monitoring patient Electrocardiogram (ECG) as well as for other 

vital statistics. Authorized personnel could review data flows identified as potential risk elements 

in real-time over the Internet for storage and further analysis. Likewise, Jaiswal et al. (2017) 

discussed the use of Raspberry Pi-based IoT sensor devices to monitor various patient symptoms 

in digital format and then transmit this data to an Internet gateway through Bluetooth wireless 

connections to a cloud storage service. 

Such standardized, low cost and ubiquitous devices have substantial potential 

revolutionary benefits for healthcare and other critical fields by allowing real-time data gathering 

and transmission of a wide variety of critical data streams. Human subject matter specialists as 

well as additional AI and autonomous diagnosis platforms (Keane and Topol, 2018) would then 
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provide more detailed reviews. Thus, Raspberry Pi IoT devices suspected of network-based 

malware attacks can potentially degrade or even suspend their data gathering and data 

transmission processes, or even potentially alter the content and destination of their datasets, 

with potentially catastrophic results to a large number of human patients. 

It is thus clear that a need exists to explore robust solutions that are specific to a subset of 

the IoT market based on heterogeneous hardware and operating system types. This can provide 

substantial utility in that it may provide a mechanism to both accurately and rapidly detect as 

well as to classify with high probability distinct malware intrusion events in order to help 

mitigate and prevent potentially catastrophic system damage. Further, the ability to detect 

unknown (non-human labeled) malware classes that may be novel to the heterogeneous hardware 

was explored and demonstrated, as part of a robust defense in-depth strategy. 

Some of the potential advantages of using machine learning (and its more capable cousin, 

deep learning) over “classical” statistical classification techniques such as logistic regression are 

discussed by Bzdok et al. (2018). The authors state that one key difference is that classical 

statistics draw inferences from populations, whereas machine-learning algorithms attempt to find 

generalizable predictive patterns. The authors further state that statistical models are often based 

on this inference, which is achieved through the creation and fitting of a project-specific 

probability model. The (statistical) model allows the practitioner to compute a quantitative 

measure of confidence where a discovered relationship describes a ‘true’ effect that is unlikely to 

result from noise. Thus, when enough data is available, the practitioner can explicitly verify 

assumptions (e.g., equal variance) and refine the specified model as needed. By contrast, ML 

(machine learning) concentrates on prediction (or classification of multinomial classes) by using 

general-purpose learning algorithms to find patterns in often rich and unwieldy data. 
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ML methods are particularly helpful when one is dealing with ‘wide data,’ where the 

number of input variables exceeds the number of subjects. It is therefore proposed in this 

research study to utilize the most recent advances in machine learning, i.e. neural network deep 

learning algorithms, for use in classifying complex malware behaviors in exceedingly complex 

and wide network traffic capture datasets to solve a problem that traditional signature-based and 

similar statistical anomaly detection and rules-based models may not adequately address. 

This research used Stratosphere Laboratory datasets in developing the proposed 

analytical models from the quasi-experiments. Stratosphere Laboratory developed their 

Aposemat IoT-23 dataset of Raspberry Pi IoT malware attacks in order to facilitate this type of 

research (Parmisano et al., 2020). Their Raspberry Pi labelled datasets include malware attacks 

from a wide range of 20 different attack types on unrestricted Internet-connected Raspberry Pi 

IoT devices, as well as 3 sets of network traffic captures from benign IoT device traffic. The lab 

produced a significant and robust dataset of network traffic captures beginning in 2018 and 

continuing through 2019 in the Czech Republic. Their datasets are divided into 23 different 

scenarios consisting of different types of IoT network traffic, including 20 from malware-

infected network devices and three captures of Internet connected devices from outside of their 

lab that have the name of the devices where the traffic was captured from. 

Some of the most recent prior art for using machine learning and artificial intelligence 

techniques for IoT anomaly detection include Bobrovnikova et al. (2019), which used two data 

sets in their experiments, the BoTIoT dataset (Koroniotis et al., 2018) and the UNSW-NB15 

dataset (2020). For their specific use case and dataset scenarios, these authors proposed the use 

of semi-supervised fuzzy c-means clustering, SVM, and Artificial Immune System classification 

algorithms, by focusing on elements of DNS traffic of the IoT network and relying on “white” vs 
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“black” domain name listings. However, techniques including DNS spoofing techniques as 

discussed by Sivaraman et al. (2018) may compromise aspects of some of these narrowly 

focused IDS approaches and limit their inherent flexibilities. 

The explosive growth of IoT machines coupled with the ubiquitous presence of the 

Raspberry Pi platform that is easily adaptable for commercialization as an IoT product has led to 

a significant homogenization for industrially manufactured IoT devices. The increasing use of 

IoT machinery within unrestrained network connections that provide direct Internet connectivity, 

coupled with homogeneity and increasing mission-critical device applications such as life 

support monitoring requires the presence of scalable, adaptable malware detection and 

classification in order to provide threat mitigation. 

Multiple unique characteristics exist for IoT devices and in particular the Raspberry Pi 

and the real-time, potentially vulnerable and bidirectional streaming characteristics of IoT data 

streams distinct from traditional Internet traffic such as web browsing (HTTP, HTTPS protocols) 

and email (SMTP protocol, etc.). Coupled with the fact that over 98% of IoT network traffic is 

presently unencrypted (PaloAlto Networks, 2020), leads to the issue that traditional signature-

based and algorithmic-based malware detection and classification algorithms for network 

intrusion/anomaly detection are largely inapplicable (McCarthy, 2020). 

McLean and McLean (2001) defined HRD comprehensively. Their defining quote was 

when they stated that “Human resource development is any process or activity that, either 

initially or over the long term, has the potential to develop adults’ work-based knowledge, 

expertise, productivity and satisfaction, whether for personal or group/team gain, or for the 

benefit of an organization, community, nation or, ultimately, the whole of humanity.” 
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Gilley et al. (2002) discussed the definition of HRD in 2002. In their seminal study, they 

stated that HRD is about “the effective development of people within an organization, and 

specifically differentiates human resources from physical resources such as machines, facilities, 

materials, equipment and component parts of products, or what would often be referred to as 

fixed corporate assets as well as financial resources within an organization.” 

Thus, human resource development seeks to improve upon the overall knowledge, 

competencies, skills, and attitudes of the human members within an organization. The 

application of the proposed research models ultimately results in several potential benefits. 

Firstly, it provides a proposed enhancement for overall network “defense in depth” for IoT data 

against malware classes. Secondly, it demonstrates an ability to detect novel malware classes in 

network flows without prior training. It also provides a better understanding of overall IoT 

malware risk within the enterprise that is applicable through principles associated with human 

resource development (HRD). Finally, the application of this research provides a novel 

foundation of scientific falsifiability that proves the effectiveness of these methods, in addition to 

utilizing various traditional measurements of AI/ML model effectiveness. 

Aspects of this research directly address the ability of the research to be “explainable” to 

address the HRD component of the organization that governs the use of the Raspberry Pi 

networked devices to facilitate the understanding of the impact and risk components produced by 

those devices for the larger enterprise. 

According to Woolman and Lunsford (2022), the increasing commonality of threat 

actors, coupled with ever-increasing network complexities and the growing sophistication of 

threat tools greatly increases the vulnerabilities of critical network infrastructure and host 

systems more than ever before. 
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The authors state that the ability of potentially targeted enterprise organizations and 

government entities to defend their network perimeters utilizing traditional threat detection 

systems provides only a limited set of tools, traditionally based on simple, and typically 

parametric, inflexible statistical tests of network activities and known threat signatures. These 

threat signatures generally rely on pre-defined malware detection rules based on known, 

previously encountered network intrusion classes. As a result, vast resources of confidential 

information, sources of competitive advantage, national security information as well as critical 

resource applications can potentially be highly susceptible to an increasingly novel suite of 

evolving network intrusion types that are likewise increasing in frequency. 

This potentially puts a vast range of commercial and public sector resources and 

information in mounting jeopardy, particularly in the domain of IoT network traffic is often more 

vulnerable than non-IoT device data. Non-IoT data typically originates from such devices as 

mobile phones, tablets, PCs, and laptops. These devices often have more capable onboard 

processing power than IoT devices, allowing for some fundamental malware detection including 

independent software firewalls and robust encryption capabilities. 

The detection of cyber threats from known legacy malware risks utilizing a multi-layered 

defense approach based on pioneering research from Kephart, Sorkin, Chess and White (1997). 

Their work in turn utilized the transformation of signature detection processes as proposed by 

Cohen (1987). While signature-based network malware and intrusion detection is still among the 

most heavily used techniques, heuristic approaches that are able to discern multiple, related 

threats from a single definition source have been increasingly common as defined by Kaspersky 

Lab ZAO (2013). 
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However, novel threats as well as more advanced cyber malware and intrusion events that 

are specifically engineered to avoid detection by the more commonly used available tools and 

techniques are becoming increasingly common. By being able to bypass the network security 

perimeter, intrusions and malware can easily propagate throughout the network and operate 

undetected for substantial lengths of time. In many cases, these network intrusions can access 

restricted information while remaining undetected, masquerading their traffic signatures as 

legitimate, benign activities. 

As the capability to resist successful classification is increasing with the latest generation 

of network intrusion technologies, continuous improvement in the multi-layered network defense 

approach first proposed in 1987 becomes increasingly necessary. One example of this emerging 

malware threat class is a sophisticated piece of modular malware known as Flame, first 

discovered in 2012 on networked devices running the Microsoft Windows operating system 

(ICIRT, 2012). Flame, also known as Skywiper, was likely created by a state actor as a cyber-

weapon deployed for espionage purposes for a target in the Middle East (Kaspersky Lab ZAO, 

2013). 

As discussed in Woolman and Lunsford (2022), the discovery of Flame occurred circa 

2012. Now generally regarded as an unusually robust backdoor attack toolkit, Flame also 

contains substantial worm-like features and Trojan malware capabilities. Among its unique 

capabilities is the ability of Flame to replicate within a targeted network as well as on removable 

media upon receipt of commands to do so by a remote threat actor’s command and control 

server. While the exact method of entry into a network has not yet been determined, Flame’s 

ability to take on different roles through a wide range of add-on functional libraries allow it to be 

extremely adaptable and difficult to analyze by traditional mitigation and detection methods. One 
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particularly unique attribute of Flame was the utilization of the novel technique of concealment 

through an unusually large and variable codebase compared to most other network malware 

threats. 

The authors discussed how Flame is capable of harvesting sensitive data in a variety of 

ways, including robust SQL database query insertions, compressed digital audio microphone 

recording, Bluetooth wireless connectivity attacks from inside the network, as well as file and 

network traffic ingestion and analysis. Flame can also take recurring screenshot images from 

infected devices. Flame is capable of reporting to an external command and control server from 

within the targeted network via a covert SSL data channel, as well as turning other host devices 

within the network into beacons that are discoverable via Bluetooth connections, according to 

Kaspersky Lab Zao (2013). 

Advances in these emerging categories of malware and network intrusion capabilities 

thus require adaptable learning technologies for detection that are not based on pre-defined 

statistical patterns, heuristics, or rule-based detection methods. One increasingly utilized form of 

malware and network intrusion detection is anomaly-based detection methods, often utilizing 

data mining technologies including machine learning and deep learning. Deep learning anomaly 

detection utilizing network traffic analysis such as packet capture and network flow data is one 

such emerging advance in this field. 

An advantage of utilizing packet capture datasets for anomaly-based network intrusion 

detection systems (NIDS) is that full packet capture allows for a mirror image of the entirety of 

the network traffic for a given time period, allowing robust deep packet inspection (DPI). The 

DPI data allow for a full forensic analysis of all available features including protocols, payloads, 
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and source and origins for each packet, as well as a variety of measurements related to packet 

transmission speeds and delays. 

One disadvantage of packet capture dataset forensics for NIDS is that DPI imposes a 

significant burden on routers, switches, and network infrastructure in general during this 

mirroring cycle to capture and store the vast amount of network traffic. Further, the data storage, 

processing, and analysis of these are often quite deep (often multi-terabytes per day within 

enterprise networks), wide (typically on the order of dozens of independent variables per 

observation), and complex datasets often require the use of more cumbersome “Big Data” 

analytical cluster computer environments. These specialized analytical frameworks thus 

necessitate an increase in the scope and complexity of these projects. Robust encryption methods 

of packet payload data further increase the signature detection complexity of DPI analysis 

(Woolman & Lee, 2020). 

Network flow datasets represent a more “high level” metadata scope of network traffic 

within the enterprise, providing summarized level data between the source (IP and port) and 

destination (IP and port) per protocol. Rather than recording the actual packet payload of each 

component of network traffic, the network flow dataset typically records only the information 

about the number of packets per flow observation, as well as the Shannon entropy for each 

packet payload, and the duration of each flow. 

Because network flow provides only the “headlines” of the more complex network 

traffic, it is able to provide a succinct, high-level view of activities taking place across the 

network including timestamps. These headlines incorporate the IP (internet protocol) addresses 

and ports for both sender and receiver, the overall length of the conversation, the protocol used, 

the amount of data sent, and an estimation of the amount of information potentially held within 
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that data. This summarized view of network traffic substantially reduces the burden of storage, 

processing, and analysis of enterprise network traffic, at the cost of reduced granularity of the 

dataset. A full recorded network history using DPI would be required to provide a fully detailed 

forensic review of network traffic for a given time period. 

Due to the more concise nature of network flow data, it provides a more cost and 

computationally efficient approach for NIDS that is potentially closer to real-time for network 

intrusion detection. However, the decreased granularity of this dataset requires a sophisticated 

analysis technology that is adaptable to ever-changing network traffic patterns, minimizes false 

positives and false negatives (Type I and Type II statistical errors), and does not rely on pre-

defined signature rules, heuristics, or statistical pattern definitions. Thus, machine learning and 

deep learning technologies come heavily into focus with this research. 

Table 1 (below) indicates attributes from the curated network flow data, providing a 

summary analysis of all 20 known malware classes known to be present within the complete 

universe of Iot-23 dataset elements. As provided by Stratosphere Laboratory, a summary analysis 

provided aggregate count information for the number of packets and network flow observations 

(“ZeekFlows”; Parmisano, 2020). Likewise, the lab provides an aggregate amount of packet 

capture data related to each malware class in the total Iot-23 dataset, the total duration in hours of 

observation time for each distinct observation period, and the attack class labels encountered in 

each observation window (not included benign labeled activities). 

Stratosphere Laboratories (“Stratosphere”) obtained these attributes by running the Zeek 

network analysis framework on the original pcap file, with the size of the original pcap file and 

the possible name of the malware sample used to infect the device being determined through 

their meta-analysis. 
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Because the malware captures executed over long periods of time and due to the large 

size of the traffic generated by each infection, Stratosphere rotated the pcaps files generated by 

once every 24 hours. However, in some cases, Stratosphere reported that the pcap (packet 

capture) log file was growing too fast and therefore it decided to stop the capture before the 

twenty-four hours window elapsed. For that reason, some of the pcap capture logs differ in the 

hours used for a given time window. 

Table 1 

Curated Malware Attack Classifications Labeled in the 20 Distinct Dataset Capture Sessions 

# Name of Dataset Duration 

(hrs) 

#Packets #ZeekFlows Pcap 

Size 

Name 

1 CTU-IoT-Malware-Capture-34-1 24 233,000 23,146 121 MB Mirai 

2 CTU-IoT-Malware-Capture-43-1 1 82,000,000 67,321,810 6 GB Mirai 

3 CTU-IoT-Malware-Capture-44-1 2 1,309,000 238 1.7 GB Mirai 

4 CTU-IoT-Malware-Capture-49-1 8 18,000,000 5,410,562 1.3 GB Mirai 

5 CTU-IoT-Malware-Capture-52-1 24 64,000,000 19,781,379 4.6 GB Mirai 

6 CTU-IoT-Malware-Capture-20-1 24 50,000 3,210 3.9 MB Torii 

7 CTU-IoT-Malware-Capture-21-1 24 50,000 3,287 3.9 MB Torii 

8 CTU-IoT-Malware-Capture-42-1 8 24,000 4,427 2.8 MB Trojan 

9 CTU-IoT-Malware-Capture-60-1 24 271,000,000 3,581,029 21 GB Gagfyt 

10 CTU-IoT-Malware-Capture-17-1 24 109,000,000 54,659,864 7.8 GB Kenjiro 

11 CTU-IoT-Malware-Capture-36-1 24 13,000,000 13,645,107 992 MB Okiru 

12 CTU-IoT-Malware-Capture-33-1 24 54,000,000 54,454,592 3.9 GB Kenjiro 

13 CTU-IoT-Malware-Capture-8-1 24 23,000 10,404 2.1 MB Hakai 

14 CTU-IoT-Malware-Capture-35-1 24 46,000,000 10,447,796 3.6 GB Mirai 

15 CTU-IoT-Malware-Capture-48-1 24 13,000,000 3,394,347 1.2 GB Marai 

16 CTU-IoT-Malware-Capture-39-1 7 73,000,000 73,568,982 5.3 GB IRCBot 

17 CTU-IoT-Malware-Capture-7-1 24 11,000,000 11,454,723 897 MB Linux, Marai 

18 CTU-IoT-Malware-Capture-9-1 24 6,437,000 6,378,294 472 MB Linux, Hajime 

19 CTU-IoT-Malware-Capture-3-1 36 496,000 156,104 56 MB Muhstik 

20 CTU-IoT-Malware-Capture-1-1 112 1,686,000 1,008,479 140 MB Hide and Seek 

Note. A randomized selection of these attack class observations used as a portion of the training, 

testing, and cross-validation data. 
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CHAPTER 3 

 

METHODOLOGY 

The author conducted the research utilizing the R (R core team, 2019) statistical 

programming language and the RStudio development environment (RStudio Team, 2020), along 

with a wide range of open-source, deep learning package library algorithms. Data science 

experiments for the classification of labeled datasets for distinct known malware entities and 

known benign IP network traffic from Raspberry Pi IoT devices were conducted using a variety 

of deep learning ensemble algorithm combinations, cross-validated to ascertain the level of 

accuracy. The research explored the effectiveness of the use of balanced classifier data that is 

statistically derived using combinations of oversampling, undersampling, and synthetic data 

techniques as to their effectiveness on the research questions. 

Nonparametric Diversity Analysis 

Reproducibility for this research relies primarily on the use of the Vegan package for R 

as discussed in Oksanen et al. (2013) that primarily features peer-reviewed tools for 

nonparametric diversity analysis as well as ordination methods and methods for dissimilarity 

analysis. Specifically for this research, the author employed the adonis2 function within the 

Vegan library package to conduct permuted multivariate analysis of variance using distance 

matrices. This incorporates a permutation test, and in this case, I used 200 permutations (as a 
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generally accepted allowable convention as well as a limitation due to the computational expense 

related to permuted tests of such a large dataset). 

Subsampling for Computational Economy with PERMANOVA 

The research used a Chi-square Goodness of Fit Test to determine how a randomly 

generated n of IoT-23 flow observations from the full available population can provide sufficient 

statistical power for small effect size measurement using the dependent variable categorical 

factors present. This random sample population allowed for the economization of data to process 

by the adonis2 function within the Vegan package due to available computing resources, while 

still enabling sufficient statistical power for detecting small effect sizes with the number of 

dependent variable factor classes encountered. The process to produce a visualization of the 

dependent variable group dissimilarities began by first calculating the Bray-Curtis distances 

between groups using the “vegdist” (vegan distances) function in the Vegan package. A Bray-

Curtis distances method was used to determine the multivariate dispersion between groups using 

the “betadisper” (beta dispersion) function supplied by Vegan, to calculate multivariate 

dispersions across principal component axes. 

The results from “betadisper” (beta dispersion) function provided the multivariate 

centroids for each group within the dependent variable in the random subsample dataset, 

producing the Homogeneity of Multivariate Dispersions table shown in the results. This table 

shows the positive and negative Eigenvalues across each principal component axis used to 

generate the Beta Dispersion plot between groups using the non-Euclidian Bray-Curtis (“Bray”) 

distances. 
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Inter-observer Reliability for Multi-level Categorical Factor Data 

According to Szepannek (2022), the R statistical programming environment provides a 

popular choice for statistical analysis methodologies, in particular meta-analysis, which the 

authors define as the synthesis of effect sizes from multiple primary studies. Weber (2004) stated 

that open-source software, which includes the R and RStudio statistical programming 

environments, represents a significant breakthrough not just in technology but in fundamentally 

re-framing what constitutes property. Weber further stated that open-source software recasts the 

notion of some of the basic problems of governance, all to further facilitate the development and 

use promotion of high-quality, peer-reviewed scientific software at a more rapid and innovative 

pace than has historically been possible. 

This research utilized a robust range of open-source software based on the R statistical 

programming environment with the objective of producing high-quality research in a short 

period of time and at a minimal cost than would have historically been possible otherwise. 

The Role of Nonparametric Statistical Learning Algorithms 

McAlexander and Mentch (2020) addressed the use of nonparametric, nonlinear machine 

learning, and artificial intelligence models for use in hypothesis testing. Their methodology 

incorporated research that has indicated that under specific conditions with regard to regularity, it 

is possible to utilize a means-based process across subsampled predictions from the same model 

to produce asymptotically normal (linear) predictions from classical statistics based on the 

general linear model (GLM). Thus, this exploitable process can generate both hypothesis tests as 

well as confidence intervals that are equivalent to those generated directly from within a 

traditional, parametric framework. The potentially added benefit of the methods proposed by 

these authors is that the potentially more subtle nonlinear relationships from the machine 
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learning and deep learning models can be uncovered in the hypothesis-testing framework, 

thereby providing a new perspective on the ongoing research topics. 

Nonparametric Tests of Statistical Significance for Falsifiability 

Anderson (2017) discussed the use of PERMANOVA as a nonparametric ANOVA 

equivalent, also known as “Permuted Multivariate Analysis of Variance”, that also incorporated 

the support for pair-wise a posteriori comparisons between levels for single factors for 

categorical variables. This methodology incorporated the use of individual levels of other 

independent categorical factor variables for the use case of significant interactions and the use of 

correct permutable units in each case. Anderson’s methods incorporated one-way designs of 

experiments, multi-factor designs, and Monte Carlo simulations to support permuted p-values to 

reproduce asymptotic, rigorous statistical inferences from nonparametric model interactions. 

This research made substantial use of this subsampling asymptotic transformation method 

to establish the use of hypothesis testing for a number of the research questions in this research, 

to establish falsifiable findings for malware events utilizing IoT-23 network flow data. 

Tuck and Boyd (2022) discussed the use of Eigen-stratified models for categorical feature 

encoding for K values within a model, to dramatically reduce the size of the machine learning or 

deep learning models when held in memory. Traditional feature encoding for multilevel factor 

encoding for categorical independent variables includes one-hot encoding as well as Laplacian-

regularized and stratified models, but either of these methodologies increases the model size to a 

minimum of K multiplied by the number of independent variables (IV) of the model, which can 

be substantial and potentially impractical for many computer hardware platforms. 

According to Stuber, Chizinski, Lusk and Fontaine (2019), the PERMANOVA 

methodology as encapsulated by the adonis function of the vegan package (Oksanen et al., 2013) 
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employs a calculation of the transformed centroid of the sequentially combined independent 

variables and then determines the squared deviation for each distinct group factor (“treatment 

group”) within the dependent variable to that centroid. The methodology then conducts tests of 

statistical significance utilizing a pseudo F-test from the sequential sum of squares, based on 

permutations of the available raw data sample set provided. 

Multi-Layer Feed Forward Artificial Neural Networks 

The research described in this paper largely utilized open-source software packages 

including H2O, including the Deep Learning Architecture that consists of “multi-layer, 

feedforward neural networks for predictive modeling.” The author discusses the implications of 

the activation and loss functions used as well as the regularization methods applied. 

The research used a deep learning neural network to create a multinomial predictive 

classification model that incorporates stochastic gradient descent and incorporates back-

propagation to enhance the non-parametric statistical learning capacity for the model. Back-

propagation allows for the creation of a gradient loss function for the neural network based on 

variable weights determined by the neural network algorithm. The back-propagation utilized a 

gradient descent variant known as stochastic gradient descent for training the proposed three-

layer neural network, calculating each layer of the network in sequence and iterating backward 

from the previous layer to improve efficiency by not re-calculating prior terms from the chain. 

Goodfellow et al. (2016) discussed the advantages of back-propagating neural networks, 

stating that back-propagation is a mechanism referring to the process of computing the gradient 

within a loss function for machine learning. Whereas the actual learning (convergence) algorithm 

itself, which in this case is stochastic gradient descent, is what is specifically used to perform 

learning using the gradient produced by the network. According to the authors, back-propagation 
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is often misunderstood. Often considered as a specific feature found only in multi-layer neural 

network learning models, yet in principle, back-propagation can compute across a wide variety 

of function types. 

The initial predictive classification model employed to address Research Question 3 

(RQ3) was the H2O Deep Learning algorithm, as discussed in Candel et al. (2016), and 

employed within the R statistical computing environment. The author used a grid-search 

parameter optimization process to determine the optimal parametric weights, layers, loss 

functions, and other parameters employed by this neural network predictive model. 

As a convenience for time and available computational resources, the author used a 

statistical multinomial oversampling process to balance the available representations for all of 

the available malware classes, including the labeled benign classes in the IoT-23 dataset, limited 

the available dataset used by the deep learning predictive model to n rows of statistically 

balanced data across all classes. The researcher based the n of randomly selected observations 

from the total population on the result of a Chi-square Goodness of Fit Test, for measuring small 

effect sizes with 23 distinct classes in the data and determining recommended minimum sample 

sizes for a qualitative (multi-level factor) dependent variable. 

This allowed for the production of a minimal sample size estimate using the Chi-square 

model parameters of a significance level (α) for our defined Type I statistical error, for 

measuring a “small” effect size (w), with a to-be-defined statistical power of at least 0.8, for 23 

distinct factor levels within the dependent variable. The sample size estimate produced by this 

Goodness of Fit test resulted in an n, randomly sampled from the total population of available 

network flow observations, across all malware classes. That sub-sampled n dataset gained the 
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statistical power used for training our deep learning (multi-layer) feed-forward predictive model 

for RQ3. 

To enhance the conservative nature of this approach, the researcher selected this n from 

the total population using class balancing with the “dplyr” (deployer function) library package in 

the R statistical computing environment, as discussed in Broatch et al. (2019). 

The author then used these n oversampled, randomly selected observations with the h2o 

library package deep learning, multi-layer perceptron neural network algorithm. This provided a 

framework with which applied hybrid over-sampling and under-sampling of the minority and 

majority classes (as defined by the response in the training data) to re-balance the response 

classes as required to minimize overfitting bias in the predictive model. 

This resulted in an internal h2o neural network data frame sized larger than the initial 

data frame subset from the IoT-23 population. This was due to the oversampled data frame 

within the neural network contained original and synthetic balanced data that retained the 

features and data patterns present within the original data, to prevent bias in the model training 

data that likely favored over-represented class observation in the training data. 

As discussed by Banerjee et al. (2018), failing to adequately balance training data is 

likely to result in the model failing to sufficiently “learn” about the patterns present in the 

predictor variables as they relate non-parametrically to the response variable classes. Rather, the 

model in such instances may learn to “guess” about class membership in an observation by 

learning what the majority class labels were in the data. By using statistical class balancing in 

our post-hoc training data, the author proposed to address the “lazy classifier” issue present in 

many gradient descent and tree-based learning algorithms. 



 

 

46 

This research used adaptive learning in the deep learning neural network to avoid 

inefficient, slow model convergence within the stochastic gradient descent process within the 

three hidden neural network layers. The management of this adaptive learning rate took place 

within the h2o library package for the R statistical computing environment. It used the 

ADADELTA algorithm as discussed in Zeiler (2012). The ADADELTA algorithm functions 

within the constraints of the h2o deep learning neural network to pool the benefits of the learning 

rate annealing with momentum training during the stochastic gradient descent. 

SHAP Coefficients for Deep Learning Explainability 

The author discussed the potential AI/ML explainability features from the proposed 

predictive model(s), using various criteria such as predictive model key response indicators 

(KRIs) as well as SHapley Additive exPlanations values. First proposed as a credit allocation 

technique between participants in cooperative game theory (Shapley, 1953), the methods 

originally proposed have since been adapted to apply to predictions from “black box” AI/ML 

predictive models. The methodology employed by FastSHAP employs a single-pass explainer 

model that utilizes stochastic gradient descent as the objective function. The enablement of this 

process is by a value weighted least-squares framework that produces a relatively fast and 

efficient computation of a gradient outcome optimization. 

The purpose of applying Shapley additive features is in applying these metrics to 

principles associated with human resource development (HRD) within the constraints of 

technology management. By applying aspects of the predictive classification model KRIs to the 

use case of malware detection and classification within unrestrained network connection IoT 

network traffic flows, the research hoped to produce knowledge about the predictability of 

malware classes in IoT data applied to HRD for the benefit of the technological enterprise. The 
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research explored such an application by using attributes of explainable AI feature analysis 

methodologies, including SHAP values. 

In-Memory Compression for Qualitative Ordinal Data 

Candel, Parmar, LaDell and Arora (2016) discussed the use of an open-source analytical 

software package (“H2O”) that utilizes in-memory dataset compression, allowing it to handle 

many billions of rows of data in memory, thus potentially making it a useful package of complex 

IoT machine learning analytics. Those authors stated that this package implements best-in-class 

(machine learning) algorithms at scale, including gradient boosting and deep learning models 

within the R statistical programming environment, thus “nurturing a grassroots movement of 

physicists, mathematicians, and computer scientists to herald the new wave of discovery with 

data science by collaborating closely with academic researchers and industrial data scientists.”  

By incorporating Eigenfactor encoding, also known as spectral encoding, the author 

minimized the storage and processing of multi-level factor categorical data from the IoT-23 

dataset network traffic flows in the unsupervised and supervised prediction models. The potential 

benefits derived include retaining only K columns per categorical independent variable feature 

that has a demonstrable linear or nonlinear relationship for a given IV. Therefore, this method 

allowed for the retention of the projections (transformations) of each of the categorical IVs onto 

a K-dimension eigen space only, through a transformation to a matrix of distinct continuous 

values for each feature relationship in the eigen space for each categorical IV. This can 

dramatically reduce the size and improve the computational performance of the model, which 

can be especially critical in near real-time cyber-defense use cases. 

The research produced Shapley value estimations for AI/Ml feature explainability using 

the FastSHAP library package as developed by Jethani et al. (2021). FastSHAP proposes to 
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address the computational time expense in explaining “black box” models that involve large, 

high-dimensional models. FastSHAP utilizes a single-forward pass approach that incorporates a 

learned explainer model. To inexpensively (from a computing resource perspective) process 

training without pre-labeled curated Shapley variable scores, FastSHAP incorporates a stochastic 

gradient descent that makes use of an efficient least-squares process that utilizes variable 

weights. The resulting objective function provides accurate explanatory cohort value explanatory 

sets in tabular datasets with an order-of-magnitude processing time improvement over many 

previous Shapley implementation methods. 

Analyzing the distribution of several independent variables of potential interest as key 

response indicators within this single-class dataset produced distributions as follows, using the 

origination (sender’s) internet protocol (IP) port address, as shown in Figure 1 (below): 
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Figure 1 

Network Flow Origination Port Address - Honeypot Captured Network Flows for Curated 

Benign Class 

 

Note. The distribution of network flow origination port addresses 

 

Figure 2 (below) shows the distribution range of internet protocol (IP) port addresses 

used for the destination in this set of network flows. 
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Figure 2 

Network Flow Destination Port Addresses - Honeypot Captured Network Flows for Curated 

Benign Class 

 

Note. The distribution of network flow destination port addresses 

 

The connection duration (in milliseconds) for each network flow was transformed with a 

logarithmic scale to provide a more interpretable distribution for analysis. This transformation 

result is shown in Figure 3, below. 
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Figure 3 

Network Flow Connection Durations (in Log-Transformed Milliseconds) - Honeypot Captured 

Network Flows for the Curated Benign Class 

 

 

Note. The distribution of network flow connection durations in log-transformed milliseconds 
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CHAPTER 4 

 

RESULTS 

Research Question 1 Results 

As previously stated, the author investigated the first research question, “What do the 

network flow variables reveal about the distribution of malware classifications in the IoT-23 

dataset and the ability to construct non-parametric predictions for the known malware classes?” 

Specifically, a scientific evaluation of the null hypothesis statement for this research question 

that using a PERMANOVA methodology was conducted for the null and alternative hypothesis 

statements: 

H10: The centroids of each of the distinct malware groups’ multivariate dependent 

network flow variables in the IoT-23 dataset are equal. 

H1a: There is at least one pair of malware groups with significantly unequal multivariate 

dependent variable centroids in the network flow dataset. 

The author executed an initial PERMANOVA model against the 62,000 records of the 

IoT-23 network flow observations, using Euclidean distance measurements with variable-

dependent relationship ordering, using terms added sequentially (first to last) in the order 

encountered in the raw IoT-23 network flow dataset, using 200 permutations. This initial test 

resulted in a p-value for the PERMANOVA model that incorporated terms added sequentially of 
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0.02985, providing an F value of 0.00017, with which to determine the ratio of explained to 

unexplained variance. 

Utilizing an analysis of the F values for all of the residuals, the research showed 29,998 

degrees of freedom with a residual F model score of 0.99983, indicating a strong proportion of 

explained to unexplained variance across all of the independent variables contained in the model. 

The model is thus statistically significant with a p-value below the alpha test statistic of 0.05. 

Thus, the null hypothesis statement that “The centroids of each of the distinct malware groups’ 

multivariate dependent network flow variables in the IoT-23 dataset are equal” is rejected. The 

author concluded that this dataset sample likely contains patterns that a nonparametric statistical 

learning algorithm can utilize with which to conduct AI/ML predictive modeling successfully 

and can be developed with a higher confidence of success. 

Research Question 2 Results 

RQ2: What are the distinct independent variable cohort relationships between the 

network traffic flow variables and specific individual IoT malware classes when conducting 

nominal Internet communications activities upon unrestrained networks? 

The null hypothesis statement used for falsifiability testing for this research question was 

ultimately tested with the following PERMANOVA methodology:  

H20: An independent variable as it contributes to the asymptotic prediction for the 

dependent variable of malware class (nominal categorical factor variable) is not important, i.e. 

ψ0,0,j = 0 for some j. 

H2a: An independent variable as it contributes to the asymptotic prediction for the 

dependent variable of malware class (nominal categorical factor variable) is important, i.e. ψ0,0,j 

> 0 for some j. 
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The author produced an initial tree-based (random forest) supervised learning predictive 

model was for the dependent variable as a baseline effort to explore explainability features in the 

dataset. This research used a prediction classification model that had 500 trees with a Gini 

coefficient split rule across 17 independent variables. The resulting cross-validated mean 

classification error rate was 2.04%, with the resulting predictive output utilized by the next stage 

in the explainability process. Jethani et al. (2021) defined the FastSHAP algorithm. 

The author applied the output from this forest prediction model to the FastSHAP 

algorithm that incorporated 10 Monte Carlo simulation repetitions. FastSHAP used a gradient 

descent that converged with contributory cohort explanatory scores for each prediction 

observation produced by the forest model, a segment of which is in Table 2 below:  

Table 2 

Shapley Additive Values Provided for the Forest Predictive Model Classifications from 

FastSHAP (First 10 Observations) 

 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 

1 0.107 0.366 -0.712 -1.73 -0.435 -0.0790 0.0391 0.0138 -0.0194 0.0260 

2 -3.97 -0.0468 0.476 0.712 1.63 0.005 -0.073 0.014 0.014 -0.024 

3 1.68 2.10 -0.631 -2.38 -1.44 -0.038 0.067 -0.023 0.027 0.03 

4 0.470 -2.98 -0.154 4.16 2.06 0.005 0.002 0.038 0.054 0.04 

5 -1.99 -0.260 -0.498 2.01 0.806 -0.001 -0.027 -0.027 0.034 0.002 

6 -0.309 1.45 -1.29 -2.19 1.46 0.617 0.01 -0.004 -0.003 -0.054 

7 0.722 1.54 1.15 -4.57 -0.556 -0.004 0.173 0.03 0.168 0.066 

8 -0.842 -1.52 -0.389 3.31 0.0269 0.011 0.035 0.055 -0.007 0.05 

9 0.993 2.27 -0.751 3.15 -1.20 -0.056 -0.07 0.026 0.011 -0.04 

10 0.345 -1.70 -0.721 -3.99 1.03 0.049 -0.005 -0.006 -0.16 -0.033 

Note. A sample of the Shapley additive Values (SHAP explanatory values) from FastSHAP 

 

  The research then used a falsifiability assessment test with a PERMANOVA 

methodology and an adonis2 model for a test of permuted statistical significance. This method 
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converged the gradient output from the FastSHAP model’s Shapley contributory values for each 

of the 17 independent variables and the predicted classification from the baseline forest model as 

a new proxy-dependent variable. Using 200 permutations as a generally accepted convenience 

measure resulted in an alpha test statistic of 0.05 for my Type I statistical error, with terms added 

sequentially in the PERMANOVA using adonis2. The test resulted in a p-value of 0.001, 

providing an F value of 0.00035, for determining the ratio of explained to unexplained variance 

in this model. 

An analysis of the pseudo-F values for all of the residuals indicated 30,782 degrees of 

freedom with a residual F model score of 0.99268, demonstrating a strong proportion of 

explained to unexplained variance across all of the Shapley score independent variables 

contained in the model. The model is thus statistically significant with a p-value below the alpha 

test statistic of 0.05. 

The author rejected the null hypothesis statement that “An independent variable as it 

contributes to the asymptotic prediction for the dependent variable of malware class (nominal 

categorical factor variable) is not important, i.e. ψ0,0,j = 0 for some j”. The researcher therefore 

could not reject the alternative hypothesis statement that “An independent variable as it 

contributes to the asymptotic prediction for the dependent variable of malware class (nominal 

categorical factor variable) is important, i.e. ψ0,0,j > 0 for some j.” 

This allowed for the falsifiable conclusion that this dataset contains non-random 

information with respect to the independent variables containing the Shapley additive values that 

provide a detailed explanative description of each specific malware predictive classification in 

the dataset. The Shapley scores for each independent variable that is retained in the explanatory 

model indicate the deviation that is taking place within this independent variable for each 
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prediction from the average of the dependent variable classification. For each observation, the 

total sum of the available Shapley values for each of the available features relates to the total 

deviation from the mean classification prediction (dependent variable). 

Research Question 3 Results 

The third research question addressed the question, “What effect does a supervised 

nonparametric statistical learning model have for determining the presence of malware on 

human-curated datasets for Raspberry Pi devices using network flow data across an unrestrained 

network?” 

The investigation next used a deep learning multinomial (multiple) classification 

predictive algorithm to create an asymptotic deep learning multi-layer perceptron with 

backpropagation features. This employed a deep learning model as a predictive classification 

model that incorporated subsampled gradient boosted machine predicted model non-parametric 

output. The author then had the output of this predictive model analyzed by a permuted multiple 

analysis of variance model to produce pseudo-F statistics with which to generate a p-value to test 

the relationship between the dependent variable and the independent variables in the model to 

address the hypothesis test for the third research question:  

H30: All coefficients in the multinomial logistic regression equation will take the value of 

zero. 

H3a: The model currently under consideration is accurate in that it differs significantly 

from the null coefficient values of zero; it gives significantly better than random chance 

predictive strength relative to the null hypothesis. 
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Using a Chi-square Goodness of Fit Test, it was determined that a randomly generated 

n=62,000 IoT-23 flow observations would provide sufficient statistical power for small effect 

size measurement using the dependent variable categorical factors present. 

This allowed for the production of a minimal sample size estimate using the Chi-square 

model parameters of a significance level (α) for the Type I statistical error at 0.01, for measuring 

a “small” effect size (w) of 0.03, a statistical power of 0.99, for 23 distinct factor levels within 

the dependent variable. The sample size estimate produced by this Goodness of Fit test resulted 

in an n=54,741 that gained the statistical power of 0.990001 for training our deep learning 

(multi-layer) feed-forward predictive model for RQ3. To enhance the conservative nature of this 

approach, an n=75,000 was selected randomly from the total population using class balancing 

with the dplyr package in the R statistical computing environment, as discussed in Broatch et al. 

(2019). 

The initial multi-layer perceptron deep learning neural network incorporated seventeen 

independent variables arranged in three neuron layers arranged in a 40,40,40 neuron distribution 

across three “deep learning” hidden layers. Each of these hidden layers represents the non-linear 

transformation space where the input data processes through a Tanh activation function. In this 

way, a non-parametric statistical learning framework took place before the computed results 

passed to the final output layer of the neural network. 

The exact parameter configurations including the neural network weights included 

allocating 50 gigabytes (GB) of random-access memory space for the deep learning neural 

network model using the h2o library package, with unlimited available multiple processor 

threads allocated through the use of the R statistical computing environment. Qualitative 

character data was first converted to multi-level factor data in the independent variables and the 
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dependent variable within R (nominal data types), and then those nominal values were re-coded 

to be ordinal numeric using the R as numeric function, which re-coded the variables to ordinal 

data types based alphabetical order for each factor level. 

This dummy variable re-coding was necessary to support the use of the PERMANOVA 

methodology using the adonis2 function from the Vegan library package in the next phase of 

investigation for this Research Question. Vegan package functions require numerical data to 

function for both the IVs and the DVs, therefore recoding multi-level factor data for use in those 

functions is a requirement. Therefore, the author recoded the nominal multi-level factor data 

before processing by the deep learning neural network within the h2o library package model to 

keep the data in complete alignment throughout each phase of the analysis for this Research 

Question. 

The parameter configurations for the h2o neural network predictive classification model 

consisted of a multinomial distribution (classification) setting, three hidden layers of 40 neurons 

each, 17 independent (predictor) variables, 10 epochs (how many times the dataset should be 

iterated), using a Tanh activation function with the balancing classes parameter set to TRUE 

inside the neural network model configuration. This methodology enabled an adaptive learning 

rate feature as TRUE, allowing the use of h2o’s ADADELTA algorithm as discussed in Zeiler 

(2012). The ADADELTA algorithm functions within the constraints of the h2o deep learning 

neural network to pool the benefits of both the learning rate annealing with momentum training, 

with the goal of avoiding inefficient, slow model convergence. 

In addition, a random seed value provided a starting point for the model convergence 

(seed value of 12345). Variable importance calculations were applied as an additional model 

output (key response indicators or KRIs for the predictor variables). A defined stopping tolerance 
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was set to 0.01. A train/test split of the 75,000 statistically balanced training data was defined as 

being a ratio of 0.70 train and 0.30 for testing based on random selections within the n=75,000 

observation dataset. 

The train/test validation split ratio within the subsampled (and statistically balanced) 

dataset that was provided to the model was specified so that it could assess the algorithmic 

ability to conduct nonparametric statistical learning (against the test partition), rather than 

assessing how well the model “memorized” the training data partition which was used to train 

and converge the model. This provides an external validation method to assess the model 

performance using data that was not part of the training split, while curated human-labeled 

outcomes data was available to validate against the predictions from the model after training. 

The researcher primarily measured the performance of this fully converged and trained 

deep learning model using this test partition split, with what the h2o library package refers to as 

the “validation set metrics.” The validation set metrics for the RQ3 Deep Learning Classification 

Prediction Model are shown in Table 3, below: 

Table 3 

H2o Algorithm Deep Learning Predictive Classification Performance Metrics for the Test 

Partition of the Training Data 

H2OMultinomialMetrics: Deep Learning 

Reported on validation data  

Metrics reported on temporary validation frame with 

99988 samples 

 

Validation Set Metrics:  

MSE 0.03755783 

RMSE 0.1937984 

Logloss 0.1752766 

Mean Per-Class Error 0.09105377 

Note. Predictive model performance validation metrics produced by the RQ3 model 
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The model supplied the following Top-10 Hit Ratio performance metrics, with the h2o 

package defining the hit ratios as the number of times that a correct prediction was made in ratio 

to the number of total predictions made for a given epoch (iteration through the dataset), as 

shown in Table 4, below: 

Table 4 

Top 10 (Training Epochs) Hit Ratio Performance Metrics 

k Hit Ratio 

1 0.965596 

2 0.992669 

3 0.999090 

4 0.999330 

5 0.999760 

6 0.999890 

7 0.999960 

8 0.999960 

9 0.999970 

10 0.999970 

Note. Steadily-improved model training performance indicated across successive epochs for the 

RQ3 predictive model 

 

The hit ratio performance metrics indicate the percentage that a correct prediction was 

made on the test portion of the training dataset that was withheld from training the model and 

used to externally validate model performance. As the epochs increase, the deep learning neural 

network steadily improves (reduced Type I error) as indicated by the hit ratio. 

The deep learning prediction classification model produced for Research Question 3 can 

thus be interpreted as being highly effective, and demonstrably improving its learning over time 

(epochs) based on the MSE or Mean Square of the Error of 3.75%, and a Mean Per-Class Error 
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rate of 9.1% across all 23 dependent variable factor classes present in the data. Likewise, the hit 

ratio shown in Table 4 above indicates a high degree of performance accuracy as well as a steady 

optimization improvement during the stochastic gradient descent process, as model performance 

for each iteration epoch (k) improves marginally as the algorithm repeatedly traverses through 

the available data, determining the optimal gradient loss function. 

The deep learning predictive model is thus effectively accurate at predicting the known 

malware classes, including the benign classes identified in the curated dataset regardless of class 

observation frequency within the population of the dataset. Further, the author could state that 

the validation portion of the dataset indicates that the model does an extremely robust job of 

learning from the nonparametric statistical patterns that are present in the training dataset, rather 

than simply memorizing the most likely majority classes present in the training data. 

This research then used the deep learning prediction model to produce a variable 

importance plot, using the “varimp” function for the h2o deep learning library package against 

the trained neural network prediction model. The variable importance plot produced by this 

algorithm utilizes an approach pioneered by Gedeon (1997), based on the methodology of feature 

weights connected from the input layer to the first two hidden layers within the deep learning 

neural network. The resulting chart plot (Figure 4, below) shows the relative weights for the 

selected predictor (independent) variables using a standardized scale, to provide a sense of the 

relative ranked importance as selected by the deep learning predictive model. 
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Figure 4 

Variable Importance: Deep Learning Model 

 

Note. The top 10 key response indicator variables showing relative importance from the RQ3 

classification model 

 

The variable importance plot produced by the h2o algorithm deep learning neural 

network predictive model indicated the relative importance on a standardized scale of the 

independent variables utilized by the successfully converged neural network, based on a scaled 

importance score as shown in the details contained in Table 5. The variable importance plot 

represents the overall set of features (“key response indicators” or KRIs) in ranked order that as 

utilized by the successfully converged deep learning neural network and represents the 

independent variables likely to have the most significant non-parametric statistical relationship to 

the dependent variable in the available dataset. A more detailed tabular breakdown of these 10 

Key Response Indicator (KRI) variables is in Table 5 (below) provides the percentage 
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importance of each variable to the overall model, as well as the scaled importance for each of 

these independent variables.  

Table 5 

Detailed Table of KRI Independent Variables for RQ3 

 
Variable Scaled_importance Percentage 

1 orig_pkts 1 0.104007661 

2 orig_ip_bytes 0.933485389 0.097089632 

3 id.orig_p 0.922122955 0.095907852 

4 Duration 0.901571691 0.093770363 

5 id.resp_p 0.806919217 0.08392578 

6 proto.Eigen 0.750077069 0.078013762 

7 resp_pkts 0.687973499 0.071554515 

8 resp_bytes 0.6850003 0.071245279 

9 conn_state.Eigen 0.683816731 0.071122179 

10 service.Eigen 0.623869777 0.064887236 

Note. A detailed tabular breakdown of relative scaled importance and percentage importance for 

the KRIs produced by the RQ3 model 

 

The most important contributory independent variables for the RQ3 prediction model are 

shown in ranked order, using percentage scores and scaled importance values. Using those “top 

10” KRI variables provided by the variable importance plot, a PERMANOVA model was then 

produced using the malware class (“detailed label”) dependent variable and the 10 KRI variables 

provided by the deep learning model. The intent of the use of this PERMANOVA model is to 

create a permuted test of statistical significance of the findings of the deep learning model. 

To further reinforce the effectiveness of the predictive classification deep learning model 

developed using the h2o library package and to support the assertion of falsifiability in addition 

to simply showing prediction accuracies, the author then developed a PERMANOVA model. 

This permutedly analyzed the available output from the deep learning prediction classification 
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model produced for Research Question 3. The results of this PERMANOVA model, conducted 

via the “adonis2” function in the Vegan library package for the R statistical computing 

environment using calculated non-Euclidean Bray-Curtis distances, are in Table 6. Table 6 below 

provides the coefficients and residuals produced by an Adonis2 permuted MANOVA model 

from the Vegan library package, utilizing Euclidean distance separations and 200 permutations. 

Table 6 

PERMANOVA Adonis2 Non-Euclidean Bray-Curtis Distances 

 Degrees of Freedom Sum of Squares R2 F Pr(>F) 

Model 10 94523 0.14305 667.55 0.004975 

Residual 39989 566233 0.85695   

Total 39999 660756 1.00000   

Note. PERMANOVA model showing permuted residuals and coefficients based on an analysis 

of RQ3 model output 

 

Against an alpha test statistic of 0.05 for the Type I statistical errors, the dependent 

variable is permutedly statistically significant with a p-value of 0.004975 against an alpha test 

statistic (Type I error) of 0.05. 

The PERMANOVA (permuted multiple analysis of variance) model allowed me to 

conduct a test of non-parametric statistical falsifiability of the relationship of the deep learning 

model predictive output generated using the statistically balanced classes in a randomly selected 

distribution based on n=75,000 in keeping with the sample size requirements from the previously 

produced Chi-square Goodness of Fit Test. 

Using 200 permutations as a generally accepted convenience measure as well as for 

allowing for limitations in available computing resources, produced a stated alpha test statistic 

for our Type I statistical error at 0.05. Terms were added sequentially to the PERMANOVA 
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model using the “adonis2” function from the Vegan library package, resulting in a permuted p-

value of 0.004975, and an F value of 667.55. The F value provides the ratio of explained to 

unexplained variance in the model. This provides evidence that the variation between sample 

means is high enough relative to the variation within the samples to allow me to reject the null 

hypothesis, “All coefficients in the multinomial logistic regression equation will take the value of 

zero.” 

The research therefore rejected the null hypothesis statement and failed to reject the 

alternative hypothesis H3a, “The model currently under consideration is accurate in that it differs 

significant from the null coefficient values of zero; it gives significantly better than random 

chance predictive strength relative to the null hypothesis.” 

Research Question 4 Results 

The fourth research question addressed the use of self-supervised, unsupervised deep 

learning models and their ability to determine the presence of human-curated malware classes 

without having pre-training data for the labeled class identities in a response variable. 

The hypothesis statements for this fourth and final research question were: 

H40: There is no statistically significant relationship between the predictor variables and 

the response variable in the anomaly-driven response variable groups. 

H4a: There is a statistically significant relationship between the predictor variables and 

the anomaly-driven response variable groups. 

The methodology employed to investigate this research question primarily involved the 

concept of self-supervised, unsupervised autoencoding deep learning models. The purpose of the 

models employed for this research question was to effectively determine the presence of human-

curated malware classes without having to be pre-trained on the labeled class identities. The 



 

 

66 

employed unsupervised deep learning models therefore constitute the final component of a 

defense-in-depth strategy for defensive cyber analytics using artificial intelligence that 

incorporates nonparametric, permuted falsifiability testing at each layer. Ultimately, this final set 

of models for Research Question Four demonstrated the ability of the ensemble supervised and 

unsupervised AI/ML systems to identify novel malware classes without pre-training with human-

curated examples of malicious network intrusions. 

To mitigate the loss of granularity in the model from the available data by not utilizing 

the human-curated response variable in this neural network, the response variable from the 

available curated data was recoded to a binary value of 0 or 1. These values represented 

“malicious” and “benign” in the available data, and only for purposes of performance validation 

of the unsupervised prediction model for anomaly detection. The author excluded the response 

variable itself from the dataset employed by the autoencoding neural network for this research 

question. 

This response variable recoding addressed a fundamental aim of the fourth research 

question, with regard to detecting the presence of malware classes but not necessarily being able 

to enable the identification of distinct specific entities. The goal of this research question was to 

allow for the presence of a “backstop” methodology, suitable for the detection of all malware 

types, known and novel. As such, it was not necessary to have the unsupervised anomaly 

detection algorithm to be able to discern specific sub-types of malware, as this was addressed in 

previous research questions in the paper. Being able to identify on a Boolean basis whether a 

malware attack is present or not without using human-curated labels and with high probabilistic 

confidence for any given network flow observation would address this final research question. 
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The author next ingested a randomly selected subsample dataset of n=146,684 to provide 

an extremely conservative sample size in keeping with the previous Chi-square Goodness of Fit 

minimum sample size (n=75,000) for 23 distinct classes for a small effect size with sufficient 

statistical power of 0.99. This was performed to account for finite computing resources. This 

sample used the recoded response variable into the h2o neural network library package in a 

separate computing cluster environment consisting of 50 gigabytes of RAM and 32 available 

CPU cores. The four qualitative multi-level factor variables were configured in the h2o 

environment as being factor-type predictor variables. 

The research then undertook a grid search parameter optimization process to determine 

the optimal configuration of this autoencoding neural net. The resulting optimal deep learning 

self-supervised, unsupervised learning autoencoder model contained the parameter space of 16 

predictors, no response variable, with two hidden layers of 13 neurons each and using 5 epochs 

(dataset iterations). The use of multiple hidden layers within the autoencoding neural network 

defined this model as a “deep learning” autoencoder. 

Assessing the performance of the autoencoder anomaly scores against the external 

human-labeled response variable that was withheld from the autoencoder model, the author 

assessed that the model performed at over 91% accuracy in detecting malicious versus benign 

network flow types across all classes of known malware. In order to assess with falsifiable 

certainty that this model was permutedly statistically significant, Anderson's “PERMDISP2” 

(permuted beta dispersion) procedure was utilized for the analysis of multivariate homogeneity 

of group dispersions (variances), from the Vegan library package in R. The Beta dispersion test 

is a multivariate analogue of Levene's test for homogeneity of variances, using non-Euclidean 

distances between objects and group centers. This methodology produced the distinct group 
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centers (i.e., centroids or medians) by reducing the original distances to principal coordinates 

from the original multi-dimensional feature space. In keeping with supporting practices, this 

procedure was applied latterly as a means of assessing beta diversity between the two distinct 

groups in the predicted anomaly response. 

As a requirement of addressing limited (50 GB RAM) computational environment 

resources for a permuted statistical falsifiability test, the author randomly sampled 40,000 

observations from the original anomaly prediction dataset of 146,684 observations. This test 

calculated the beta dispersion using the “vegdist” (Vegan distances) which produced Bray-Curtis 

non-Euclidean distance separation values for the centroids of both anomaly response types. 

Table 7 

Beta Dispersion Table for the Homogeneity of Multivariate Dispersions 

No. of positive 

Eigenvalues: 

1887        

No. of negative 

Eigenvalues: 

3560        

Average 

distance to 

median: 

        

Benign 

malicious 

0.3640 0.2801       

Eigenvalues for 

PCoA axes: 

PCoA1: 

2762.98 

PCoA2: 

1920.99 

PCoA3: 

1436.38 

PCoA4: 

507.96 

PCoA5: 

273.90  

PCoA6: 

159.07 

PCoA7: 

113.66 

PCoA8: 

73.54 

Note. The principal component axes and their respective Eigenvalues as determined for the Bray-

Curtis centroid distances between the “benign” and “malicious” composite groups 

 

Table 7 above provides Homogeneity of Multivariate Dispersions to indicate the the 

different Bray-Curtis centroid distances to the median between the two distinct groups (Benign 

and Malicious). This was calculated by the deep learning autoencoder model, with the 

Eigenvalues used across the 8 principal component axes. Finally, a permutation test was 
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conducted for F using the Vegan library package “permutest” (permuted test) to non-

parametrically, statistically test for homogeneity of multivariate dispersions between groups. 

Using 99 permutations as a generally accepted convenience due to limited computational 

resources for a very computational resource-intensive process, using the calculated Bray-Curtis 

distances as the response (dependent) variable in this model, resulted in the model coefficients 

and residuals as shown in Table 8, below: 

Table 8 

Bray-Curtis Model Coefficients and Residuals 

Response: Distances      

 Df SumSq MeanSq F N.Perm Pr(>F) 

Groups 1 70.3 70.297 1160.5 99 0.01 

Residuals 39998 2422.9 0.061    

Note. Residuals provided by the Bray-Custis distance model to determine the statistical 

significance of the distance between the two composite groups 

 

Table 8 provides the residuals and coefficient values provided by a permuted test using 

Bray-Curtis non-Euclidean distances of the multivariate dispersions between the two groups in 

our response variable, achieved using 99 permutations against an alpha test (Type I error) 

statistic of 0.05. 

The result of this permuted test against a stated alpha test statistic of 0.05 was a p-value 

of 0.01 that was statistically significant against the null hypothesis statement that “There is no 

statistically significant relationship between the predictor variables and the response variable in 

the anomaly-driven response variable groups.” Therefore, the research rejected the null 

hypothesis statement, with a failure to reject the alternative hypothesis statement, “There is a 



 

 

70 

statistically significant relationship between the predictor variables and the anomaly-driven 

response variable groups.” 

Discussion 

Discussion of Research Question 1 Findings 

As a means of visualization for Research Question 1, the research analyzed the 

transformed principal component centroid deviations for each treatment group (multi-level factor 

variable dependent variable) using a Homogeneity of Multivariate Dispersions test. This test 

utilized methods from Oksanen et al. (2013), specifically a permuted multivariate variation of 

Levene’s test for homogeneity of variances. Due to the multivariate permuted nature of this test, 

the methodology is extremely computationally intensive and therefore required the use of 

randomized balanced class statistical subsampling from the larger, original labeled dataset to 

conduct the beta dispersion analysis. For this analysis, a randomly selected and statistically 

balanced sample size of n = 500 observations for each curated labeled class group in the 

dependent variable was made. 

The result of this further permuted test demonstrated a significant multivariate dispersion 

that was measurable for the malware and benign class groups within this subsampling, as shown 

in Table 9 (below):  
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Table 9 

Homogeneity of Multivariate Dispersions 

No. of positive Eigenvalues: 652      

No. of negative Eigenvalues: 1385      

Average distance to 

centroid median: 

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 

 3.652e-01 1.153e-01 9.759e-02 9.281e-02 1.408e-01 1.298e-01 

 Class 7 Class 8 Class 9 Class 10 Class 11 Class 12 

 7.369e-02 5.806e-02 7.403e-02 3.555e-01 1.851e-01 1.869e-01 

 Class 13 Class 14 Class 15    

 1.012e-01 2.174e-01 6.436e-05    

       

Eigenvalues for PCoA 

axes (showing 8 of 

2037 Eigenvalues): 

PCoA1: 

695.63 

PCoA2: 

343.28 

PCoA3: 

132.23 

PCoA4: 

58.44 

PCoA5: 

55.14 

PCoA6: 

33.34 

 PCoA7: 

21.42 

PCoA8: 

20.34 

    

Note. The non-Euclidean centroid distances between 15 malware classes, and the 8 principal 

component axes Eigenvalues used by this homogeneity of multivariate dispersions model 

  

Table 9 provides measurable multivariate beta dispersion based on permuted 

methodologies developed by Oksanen et al. (2013), for n = 500 balanced and randomly 

subsampled observations for each curated dependent variable class factor in the original labeled 

network traffic flows. This is an analogue of Levene’s test of homogeneity of variances, utilizing 

non-Euclidean distances between group centroids (media) using principal component coordinate 

transformations of multivariate data. 

As shown in Table 6, the resulting values from the multivariate homogeneity of group 

dispersions, known as a beta dispersion test, utilizes Anderson’s (2006) non-Euclidean (Bray’s 

method) as a permuted measure of beta diversity between groups. This procedure employs a 
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principal component coordinate transformation of the independent variables, utilizing Eigenvalue 

measures. This provides the group of samples with a measure of variance between groups based 

on the transformed principal component group centroids of non-Euclidean spatial medians within 

a multivariate space. Figure 5 (below) depicts a principal coordinate analysis using two principal 

component dimensions and Figure 6 (below) displays skew and distribution between the distinct 

malware class groups. 

Figure 5 

Human-curated Observations Beta Disperion of Balanced DV Classes 

 

Note. A chart plot showing the non-Euclidean distances across two transformed principal 

component axes of the human-curated malware class observations 
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Figure 5 provides 2-dimensional principal coordinate analysis plot showing the 

transformed non-Euclidean multivariate distances between measurable malware class groups in 

the dependent variable, visually demonstrating compactness within and non-Euclidean 

separations between groups. The Bray-Curtis Dissimilarity Beta Diversity method measures 

variances for between-groups composition medians across multiple independent variables for a 

given sampling population, employed using randomized class balancing for unequal group sizes 

(n=500). 

Figure 6 

Boxplot of Raw Data Malware Classes Distance to Centroids 

 

Note. A boxplot showing the inter-quartile ranges of the distance to centroids for the transformed 

dependent variable for the most frequent malware classes 
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Figure 6 provides a boxplot visualization of the Bray-Curtis non-Euclidean centroid 

distances for each of the 15 measurable (sufficient variance detected) in the n=500 balanced class 

dependent variable. A distinct measurable set of variance markers is visible in this illustration of 

skewness and distribution within the sampled group population, supporting the conclusion to 

reject the stated null hypothesis in favor of the alternative hypothesis. 

The visualizations contained in both the box plot in Figure 11 and the Beta Dispersion of 

Malware Class Groups shown in Figure 1 greatly reinforce the permuted MANOVA non-

parametric statistical findings that the null hypothesis should be rejected, in favor of the 

alternative hypothesis. That alternative hypothesis for Research Question One stated, “There is at 

least one pair of malware groups with significantly unequal multivariate dependent variable 

centroids in the network flow dataset.” 

Discussion of Research Question 2 Findings 

In further discussing the findings from Research Question 2, a visualization (Figure 7, 

below) provides a scatterplot distribution of the x1 independent variable Shapley explanative 

values from the explanatory model of the additive explanations provided by the “FastSHAP” 

Shapley scores algorithm. Variable x1 in this “FastSHAP” model relates to the IoT-23 dataset, 

while variable id.orig_p (origination port) in the network flow dataset shows deviation within 

that specific IV for each prediction. 
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Figure 7 

Shapley Values for id.orig_p with a Local (Univariate) Polynomial Regression 

 

Note. SHAP explanatory values for the id.orig_p variable with a splined Local (Univariate) 

Polynomial Regression or LOWESS projection in blue 

 

Figure 7 provides Shapley values for id.orig_p (Origination Port) with a LOWESS 

(locally weighted scatterplot smoothing) projection line in blue, also known as a local 

(univariate) polynomial regression. The individual Shapley observation values provide the 

deviation within the independent variable from the average of the dependent variable per 

classification prediction. For each observation, the sum of the available Shapley values for each 

of the available features relates to the total deviation from the mean classification prediction. 
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Figure 8 below likewise demonstrates the x2 variable from the “FastSHAP” library 

package explanatory model, indicating the deviance of each observation per classification 

prediction for the id.resp_p IoT-23 network flow dataset variable (response port). 

Figure 8 

The id.resp_p (Response Port) Shapley Additive Value Scores Scatterplot 

 

Note. SHAP explanatory values for the id.resp_p variable with a splined Local (Univariate) 

Polynomial Regression or LOWESS projection in blue 

 

Figure 8 provides the id.resp_p (response port) Shapley additive value scores (deviance 

per prediction observation) in a scatterplot distribution for a LOWESS local polynomial 

regression trend in blue, showing a deviance signature for each prediction classification. 
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Figure 9 provides an overview of all of the Shapley features in order to significance (in 

terms of mean deviance value) on the left-hand side. Figure 6 (below, right) also provides a 

detailed scatterplot matrix with a splined LOWESS univariate trend for the behavior of variable 

x14, the independent variable feature that contained the largest amount of variance in the dataset. 

Variable x14 translates to the Orig_IP_bytes (origination IP address byte count per flow) in the 

IoT-23 network flow dataset. 

Figure 9 

Mean Shapley Values (Deviance Prediction Mean) and Independent Variable X14 Scatterplot 

Matrix 

 

Note. Mean SHAP values for all available key response indicator features, with a color-coded 

scatterplot of variable x14 (origination IP address byte count per flow), the most important 

contributing predictor variable 
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Figure 9 provides mean Shapley values (deviance prediction mean) for all available 

features and a color-coded scatterplot matrix of the independent (predictor) variable x14, the 

most significant Shapley feature in terms of mean score (mean deviance per prediction). X14 

relates to the IoT-23 dataset independent variable Orig_IP_bytes (origination IP address byte 

count per flow). 

Figure 10 provides a scatterplot matrix of Shapley value variable x5 that corresponds to 

the Duration predictor variable in the IoT-23 network flow dataset. Banding is visible in this and 

the other Shapley feature variable scatterplots that correspond with the majority of the malware 

event classes recorded in the dataset. 

Figure 10 

x5 Shapely Feature Variable and Duration Independent Variable in the IoT-23 Network Flow 

Dataset 

 

Note. SHAP explanatory values for the x5 (Duration) variable with a splined Local (Univariate) 

Polynomial Regression or LOWESS projection in blue 
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In Figure 10, the x5 Shapley feature variable corresponds with the Duration independent 

variable in the IoT-23 network flow dataset. The original Duration variable indicated connection 

times in milliseconds during the network flow session, and in this scatterplot, the Shapley values 

indicate variance for each prediction observation. 

Figure 11 illustrates a scatterplot of Shapley value distributions showing the deviance 

distribution per malware class prediction for the x12 variable, representing History in the IoT-23 

network flow dataset, as shown below: 

Figure 11 

Shapely Value Distributions Deviance Distribution per x12 Malware Scatterplot 

 

Note. SHAP explanatory values for the x12 (History) variable with a splined Local (Univariate) 

Polynomial Regression or LOWESS projection in blue 
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Discussion of Research Question 3 Findings 

To provide further analysis of the results from Research Question 3, it was concluded that 

this dataset contains non-random information with respect to the set of independent variables as a 

whole for the dataset in our population. With respect to their predictive relationship for the 23 

specific classes of known malware types, our suites of independent variables within our 

population contain linear and non-linear predictive strength indicating a causality relationship to 

our dependent variable. 

The deep learning prediction model also made use of Eigen factor categorical encoding, 

with respect to the multi-level (qualitative) factor variables present in the data (nominal type 

statistical information). Those qualitative, nominal factor variables included the proto (protocol), 

conn_state (connection state), and service variables. Internal to the h2o deep learning multi-layer 

perceptron neural network algorithm, those nominal type variables were encoded using Eigen 

factor relationships to the other independent variables in the dataset, rather than utilizing 

traditional “one hot encoding” (e.g., N+1 new columns for categorical features with N levels). 

Similar methods to one hot encoding such as binary encoding (up to a maximum of 32 columns 

per categorical feature) might also typically be employed in these scenarios to encode these 

qualitative values into quantitative value representations. However, by utilization of Eigen 

encoding, these multi-factor variables of k columns per categorical feature were transformed by 

projecting an otherwise one-hot-encoded matrix onto k-dimensional Eigen spaces only for each 

independent variable that the categorical variable has a relationship with, as determined by the 

deep learning predictive model. This has the potential to efficiently encode the qualitative data 

into discrete quantitative values internally within the model but does so far more efficiently in 
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terms of memory utilization, allowing the model to converge much more rapidly while enabling 

more efficient use of the neuron weights and layers available to it. 

The result is a transformation of the original qualitative nominal independent variables 

into Eigen-transformed quantitative values, with the variables renamed accordingly as shown in 

Figure 9 (e.g., “proto.Eigen”, versus the original “proto”). 

To help visualize the patterns within our complex dataset, a box plot of the distinct 

malware factor classes present within the dependent variable based on the distance to the 

centroids for the transformed set of independent variables in the dataset as shown in Figure 12 

below: 

Figure 12 

Boxplot of Predictive Model Malware Classes Distance to Centroids 

 

Note. A boxplot showing the inter-quartile ranges of the distance to centroids for the transformed 

set of independent variables for the most frequent malware classes 
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Figure 12 is a box plot showing the inter-quartile ranges based on the distance to the 

centroids for the transformed set of independent variables for the most commonly occurring 

malware classes. 

The box plot from Figure 8 shows significant variance across the inter-quartile ranges, 

medians, and outlier relationships of the transformed predictor variables as determined by the 

principal components of this dataset. This demonstrates the strong and statistically significant 

predictive relationship proven by the PERMANOVA model for this research question. 

Likewise, a Beta dispersion model utilized this same PERMANOVA model, using 

calculated Bray-Curstis (non-Euclidean) distances for each of the malware classes indicated in 

the predictive model forecast data. 

These Bray-Curtis (non-Euclidean) distance calculations established by the 

PERMANOVA model allowed us to determine a standardized multivariate dispersion between 

groups as part of a test of homogeneity between groups across the principal component axes. 

This resulted in a distance separation plot in Figure 10 below, allowing us to visualize across the 

transformed principal component dimensions of the available predictor variables what the 

multivariate dispersion between groups is within this vector space. The resulting distances shown 

in Figure 13 provide the Eigenvalues of the multivariate centroids for each distinct malware class 

in the predictive model population. This visualization provides additional evidence for the 

distinctness (non-homogeneity) of each distinct malware class, reinforcing the findings of 

predictability of each class factor by the deep learning predictive model. 
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Figure 13 

Predictive Model Beta Dispersion of Balanced DV Classes 

 

Note. A chart plot showing the non-Euclidean distances across two transformed principal 

component axes of the predictive model malware class forecast 

 

Figure 13 shows the beta dispersion of the centroids for each balanced malware class for 

Research Question 3 in the DV from the subsampled predictive model forecast output. These 

distances utilize the deep learning neural network predictions analyzed by the PERMANOVA 

model across the principal component dimensions of the predictor variables. The Beta 

Dispersion chart indicates that the various malware classes in the dataset are clearly separated 

across the principal component space, indicating that the malware classes are distinct (non-

homogenous) with significant non-Euclidean distances between each group, improving the 

likelihood of predictability for each group (malware class). 
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Discussion of Research Question 4 Findings 

Lastly, the author provide further discussion and insight for Research Question 4. This 

began by conducting a pairwise comparison between the two summary groups of benign and 

malicious, providing a pairwise comparison permuted p-value between the two groups as shown 

in Table 9. This test was conducted by using an analytic permuted t-distribution, producing 

permuted p-values obtained from 99 permutations. The parametric assumptions of the t-test are 

satisfied by the extremely low permuted p-values obtained for both between-group comparisons, 

shown in Table 10, below: 

Table 10 

Beta Dispersion (Vegan library package) Pairwise Comparison 

Observed p-value below diagonal Permuted p-value above diagonal 

Benign Malicious 

0.01 9.1268e-251 

Note. A pairwise comparison of the beta dispersion, comparing the centroid distances of the 

mean Bray-Curtis distances between the two composite groups 

 

Table 10 provides a pairwise comparison using beta dispersion (Vegan library package), 

to compare centroid distances from the mean of the Bray-Curtis distances between the malicious 

versus the benign groups. The observed p-values were calculated from an analytic t-distribution, 

with the permuted p-values obtained during the 99 permutations against an alpha test of 0.05. 

This satisfied the parametric assumptions of the t-test by the extremely low p-values for both 

between-group comparisons. 
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Next, a Tukey’s Honest Significant Differences test was conducted using the permuted 

analysis of variance functionality, conducted at the 95% family-wise confidence level, resulting 

in the following output as shown in Table 11, below. 

Table 11 

Permuted Tukey HDS Test Results 

Tukey multiple 

comparisons of 

means 

 

family-wise 

confidence level 

Fit: aov(formula 

= distances ~ 

group, data = 

df) 

$group 

 

diff lwr 85u pr p 

adj 

 

Malicious-

Benign 

 95%    -0.08388974 

     -0.08871624 

     -0.07906324 

     0 

Note. A statistically significant adjusted p-value of 0.00 against an alpha of 0.05, using the 

Tukey multiple comparison of means between the Malicious composite group and the Benign 

composite group classes, based on a permuted analysis of variance model 

 

Table 11 demonstrates the statistically significant (adjusted p-value) of 0 between the 

centroid means of the Malicious group and the Benign group classes. Based on a permuted 

analysis of variance (AOV), the test measured the permuted centroid differences between the two 

groups using mean differences, an upper-end point and a lower-end point, and finally an adjusted 

p-value. The centroid mean difference between these two groups is statistically significant with 

an adjusted p-value (permuted p-value) of 0.00 against an alpha of 0.05. 

Bland and Altman (1995) explained that the Tukey multiple comparisons of means test is 

one of several methods that would be applicable to these observations. Also referred to as 

Tukey’s honestly significant difference test, or just simply “Tukey’s HSD,” this test compares 
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utilizing an adjustment made for multiple permuted tests conducted within the Vegan library 

package framework using the R statistical computing environment. 

The Tukey HDS test conducts a permuted test similar to an analysis of variance (AOV) 

between the groups in question, with adjustments made during each permutation. The resulting 

output provides a “diff” (difference) column for the mean centroid differences, as well as an 

“lwr” (lower end point of the interval) value and an “upr” value, providing the upper end point of 

the interval. Finally, the test concludes by providing a permuted adjusted p-value. With our p-

value for this test being 0.00 against our stated alpha test statistic of 0.05, our permuted Tukey 

HSD test is statistically significant at a 95% family-wise confidence level. This provides further 

evidence in supporting the rejection of the null hypothesis statement for Research Question 4. 

Figure 14 

Anomaly Scores Scatterplot Matrix 

 

Note. Scatterplot matrix of the anomaly scores produced by the deep learning autoencoder 

network, showing the anomaly score distributions between the human-labeled composite groups, 

Benign (Red) and Malicious (Blue) 
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A color-coded scatterplot matrix generated by plotting the anomaly scores produced by 

the deep learning autoencoding neural network and color-coded by the binary classification 

(benign and malicious) based on the human-curated malware class labels in the original data, 

shown in Figure 14 (above). The vast majority of malicious events achieved an unsupervised 

anomaly score that was higher than the mean anomaly score for the benign class, without being 

pre-trained on the human-labeled classification. 

Figure 14 provides a color-coded scatterplot of the 150,000 anomaly-scored observations 

from the statistically balanced binary class of “malicious” and “benign” network flows. The 

scatterplot provides the percentile anomaly score on the vertical axis as provided by the 

unsupervised learning autoencoding neural network model, and the observation number of each 

flow event on the vertical axis. 

The research did not incorporate the color-coded class assignment (Benign or Malicious) 

variable into the self-supervised, untrained autoencoding neural network’s anomaly detector 

model. Rather, it re-incorporated this class label into the output from the neural network in order 

to provide a better visualization of how well the neural network detected potentially malicious 

malware events by providing percentile anomaly scores above the mean for the benign class 

proportion. 

Lastly, Figure 15 (below) provides a plot of the Multivariate Homogeneity of Group 

Dispersions, produced by plotting the distances to the centroids of the two group labels based on 

their unsupervised deep learning anomaly score values. This plot occurred using the first two 

Principal Component of Analysis (PCoA) axes from the transformed output data, using a 

randomly sampled n=40,000 from the original 150,000 randomly selected flow observations, due 

to finite available computational resources. The plot utilized ellipses to encapsulate the 90% 



 

 

88 

confidence interval for the distances to centroids for each group as produced by the beta 

dispersion methodology test (“betadispr” function) from the Vegan library package in R. 

Thus, this plot utilizes permuted non-Euclidean Bray-Curtis distances between samples 

drawn from n=40,000 randomly selected observations from the original balanced training dataset 

of 146,684 observations, across the first two principal component axes which incorporated the 

predicted anomaly scores, demonstrating the relative compactness of each group’s distances to 

centroids for their anomaly scores. This provides further visual support for the permuted 

statistical significance findings that allowed for the rejection of the null hypothesis for Research 

Question 4, in favor of the alternative hypothesis. 

Figure 15 

IoT-23 Multivariate Homogeneity of Group Dispersions 

 

Note. Scatterplot of the Bray-Curtis non-Eucldiean distances from centroids of the autoencoding 

neural network anomaly score predictions, with the human-labeled binary classes assigned after 

the anomaly scores have been determined  
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Figure 15 is a color-coded scatterplot using Bray-Curtis non-Euclidean distances from 

centroids of the anomaly score predicted values, using the human-labeled binary classes to 

demonstrate true class memberships. 90% confidence ellipses were plotted over the PCoA 

dimension scatterplot, showing the relative compactness and distinctiveness of the relative 

dispersion between the two groups. 

Conclusion 

In this study, the research specifically addressed findings relevant to the larger field of 

technology management for digital communication systems cyber defense. This supported the 

use case for an effective technology management strategy for digital communication systems 

based on multiple AI/ML defensive cyber strategies through a variety of post hoc experiments. 

The primary efforts to support technology management were by providing scientific evidence to 

support the effectiveness of using artificial intelligence and machine learning systems in digital 

communication networks. 

As primary components for an enterprise network defense in-depth strategy to protect 

against IoT malware attacks, this research proved their effectiveness in mitigating multiple 

threats. Likewise, it was demonstrated how AI/ML systems can become a proven component in 

effectively educating technology managers about specific threat classes as they materialize upon 

the network. In addition, this research proved the significant effectiveness of AI/ML systems in 

detecting novel malware threats over unrestrained networks for IoT network traffic without 

having pre-training from human-curated network flows. 

The research further demonstrated that it is possible to apply various scientific tests of 

falsifiability that incorporate reproducible methods into the quasi-experiment design. Most 

importantly, the research indicated how to apply this falsifiability to the field of machine 
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learning for the pre-selection of appropriate cyber network flow datasets that could be potential 

candidates for an AI/ML predictive model. Specifically, the author successfully applied a series 

of permuted MANOVA techniques to demonstrate statistical significance in the relationship of 

sequentially added network flow independent variable terms. This scientifically demonstrates 

against the stated alpha test statistic of 0.05 that a nonlinear relationship exists between the 

independent variables in the network flows and our dependent set of malware class groups that 

were contained within an encoded multi-level categorical factor dependent variable representing 

distinct treatment groups or malware classes, including the benign states. To further support 

statistical reliability, the number of observations included within the PERMANOVA that tested 

for statistical significance based on a Chi-square Goodness of Fit Test that incorporated both 

effect size (w) and statistical power assessments. 

The author also made substantial use of tests related to PERMANOVA methods for 

conducting non-parametric permuted tests of statistical significance, including the use of non-

Euclidean Bray-Curtis distance calculations and permuted Tukey HSD scores. The result was a 

comprehensive display of the ability to conduct AI/ML models for state-of-the-art cyber-defense 

applications applied to commoditized IoT Raspberry Pi hardware devices and relying solely on 

(relatively) inexpensive-to-process network flow observations data, rather than the more 

expensive to store and process packet capture logs. Multivariate Tests of Homogeneity were also 

extensively utilized to visually and scientifically validate with permuted falsifiability that both 

pre-trained supervised deep learning predictive models and unsupervised/self-supervised 

autoencoding deep learning models are both effective instruments for applications to this use 

case. 
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The research demonstrated the utility of applying a PERMANOVA model to the raw 

network flow data prior to being analyzed by any of the AI/ML models, for the purpose of 

validating that a permuted, statistically significant causal relationship is probabilistically present 

in the network flow capture data, prior to applying the complex AI/ML predictive modeling 

frameworks. The author believes that this represents a substantially useful precursor assessment 

stage for the suitability and reliability of the utilization of any nonparametric statistical learning 

algorithms applied to cyber network data predictive analytics. This methodology is proposed as a 

framework to govern costs and development risks (success uncertainty) associated with 

enterprise-scale AI/ML model development efforts as it applies to cyber network data. 

The research further demonstrated that SHapley Additive exPlanations (SHAP values) 

can be scientifically applied to the detection of malware predictions in network flow data 

captures for IoT devices, for the purpose of applying HRD principles for training human 

network subject matter expert staff in complex cyber defense behaviors that are being 

detected by these AI/ML models. 

Recommendations for Future Research 

The novelty of utilizing permuted MANOVA methodologies and techniques such as 

dissimilarities using beta diversity methods to conduct nonparametric transformations of 

complex multivariate datasets represents an opportunity to demonstrate nonlinear tests of 

homogeneity in cyber network data. These tests produced a variety of explainable and readily 

visualized digital signatures for a wide range of cyber network threats. 

The author believes that this framework can not only be used to assess the potential 

applicability for accurate AI/ML supervised malware detection models but may also be used as a 
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means of falsifiability, determining the statistical significance of these post-hoc experiment 

models. 

The author recommends that further studies involving permuted, nonparametric statistical 

methods be explored for assessing the potential suitability, accuracy, explainability, and 

provability of nonparametric statistical learning algorithms to cyber intrusion detection use-case 

models in both a pre-test and post-test environment to improve utilization efficiency, reliability, 

and scalability of AI/ML models in this use case. 

Likewise, the various permuted tests undertaken, in particular the Bray-Curtis distance 

calculations used in various tests of homogeneity between groups, are extraordinarily 

computationally expensive, even on modern computer hardware. Even when using sub-sampled 

datasets using Goodness of Fit tests to allow sufficient statistical power for the sample size, the 

permuted tests of homogeneity between groups using these calculated non-Euclidean distance 

measures often took multiple days (in some instances, nearly a week) on 32-core CPUs running 

on servers with 64 GB of memory. It would therefore be virtually impossible to run these tests on 

extremely large network flow dataset universes without the use of sampling. 

Optimizing these types of permuted computations, such as migrating them to 

Spark/Hadoop clusters or GPU computing environments, may be one potential solution for 

improving processing times by exploiting brute-force hardware acceleration and distributed 

computing technologies. Likewise, this could allow for the use of larger sample sizes to be 

potentially practical or even ultimately forgoing the need for sampling entirely. It would also be 

beneficial when incorporating wider data frames such as deep packet inspection log files. 
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APPENDIX 

R Source Code for all Four Research Question Models 

 

##### start here 

conn_log_malware_1$timestamp <- NULL 

conn_log_malware_1$userid <- NULL 

conn_log_malware_1$id.orig_h <- NULL 

conn_log_malware_1$id.resp_h <- NULL 

conn_log_malware_1$duration <- as.numeric(conn_log_malware_1$duration) 

conn_log_malware_1$orig_bytes <- as.numeric(conn_log_malware_1$orig_bytes) 

conn_log_malware_1$resp_bytes <- as.numeric(conn_log_malware_1$resp_bytes) 

conn_log_malware_1$resp_pkts <- as.numeric(conn_log_malware_1$resp_pkts) 

conn_log_malware_1$orig_pkts <- as.numeric(conn_log_malware_1$orig_pkts) 

conn_log_malware_1$orig_ip_bytes <- as.numeric(conn_log_malware_1$orig_ip_bytes) 

conn_log_malware_1$resp_ip_bytes <- as.numeric(conn_log_malware_1$resp_ip_bytes) 

 

conn_log_malware_1$service <- as.character(conn_log_malware_1$service) 

conn_log_malware_1$local_orig <- as.numeric(conn_log_malware_1$local_orig) 

conn_log_malware_1$local_resp <- as.numeric(conn_log_malware_1$local_resp) 

 

#for character IVs 

 

conn_log_malware_1[conn_log_malware_1=="-"]<-"0" 

#worked :)  

 

conn_log_malware_1$missed_bytes <- as.numeric(conn_log_malware_1$missed_bytes) 

conn_log_malware_1[conn_log_malware_1=="(empty)"]<-"0" 

conn_log_malware_1$tunnel_parents <- as.numeric(conn_log_malware_1$tunnel_parents) 

#conn_log_malware_1[is.na(conn_log_malware_1)] <- 0 

conn_log_malware_1$id.orig_p[is.na(conn_log_malware_1$id.orig_p)] <- 0 

conn_log_malware_1$id.resp_p[is.na(conn_log_malware_1$id.resp_p)] <- 0 

conn_log_malware_1$duration[is.na(conn_log_malware_1$duration)] <- 0 

conn_log_malware_1$orig_bytes[is.na(conn_log_malware_1$orig_bytes)] <- 0 

conn_log_malware_1$resp_bytes[is.na(conn_log_malware_1$resp_bytes)] <- 0 

conn_log_malware_1$local_orig[is.na(conn_log_malware_1$local_orig)] <- 0 

conn_log_malware_1$local_resp[is.na(conn_log_malware_1$local_resp)] <- 0 

conn_log_malware_1$missed_bytes[is.na(conn_log_malware_1$missed_bytes)] <- 0 

conn_log_malware_1$orig_pkts[is.na(conn_log_malware_1$orig_pkts)] <- 0 

conn_log_malware_1$orig_ip_bytes[is.na(conn_log_malware_1$orig_ip_bytes)] <- 0 

conn_log_malware_1$resp_pkts[is.na(conn_log_malware_1$resp_pkts)] <- 0 

conn_log_malware_1$resp_ip_bytes[is.na(conn_log_malware_1$resp_ip_bytes)] <- 0 

conn_log_malware_1$tunnel_parents[is.na(conn_log_malware_1$tunnel_parents)] <- 0 

conn_log_malware_1$label <- NULL #redundant with the primary DV 

 

#worked! 
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View(conn_log_malware_1) 

 

##### 

 

conn_log_malware_3$timestamp <- NULL 

conn_log_malware_3$userid <- NULL 

conn_log_malware_3$id.orig_h <- NULL 

conn_log_malware_3$id.resp_h <- NULL 

conn_log_malware_3$duration <- as.numeric(conn_log_malware_3$duration) 

conn_log_malware_3$orig_bytes <- as.numeric(conn_log_malware_3$orig_bytes) 

conn_log_malware_3$resp_bytes <- as.numeric(conn_log_malware_3$resp_bytes) 

conn_log_malware_3$resp_pkts <- as.numeric(conn_log_malware_3$resp_pkts) 

conn_log_malware_3$orig_pkts <- as.numeric(conn_log_malware_3$orig_pkts) 

conn_log_malware_3$orig_ip_bytes <- as.numeric(conn_log_malware_3$orig_ip_bytes) 

conn_log_malware_3$resp_ip_bytes <- as.numeric(conn_log_malware_3$resp_ip_bytes) 

 

conn_log_malware_3$service <- as.character(conn_log_malware_3$service) 

conn_log_malware_3$local_orig <- as.numeric(conn_log_malware_3$local_orig) 

conn_log_malware_3$local_resp <- as.numeric(conn_log_malware_3$local_resp) 

 

#for character IVs 

 

conn_log_malware_3[conn_log_malware_3=="-"]<-"0" 

 

 

conn_log_malware_3$missed_bytes <- as.numeric(conn_log_malware_3$missed_bytes) 

conn_log_malware_3[conn_log_malware_3=="(empty)"]<-"0" 

conn_log_malware_3$tunnel_parents <- as.numeric(conn_log_malware_3$tunnel_parents) 

#conn_log_malware_3[is.na(conn_log_malware_3)] <- 0 

conn_log_malware_3$id.orig_p[is.na(conn_log_malware_3$id.orig_p)] <- 0 

conn_log_malware_3$id.resp_p[is.na(conn_log_malware_3$id.resp_p)] <- 0 

conn_log_malware_3$duration[is.na(conn_log_malware_3$duration)] <- 0 

conn_log_malware_3$orig_bytes[is.na(conn_log_malware_3$orig_bytes)] <- 0 

conn_log_malware_3$resp_bytes[is.na(conn_log_malware_3$resp_bytes)] <- 0 

conn_log_malware_3$local_orig[is.na(conn_log_malware_3$local_orig)] <- 0 

conn_log_malware_3$local_resp[is.na(conn_log_malware_3$local_resp)] <- 0 

conn_log_malware_3$missed_bytes[is.na(conn_log_malware_3$missed_bytes)] <- 0 

conn_log_malware_3$orig_pkts[is.na(conn_log_malware_3$orig_pkts)] <- 0 

conn_log_malware_3$orig_ip_bytes[is.na(conn_log_malware_3$orig_ip_bytes)] <- 0 

conn_log_malware_3$resp_pkts[is.na(conn_log_malware_3$resp_pkts)] <- 0 

conn_log_malware_3$resp_ip_bytes[is.na(conn_log_malware_3$resp_ip_bytes)] <- 0 

conn_log_malware_3$tunnel_parents[is.na(conn_log_malware_3$tunnel_parents)] <- 0 

conn_log_malware_3$label <- NULL #redundant with the primary DV 

 

#worked! 
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View(conn_log_malware_3) 

 

### 

 

conn_log_malware_7$timestamp <- NULL 

conn_log_malware_7$userid <- NULL 

conn_log_malware_7$id.orig_h <- NULL 

conn_log_malware_7$id.resp_h <- NULL 

conn_log_malware_7$duration <- as.numeric(conn_log_malware_7$duration) 

conn_log_malware_7$orig_bytes <- as.numeric(conn_log_malware_7$orig_bytes) 

conn_log_malware_7$resp_bytes <- as.numeric(conn_log_malware_7$resp_bytes) 

conn_log_malware_7$resp_pkts <- as.numeric(conn_log_malware_7$resp_pkts) 

conn_log_malware_7$orig_pkts <- as.numeric(conn_log_malware_7$orig_pkts) 

conn_log_malware_7$orig_ip_bytes <- as.numeric(conn_log_malware_7$orig_ip_bytes) 

conn_log_malware_7$resp_ip_bytes <- as.numeric(conn_log_malware_7$resp_ip_bytes) 

 

conn_log_malware_7$service <- as.character(conn_log_malware_7$service) 

conn_log_malware_7$local_orig <- as.numeric(conn_log_malware_7$local_orig) 

conn_log_malware_7$local_resp <- as.numeric(conn_log_malware_7$local_resp) 

 

#for character IVs 

 

conn_log_malware_3[conn_log_malware_3=="-"]<-"0" 

 

 

conn_log_malware_7$missed_bytes <- as.numeric(conn_log_malware_7$missed_bytes) 

conn_log_malware_7[conn_log_malware_7=="(empty)"]<-"0" 

conn_log_malware_7$tunnel_parents <- as.numeric(conn_log_malware_7$tunnel_parents) 

#conn_log_malware_7[is.na(conn_log_malware_7)] <- 0 

conn_log_malware_7$id.orig_p[is.na(conn_log_malware_7$id.orig_p)] <- 0 

conn_log_malware_7$id.resp_p[is.na(conn_log_malware_7$id.resp_p)] <- 0 

conn_log_malware_7$duration[is.na(conn_log_malware_7$duration)] <- 0 

conn_log_malware_7$orig_bytes[is.na(conn_log_malware_7$orig_bytes)] <- 0 

conn_log_malware_7$resp_bytes[is.na(conn_log_malware_7$resp_bytes)] <- 0 

conn_log_malware_7$local_orig[is.na(conn_log_malware_7$local_orig)] <- 0 

conn_log_malware_7$local_resp[is.na(conn_log_malware_7$local_resp)] <- 0 

conn_log_malware_7$missed_bytes[is.na(conn_log_malware_7$missed_bytes)] <- 0 

conn_log_malware_7$orig_pkts[is.na(conn_log_malware_7$orig_pkts)] <- 0 

conn_log_malware_7$orig_ip_bytes[is.na(conn_log_malware_7$orig_ip_bytes)] <- 0 

conn_log_malware_7$resp_pkts[is.na(conn_log_malware_7$resp_pkts)] <- 0 

conn_log_malware_7$resp_ip_bytes[is.na(conn_log_malware_7$resp_ip_bytes)] <- 0 

conn_log_malware_7$tunnel_parents[is.na(conn_log_malware_7$tunnel_parents)] <- 0 

conn_log_malware_7$label <- NULL #redundant with the primary DV 

 

#worked! 
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View(conn_log_malware_7) 

 

 

 

### 

 

conn_log_malware_8$timestamp <- NULL 

conn_log_malware_8$userid <- NULL 

conn_log_malware_8$id.orig_h <- NULL 

conn_log_malware_8$id.resp_h <- NULL 

conn_log_malware_8$duration <- as.numeric(conn_log_malware_8$duration) 

conn_log_malware_8$orig_bytes <- as.numeric(conn_log_malware_8$orig_bytes) 

conn_log_malware_8$resp_bytes <- as.numeric(conn_log_malware_8$resp_bytes) 

conn_log_malware_8$resp_pkts <- as.numeric(conn_log_malware_8$resp_pkts) 

conn_log_malware_8$orig_pkts <- as.numeric(conn_log_malware_8$orig_pkts) 

conn_log_malware_8$orig_ip_bytes <- as.numeric(conn_log_malware_8$orig_ip_bytes) 

conn_log_malware_8$resp_ip_bytes <- as.numeric(conn_log_malware_8$resp_ip_bytes) 

 

conn_log_malware_8$service <- as.character(conn_log_malware_8$service) 

conn_log_malware_8$local_orig <- as.numeric(conn_log_malware_8$local_orig) 

conn_log_malware_8$local_resp <- as.numeric(conn_log_malware_8$local_resp) 

 

#for character IVs 

 

conn_log_malware_8[conn_log_malware_8=="-"]<-"0" 

 

 

conn_log_malware_8$missed_bytes <- as.numeric(conn_log_malware_8$missed_bytes) 

conn_log_malware_8[conn_log_malware_8=="(empty)"]<-"0" 

conn_log_malware_8$tunnel_parents <- as.numeric(conn_log_malware_8$tunnel_parents) 

#conn_log_malware_8[is.na(conn_log_malware_8)] <- 0 

conn_log_malware_8$id.orig_p[is.na(conn_log_malware_8$id.orig_p)] <- 0 

conn_log_malware_8$id.resp_p[is.na(conn_log_malware_8$id.resp_p)] <- 0 

conn_log_malware_8$duration[is.na(conn_log_malware_8$duration)] <- 0 

conn_log_malware_8$orig_bytes[is.na(conn_log_malware_8$orig_bytes)] <- 0 

conn_log_malware_8$resp_bytes[is.na(conn_log_malware_8$resp_bytes)] <- 0 

conn_log_malware_8$local_orig[is.na(conn_log_malware_8$local_orig)] <- 0 

conn_log_malware_8$local_resp[is.na(conn_log_malware_8$local_resp)] <- 0 

conn_log_malware_8$missed_bytes[is.na(conn_log_malware_8$missed_bytes)] <- 0 

conn_log_malware_8$orig_pkts[is.na(conn_log_malware_8$orig_pkts)] <- 0 

conn_log_malware_8$orig_ip_bytes[is.na(conn_log_malware_8$orig_ip_bytes)] <- 0 

conn_log_malware_8$resp_pkts[is.na(conn_log_malware_8$resp_pkts)] <- 0 

conn_log_malware_8$resp_ip_bytes[is.na(conn_log_malware_8$resp_ip_bytes)] <- 0 

conn_log_malware_8$tunnel_parents[is.na(conn_log_malware_8$tunnel_parents)] <- 0 

conn_log_malware_8$label <- NULL #redundant with the primary DV 
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#worked! 

 

View(conn_log_malware_8) 

 

 

 

### 

 

### 

 

conn_log_malware_9$timestamp <- NULL 

conn_log_malware_9$userid <- NULL 

conn_log_malware_9$id.orig_h <- NULL 

conn_log_malware_9$id.resp_h <- NULL 

conn_log_malware_9$duration <- as.numeric(conn_log_malware_9$duration) 

conn_log_malware_9$orig_bytes <- as.numeric(conn_log_malware_9$orig_bytes) 

conn_log_malware_9$resp_bytes <- as.numeric(conn_log_malware_9$resp_bytes) 

conn_log_malware_9$resp_pkts <- as.numeric(conn_log_malware_9$resp_pkts) 

conn_log_malware_9$orig_pkts <- as.numeric(conn_log_malware_9$orig_pkts) 

conn_log_malware_9$orig_ip_bytes <- as.numeric(conn_log_malware_9$orig_ip_bytes) 

conn_log_malware_9$resp_ip_bytes <- as.numeric(conn_log_malware_9$resp_ip_bytes) 

 

conn_log_malware_9$service <- as.character(conn_log_malware_9$service) 

conn_log_malware_9$local_orig <- as.numeric(conn_log_malware_9$local_orig) 

conn_log_malware_9$local_resp <- as.numeric(conn_log_malware_9$local_resp) 

 

#for character IVs 

 

conn_log_malware_9[conn_log_malware_9=="-"]<-"0" 

 

 

conn_log_malware_9$missed_bytes <- as.numeric(conn_log_malware_9$missed_bytes) 

conn_log_malware_9[conn_log_malware_9=="(empty)"]<-"0" 

conn_log_malware_9$tunnel_parents <- as.numeric(conn_log_malware_9$tunnel_parents) 

#conn_log_malware_9[is.na(conn_log_malware_9)] <- 0 

conn_log_malware_9$id.orig_p[is.na(conn_log_malware_9$id.orig_p)] <- 0 

conn_log_malware_9$id.resp_p[is.na(conn_log_malware_9$id.resp_p)] <- 0 

conn_log_malware_9$duration[is.na(conn_log_malware_9$duration)] <- 0 

conn_log_malware_9$orig_bytes[is.na(conn_log_malware_9$orig_bytes)] <- 0 

conn_log_malware_9$resp_bytes[is.na(conn_log_malware_9$resp_bytes)] <- 0 

conn_log_malware_9$local_orig[is.na(conn_log_malware_9$local_orig)] <- 0 

conn_log_malware_9$local_resp[is.na(conn_log_malware_9$local_resp)] <- 0 

conn_log_malware_9$missed_bytes[is.na(conn_log_malware_9$missed_bytes)] <- 0 

conn_log_malware_9$orig_pkts[is.na(conn_log_malware_9$orig_pkts)] <- 0 

conn_log_malware_9$orig_ip_bytes[is.na(conn_log_malware_9$orig_ip_bytes)] <- 0 
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conn_log_malware_9$resp_pkts[is.na(conn_log_malware_9$resp_pkts)] <- 0 

conn_log_malware_9$resp_ip_bytes[is.na(conn_log_malware_9$resp_ip_bytes)] <- 0 

conn_log_malware_9$tunnel_parents[is.na(conn_log_malware_9$tunnel_parents)] <- 0 

conn_log_malware_9$label <- NULL #redundant with the primary DV 

 

#worked! 

 

View(conn_log_malware_9) 

 

 

 

### 

 

 

### 

 

conn_log_malware_17$timestamp <- NULL 

conn_log_malware_17$userid <- NULL 

conn_log_malware_17$id.orig_h <- NULL 

conn_log_malware_17$id.resp_h <- NULL 

conn_log_malware_17$duration <- as.numeric(conn_log_malware_17$duration) 

conn_log_malware_17$orig_bytes <- as.numeric(conn_log_malware_17$orig_bytes) 

conn_log_malware_17$resp_bytes <- as.numeric(conn_log_malware_17$resp_bytes) 

conn_log_malware_17$resp_pkts <- as.numeric(conn_log_malware_17$resp_pkts) 

conn_log_malware_17$orig_pkts <- as.numeric(conn_log_malware_17$orig_pkts) 

conn_log_malware_17$orig_ip_bytes <- as.numeric(conn_log_malware_17$orig_ip_bytes) 

conn_log_malware_17$resp_ip_bytes <- as.numeric(conn_log_malware_17$resp_ip_bytes) 

 

conn_log_malware_17$service <- as.character(conn_log_malware_17$service) 

conn_log_malware_17$local_orig <- as.numeric(conn_log_malware_17$local_orig) 

conn_log_malware_17$local_resp <- as.numeric(conn_log_malware_17$local_resp) 

 

#for character IVs 

 

conn_log_malware_17[conn_log_malware_17=="-"]<-"0" 

 

 

conn_log_malware_17$missed_bytes <- as.numeric(conn_log_malware_17$missed_bytes) 

conn_log_malware_17[conn_log_malware_17=="(empty)"]<-"0" 

conn_log_malware_17$tunnel_parents <- as.numeric(conn_log_malware_17$tunnel_parents) 

#conn_log_malware_17[is.na(conn_log_malware_17)] <- 0 

conn_log_malware_17$id.orig_p[is.na(conn_log_malware_17$id.orig_p)] <- 0 

conn_log_malware_17$id.resp_p[is.na(conn_log_malware_17$id.resp_p)] <- 0 

conn_log_malware_17$duration[is.na(conn_log_malware_17$duration)] <- 0 

conn_log_malware_17$orig_bytes[is.na(conn_log_malware_17$orig_bytes)] <- 0 

conn_log_malware_17$resp_bytes[is.na(conn_log_malware_17$resp_bytes)] <- 0 
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conn_log_malware_17$local_orig[is.na(conn_log_malware_17$local_orig)] <- 0 

conn_log_malware_17$local_resp[is.na(conn_log_malware_17$local_resp)] <- 0 

conn_log_malware_17$missed_bytes[is.na(conn_log_malware_17$missed_bytes)] <- 0 

conn_log_malware_17$orig_pkts[is.na(conn_log_malware_17$orig_pkts)] <- 0 

conn_log_malware_17$orig_ip_bytes[is.na(conn_log_malware_17$orig_ip_bytes)] <- 0 

conn_log_malware_17$resp_pkts[is.na(conn_log_malware_17$resp_pkts)] <- 0 

conn_log_malware_17$resp_ip_bytes[is.na(conn_log_malware_17$resp_ip_bytes)] <- 0 

conn_log_malware_17$tunnel_parents[is.na(conn_log_malware_17$tunnel_parents)] <- 0 

conn_log_malware_17$label <- NULL #redundant with the primary DV 

 

#worked! 

 

View(conn_log_malware_17) 

 

 

### 

 

### 

 

conn_log_malware_20$timestamp <- NULL 

conn_log_malware_20$userid <- NULL 

conn_log_malware_20$id.orig_h <- NULL 

conn_log_malware_20$id.resp_h <- NULL 

conn_log_malware_20$duration <- as.numeric(conn_log_malware_20$duration) 

conn_log_malware_20$orig_bytes <- as.numeric(conn_log_malware_20$orig_bytes) 

conn_log_malware_20$resp_bytes <- as.numeric(conn_log_malware_20$resp_bytes) 

conn_log_malware_20$resp_pkts <- as.numeric(conn_log_malware_20$resp_pkts) 

conn_log_malware_20$orig_pkts <- as.numeric(conn_log_malware_20$orig_pkts) 

conn_log_malware_20$orig_ip_bytes <- as.numeric(conn_log_malware_20$orig_ip_bytes) 

conn_log_malware_20$resp_ip_bytes <- as.numeric(conn_log_malware_20$resp_ip_bytes) 

 

conn_log_malware_20$service <- as.character(conn_log_malware_20$service) 

conn_log_malware_20$local_orig <- as.numeric(conn_log_malware_20$local_orig) 

conn_log_malware_20$local_resp <- as.numeric(conn_log_malware_20$local_resp) 

 

#for character IVs 

 

conn_log_malware_20[conn_log_malware_20=="-"]<-"0" 

 

 

conn_log_malware_20$missed_bytes <- as.numeric(conn_log_malware_20$missed_bytes) 

conn_log_malware_20[conn_log_malware_20=="(empty)"]<-"0" 

conn_log_malware_20$tunnel_parents <- as.numeric(conn_log_malware_20$tunnel_parents) 

#conn_log_malware_20[is.na(conn_log_malware_20)] <- 0 

conn_log_malware_20$id.orig_p[is.na(conn_log_malware_20$id.orig_p)] <- 0 

conn_log_malware_20$id.resp_p[is.na(conn_log_malware_20$id.resp_p)] <- 0 
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conn_log_malware_20$duration[is.na(conn_log_malware_20$duration)] <- 0 

conn_log_malware_20$orig_bytes[is.na(conn_log_malware_20$orig_bytes)] <- 0 

conn_log_malware_20$resp_bytes[is.na(conn_log_malware_20$resp_bytes)] <- 0 

conn_log_malware_20$local_orig[is.na(conn_log_malware_20$local_orig)] <- 0 

conn_log_malware_20$local_resp[is.na(conn_log_malware_20$local_resp)] <- 0 

conn_log_malware_20$missed_bytes[is.na(conn_log_malware_20$missed_bytes)] <- 0 

conn_log_malware_20$orig_pkts[is.na(conn_log_malware_20$orig_pkts)] <- 0 

conn_log_malware_20$orig_ip_bytes[is.na(conn_log_malware_20$orig_ip_bytes)] <- 0 

conn_log_malware_20$resp_pkts[is.na(conn_log_malware_20$resp_pkts)] <- 0 

conn_log_malware_20$resp_ip_bytes[is.na(conn_log_malware_20$resp_ip_bytes)] <- 0 

conn_log_malware_20$tunnel_parents[is.na(conn_log_malware_20$tunnel_parents)] <- 0 

conn_log_malware_20$label <- NULL #redundant with the primary DV 

 

#worked! 

 

View(conn_log_malware_20) 

 

### 

 

 

conn_log_malware_21$timestamp <- NULL 

conn_log_malware_21$userid <- NULL 

conn_log_malware_21$id.orig_h <- NULL 

conn_log_malware_21$id.resp_h <- NULL 

conn_log_malware_21$duration <- as.numeric(conn_log_malware_21$duration) 

conn_log_malware_21$orig_bytes <- as.numeric(conn_log_malware_21$orig_bytes) 

conn_log_malware_21$resp_bytes <- as.numeric(conn_log_malware_21$resp_bytes) 

conn_log_malware_21$resp_pkts <- as.numeric(conn_log_malware_21$resp_pkts) 

conn_log_malware_21$orig_pkts <- as.numeric(conn_log_malware_21$orig_pkts) 

conn_log_malware_21$orig_ip_bytes <- as.numeric(conn_log_malware_21$orig_ip_bytes) 

conn_log_malware_21$resp_ip_bytes <- as.numeric(conn_log_malware_21$resp_ip_bytes) 

 

conn_log_malware_21$service <- as.character(conn_log_malware_21$service) 

conn_log_malware_21$local_orig <- as.numeric(conn_log_malware_21$local_orig) 

conn_log_malware_21$local_resp <- as.numeric(conn_log_malware_21$local_resp) 

 

#for character IVs 

 

conn_log_malware_21[conn_log_malware_21=="-"]<-"0" 

 

 

conn_log_malware_21$missed_bytes <- as.numeric(conn_log_malware_21$missed_bytes) 

conn_log_malware_21[conn_log_malware_21=="(empty)"]<-"0" 

conn_log_malware_21$tunnel_parents <- as.numeric(conn_log_malware_21$tunnel_parents) 

#conn_log_malware_21[is.na(conn_log_malware_21)] <- 0 

conn_log_malware_21$id.orig_p[is.na(conn_log_malware_21$id.orig_p)] <- 0 
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conn_log_malware_21$id.resp_p[is.na(conn_log_malware_21$id.resp_p)] <- 0 

conn_log_malware_21$duration[is.na(conn_log_malware_21$duration)] <- 0 

conn_log_malware_21$orig_bytes[is.na(conn_log_malware_21$orig_bytes)] <- 0 

conn_log_malware_21$resp_bytes[is.na(conn_log_malware_21$resp_bytes)] <- 0 

conn_log_malware_21$local_orig[is.na(conn_log_malware_21$local_orig)] <- 0 

conn_log_malware_21$local_resp[is.na(conn_log_malware_21$local_resp)] <- 0 

conn_log_malware_21$missed_bytes[is.na(conn_log_malware_21$missed_bytes)] <- 0 

conn_log_malware_21$orig_pkts[is.na(conn_log_malware_21$orig_pkts)] <- 0 

conn_log_malware_21$orig_ip_bytes[is.na(conn_log_malware_21$orig_ip_bytes)] <- 0 

conn_log_malware_21$resp_pkts[is.na(conn_log_malware_21$resp_pkts)] <- 0 

conn_log_malware_21$resp_ip_bytes[is.na(conn_log_malware_21$resp_ip_bytes)] <- 0 

conn_log_malware_21$tunnel_parents[is.na(conn_log_malware_21$tunnel_parents)] <- 0 

conn_log_malware_21$label <- NULL #redundant with the primary DV 

 

#worked! 

 

View(conn_log_malware_21) 

 

### 

 

 

### 

 

 

conn_log_malware_33$timestamp <- NULL 

conn_log_malware_33$userid <- NULL 

conn_log_malware_33$id.orig_h <- NULL 

conn_log_malware_33$id.resp_h <- NULL 

conn_log_malware_33$duration <- as.numeric(conn_log_malware_33$duration) 

conn_log_malware_33$orig_bytes <- as.numeric(conn_log_malware_33$orig_bytes) 

conn_log_malware_33$resp_bytes <- as.numeric(conn_log_malware_33$resp_bytes) 

conn_log_malware_33$resp_pkts <- as.numeric(conn_log_malware_33$resp_pkts) 

conn_log_malware_33$orig_pkts <- as.numeric(conn_log_malware_33$orig_pkts) 

conn_log_malware_33$orig_ip_bytes <- as.numeric(conn_log_malware_33$orig_ip_bytes) 

conn_log_malware_33$resp_ip_bytes <- as.numeric(conn_log_malware_33$resp_ip_bytes) 

 

conn_log_malware_33$service <- as.character(conn_log_malware_33$service) 

conn_log_malware_33$local_orig <- as.numeric(conn_log_malware_33$local_orig) 

conn_log_malware_33$local_resp <- as.numeric(conn_log_malware_33$local_resp) 

 

#for character IVs 

 

conn_log_malware_33[conn_log_malware_33=="-"]<-"0" 

 

 

conn_log_malware_33$missed_bytes <- as.numeric(conn_log_malware_33$missed_bytes) 
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conn_log_malware_33[conn_log_malware_33=="(empty)"]<-"0" 

conn_log_malware_33$tunnel_parents <- as.numeric(conn_log_malware_33$tunnel_parents) 

#conn_log_malware_33[is.na(conn_log_malware_33)] <- 0 

conn_log_malware_33$id.orig_p[is.na(conn_log_malware_33$id.orig_p)] <- 0 

conn_log_malware_33$id.resp_p[is.na(conn_log_malware_33$id.resp_p)] <- 0 

conn_log_malware_33$duration[is.na(conn_log_malware_33$duration)] <- 0 

conn_log_malware_33$orig_bytes[is.na(conn_log_malware_33$orig_bytes)] <- 0 

conn_log_malware_33$resp_bytes[is.na(conn_log_malware_33$resp_bytes)] <- 0 

conn_log_malware_33$local_orig[is.na(conn_log_malware_33$local_orig)] <- 0 

conn_log_malware_33$local_resp[is.na(conn_log_malware_33$local_resp)] <- 0 

conn_log_malware_33$missed_bytes[is.na(conn_log_malware_33$missed_bytes)] <- 0 

conn_log_malware_33$orig_pkts[is.na(conn_log_malware_33$orig_pkts)] <- 0 

conn_log_malware_33$orig_ip_bytes[is.na(conn_log_malware_33$orig_ip_bytes)] <- 0 

conn_log_malware_33$resp_pkts[is.na(conn_log_malware_33$resp_pkts)] <- 0 

conn_log_malware_33$resp_ip_bytes[is.na(conn_log_malware_33$resp_ip_bytes)] <- 0 

conn_log_malware_33$tunnel_parents[is.na(conn_log_malware_33$tunnel_parents)] <- 0 

conn_log_malware_33$label <- NULL #redundant with the primary DV 

 

#worked! 

 

View(conn_log_malware_33) 

 

### 

 

 

### 

 

 

conn_log_malware_34$timestamp <- NULL 

conn_log_malware_34$userid <- NULL 

conn_log_malware_34$id.orig_h <- NULL 

conn_log_malware_34$id.resp_h <- NULL 

conn_log_malware_34$duration <- as.numeric(conn_log_malware_34$duration) 

conn_log_malware_34$orig_bytes <- as.numeric(conn_log_malware_34$orig_bytes) 

conn_log_malware_34$resp_bytes <- as.numeric(conn_log_malware_34$resp_bytes) 

conn_log_malware_34$resp_pkts <- as.numeric(conn_log_malware_34$resp_pkts) 

conn_log_malware_34$orig_pkts <- as.numeric(conn_log_malware_34$orig_pkts) 

conn_log_malware_34$orig_ip_bytes <- as.numeric(conn_log_malware_34$orig_ip_bytes) 

conn_log_malware_34$resp_ip_bytes <- as.numeric(conn_log_malware_34$resp_ip_bytes) 

 

conn_log_malware_34$service <- as.character(conn_log_malware_34$service) 

conn_log_malware_34$local_orig <- as.numeric(conn_log_malware_34$local_orig) 

conn_log_malware_34$local_resp <- as.numeric(conn_log_malware_34$local_resp) 

 

#for character IVs 
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conn_log_malware_34[conn_log_malware_34=="-"]<-"0" 

 

 

conn_log_malware_34$missed_bytes <- as.numeric(conn_log_malware_34$missed_bytes) 

conn_log_malware_34[conn_log_malware_34=="(empty)"]<-"0" 

conn_log_malware_34$tunnel_parents <- as.numeric(conn_log_malware_34$tunnel_parents) 

#conn_log_malware_34[is.na(conn_log_malware_34)] <- 0 

conn_log_malware_34$id.orig_p[is.na(conn_log_malware_34$id.orig_p)] <- 0 

conn_log_malware_34$id.resp_p[is.na(conn_log_malware_34$id.resp_p)] <- 0 

conn_log_malware_34$duration[is.na(conn_log_malware_34$duration)] <- 0 

conn_log_malware_34$orig_bytes[is.na(conn_log_malware_34$orig_bytes)] <- 0 

conn_log_malware_34$resp_bytes[is.na(conn_log_malware_34$resp_bytes)] <- 0 

conn_log_malware_34$local_orig[is.na(conn_log_malware_34$local_orig)] <- 0 

conn_log_malware_34$local_resp[is.na(conn_log_malware_34$local_resp)] <- 0 

conn_log_malware_34$missed_bytes[is.na(conn_log_malware_34$missed_bytes)] <- 0 

conn_log_malware_34$orig_pkts[is.na(conn_log_malware_34$orig_pkts)] <- 0 

conn_log_malware_34$orig_ip_bytes[is.na(conn_log_malware_34$orig_ip_bytes)] <- 0 

conn_log_malware_34$resp_pkts[is.na(conn_log_malware_34$resp_pkts)] <- 0 

conn_log_malware_34$resp_ip_bytes[is.na(conn_log_malware_34$resp_ip_bytes)] <- 0 

conn_log_malware_34$tunnel_parents[is.na(conn_log_malware_34$tunnel_parents)] <- 0 

conn_log_malware_34$label <- NULL #redundant with the primary DV 

 

#worked! 

 

View(conn_log_malware_34) 

 

### 

 

 

### 

 

 

conn_log_malware_35$timestamp <- NULL 

conn_log_malware_35$userid <- NULL 

conn_log_malware_35$id.orig_h <- NULL 

conn_log_malware_35$id.resp_h <- NULL 

conn_log_malware_35$duration <- as.numeric(conn_log_malware_35$duration) 

conn_log_malware_35$orig_bytes <- as.numeric(conn_log_malware_35$orig_bytes) 

conn_log_malware_35$resp_bytes <- as.numeric(conn_log_malware_35$resp_bytes) 

conn_log_malware_35$resp_pkts <- as.numeric(conn_log_malware_35$resp_pkts) 

conn_log_malware_35$orig_pkts <- as.numeric(conn_log_malware_35$orig_pkts) 

conn_log_malware_35$orig_ip_bytes <- as.numeric(conn_log_malware_35$orig_ip_bytes) 

conn_log_malware_35$resp_ip_bytes <- as.numeric(conn_log_malware_35$resp_ip_bytes) 

 

conn_log_malware_35$service <- as.character(conn_log_malware_35$service) 

conn_log_malware_35$local_orig <- as.numeric(conn_log_malware_35$local_orig) 
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conn_log_malware_35$local_resp <- as.numeric(conn_log_malware_35$local_resp) 

 

#for character IVs 

 

conn_log_malware_35[conn_log_malware_35=="-"]<-"0" 

 

 

conn_log_malware_35$missed_bytes <- as.numeric(conn_log_malware_35$missed_bytes) 

conn_log_malware_35[conn_log_malware_35=="(empty)"]<-"0" 

conn_log_malware_35$tunnel_parents <- as.numeric(conn_log_malware_35$tunnel_parents) 

#conn_log_malware_35[is.na(conn_log_malware_35)] <- 0 

conn_log_malware_35$id.orig_p[is.na(conn_log_malware_35$id.orig_p)] <- 0 

conn_log_malware_35$id.resp_p[is.na(conn_log_malware_35$id.resp_p)] <- 0 

conn_log_malware_35$duration[is.na(conn_log_malware_35$duration)] <- 0 

conn_log_malware_35$orig_bytes[is.na(conn_log_malware_35$orig_bytes)] <- 0 

conn_log_malware_35$resp_bytes[is.na(conn_log_malware_35$resp_bytes)] <- 0 

conn_log_malware_35$local_orig[is.na(conn_log_malware_35$local_orig)] <- 0 

conn_log_malware_35$local_resp[is.na(conn_log_malware_35$local_resp)] <- 0 

conn_log_malware_35$missed_bytes[is.na(conn_log_malware_35$missed_bytes)] <- 0 

conn_log_malware_35$orig_pkts[is.na(conn_log_malware_35$orig_pkts)] <- 0 

conn_log_malware_35$orig_ip_bytes[is.na(conn_log_malware_35$orig_ip_bytes)] <- 0 

conn_log_malware_35$resp_pkts[is.na(conn_log_malware_35$resp_pkts)] <- 0 

conn_log_malware_35$resp_ip_bytes[is.na(conn_log_malware_35$resp_ip_bytes)] <- 0 

conn_log_malware_35$tunnel_parents[is.na(conn_log_malware_35$tunnel_parents)] <- 0 

conn_log_malware_35$label <- NULL #redundant with the primary DV 

 

#worked! 

 

View(conn_log_malware_35) 

 

### 

 

 

### 

 

 

conn_log_malware_36$timestamp <- NULL 

conn_log_malware_36$userid <- NULL 

conn_log_malware_36$id.orig_h <- NULL 

conn_log_malware_36$id.resp_h <- NULL 

conn_log_malware_36$duration <- as.numeric(conn_log_malware_36$duration) 

conn_log_malware_36$orig_bytes <- as.numeric(conn_log_malware_36$orig_bytes) 

conn_log_malware_36$resp_bytes <- as.numeric(conn_log_malware_36$resp_bytes) 

conn_log_malware_36$resp_pkts <- as.numeric(conn_log_malware_36$resp_pkts) 

conn_log_malware_36$orig_pkts <- as.numeric(conn_log_malware_36$orig_pkts) 

conn_log_malware_36$orig_ip_bytes <- as.numeric(conn_log_malware_36$orig_ip_bytes) 
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conn_log_malware_36$resp_ip_bytes <- as.numeric(conn_log_malware_36$resp_ip_bytes) 

 

conn_log_malware_36$service <- as.character(conn_log_malware_36$service) 

conn_log_malware_36$local_orig <- as.numeric(conn_log_malware_36$local_orig) 

conn_log_malware_36$local_resp <- as.numeric(conn_log_malware_36$local_resp) 

 

#for character IVs 

 

conn_log_malware_36[conn_log_malware_36=="-"]<-"0" 

 

 

conn_log_malware_36$missed_bytes <- as.numeric(conn_log_malware_36$missed_bytes) 

conn_log_malware_36[conn_log_malware_36=="(empty)"]<-"0" 

conn_log_malware_36$tunnel_parents <- as.numeric(conn_log_malware_36$tunnel_parents) 

#conn_log_malware_36[is.na(conn_log_malware_36)] <- 0 

conn_log_malware_36$id.orig_p[is.na(conn_log_malware_36$id.orig_p)] <- 0 

conn_log_malware_36$id.resp_p[is.na(conn_log_malware_36$id.resp_p)] <- 0 

conn_log_malware_36$duration[is.na(conn_log_malware_36$duration)] <- 0 

conn_log_malware_36$orig_bytes[is.na(conn_log_malware_36$orig_bytes)] <- 0 

conn_log_malware_36$resp_bytes[is.na(conn_log_malware_36$resp_bytes)] <- 0 

conn_log_malware_36$local_orig[is.na(conn_log_malware_36$local_orig)] <- 0 

conn_log_malware_36$local_resp[is.na(conn_log_malware_36$local_resp)] <- 0 

conn_log_malware_36$missed_bytes[is.na(conn_log_malware_36$missed_bytes)] <- 0 

conn_log_malware_36$orig_pkts[is.na(conn_log_malware_36$orig_pkts)] <- 0 

conn_log_malware_36$orig_ip_bytes[is.na(conn_log_malware_36$orig_ip_bytes)] <- 0 

conn_log_malware_36$resp_pkts[is.na(conn_log_malware_36$resp_pkts)] <- 0 

conn_log_malware_36$resp_ip_bytes[is.na(conn_log_malware_36$resp_ip_bytes)] <- 0 

conn_log_malware_36$tunnel_parents[is.na(conn_log_malware_36$tunnel_parents)] <- 0 

conn_log_malware_36$label <- NULL #redundant with the primary DV 

 

#worked! 

 

View(conn_log_malware_36) 

 

### 

 

 

### 

 

 

conn_log_malware_39$timestamp <- NULL 

conn_log_malware_39$userid <- NULL 

conn_log_malware_39$id.orig_h <- NULL 

conn_log_malware_39$id.resp_h <- NULL 

conn_log_malware_39$duration <- as.numeric(conn_log_malware_39$duration) 

conn_log_malware_39$orig_bytes <- as.numeric(conn_log_malware_39$orig_bytes) 
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conn_log_malware_39$resp_bytes <- as.numeric(conn_log_malware_39$resp_bytes) 

conn_log_malware_39$resp_pkts <- as.numeric(conn_log_malware_39$resp_pkts) 

conn_log_malware_39$orig_pkts <- as.numeric(conn_log_malware_39$orig_pkts) 

conn_log_malware_39$orig_ip_bytes <- as.numeric(conn_log_malware_39$orig_ip_bytes) 

conn_log_malware_39$resp_ip_bytes <- as.numeric(conn_log_malware_39$resp_ip_bytes) 

 

conn_log_malware_39$service <- as.character(conn_log_malware_39$service) 

conn_log_malware_39$local_orig <- as.numeric(conn_log_malware_39$local_orig) 

conn_log_malware_39$local_resp <- as.numeric(conn_log_malware_39$local_resp) 

 

#for character IVs 

 

conn_log_malware_39[conn_log_malware_39=="-"]<-"0" 

 

 

conn_log_malware_39$missed_bytes <- as.numeric(conn_log_malware_39$missed_bytes) 

conn_log_malware_39[conn_log_malware_39=="(empty)"]<-"0" 

conn_log_malware_39$tunnel_parents <- as.numeric(conn_log_malware_39$tunnel_parents) 

#conn_log_malware_39[is.na(conn_log_malware_39)] <- 0 

conn_log_malware_39$id.orig_p[is.na(conn_log_malware_39$id.orig_p)] <- 0 

conn_log_malware_39$id.resp_p[is.na(conn_log_malware_39$id.resp_p)] <- 0 

conn_log_malware_39$duration[is.na(conn_log_malware_39$duration)] <- 0 

conn_log_malware_39$orig_bytes[is.na(conn_log_malware_39$orig_bytes)] <- 0 

conn_log_malware_39$resp_bytes[is.na(conn_log_malware_39$resp_bytes)] <- 0 

conn_log_malware_39$local_orig[is.na(conn_log_malware_39$local_orig)] <- 0 

conn_log_malware_39$local_resp[is.na(conn_log_malware_39$local_resp)] <- 0 

conn_log_malware_39$missed_bytes[is.na(conn_log_malware_39$missed_bytes)] <- 0 

conn_log_malware_39$orig_pkts[is.na(conn_log_malware_39$orig_pkts)] <- 0 

conn_log_malware_39$orig_ip_bytes[is.na(conn_log_malware_39$orig_ip_bytes)] <- 0 

conn_log_malware_39$resp_pkts[is.na(conn_log_malware_39$resp_pkts)] <- 0 

conn_log_malware_39$resp_ip_bytes[is.na(conn_log_malware_39$resp_ip_bytes)] <- 0 

conn_log_malware_39$tunnel_parents[is.na(conn_log_malware_39$tunnel_parents)] <- 0 

conn_log_malware_39$label <- NULL #redundant with the primary DV 

 

#worked! 

 

View(conn_log_malware_39) 

 

### 

 

 

### 

 

 

conn_log_malware_42$timestamp <- NULL 

conn_log_malware_42$userid <- NULL 



 

 

114 

conn_log_malware_42$id.orig_h <- NULL 

conn_log_malware_42$id.resp_h <- NULL 

conn_log_malware_42$duration <- as.numeric(conn_log_malware_42$duration) 

conn_log_malware_42$orig_bytes <- as.numeric(conn_log_malware_42$orig_bytes) 

conn_log_malware_42$resp_bytes <- as.numeric(conn_log_malware_42$resp_bytes) 

conn_log_malware_42$resp_pkts <- as.numeric(conn_log_malware_42$resp_pkts) 

conn_log_malware_42$orig_pkts <- as.numeric(conn_log_malware_42$orig_pkts) 

conn_log_malware_42$orig_ip_bytes <- as.numeric(conn_log_malware_42$orig_ip_bytes) 

conn_log_malware_42$resp_ip_bytes <- as.numeric(conn_log_malware_42$resp_ip_bytes) 

 

conn_log_malware_42$service <- as.character(conn_log_malware_42$service) 

conn_log_malware_42$local_orig <- as.numeric(conn_log_malware_42$local_orig) 

conn_log_malware_42$local_resp <- as.numeric(conn_log_malware_42$local_resp) 

 

#for character IVs 

 

conn_log_malware_42[conn_log_malware_42=="-"]<-"0" 

 

 

conn_log_malware_42$missed_bytes <- as.numeric(conn_log_malware_42$missed_bytes) 

conn_log_malware_42[conn_log_malware_42=="(empty)"]<-"0" 

conn_log_malware_42$tunnel_parents <- as.numeric(conn_log_malware_42$tunnel_parents) 

#conn_log_malware_42[is.na(conn_log_malware_42)] <- 0 

conn_log_malware_42$id.orig_p[is.na(conn_log_malware_42$id.orig_p)] <- 0 

conn_log_malware_42$id.resp_p[is.na(conn_log_malware_42$id.resp_p)] <- 0 

conn_log_malware_42$duration[is.na(conn_log_malware_42$duration)] <- 0 

conn_log_malware_42$orig_bytes[is.na(conn_log_malware_42$orig_bytes)] <- 0 

conn_log_malware_42$resp_bytes[is.na(conn_log_malware_42$resp_bytes)] <- 0 

conn_log_malware_42$local_orig[is.na(conn_log_malware_42$local_orig)] <- 0 

conn_log_malware_42$local_resp[is.na(conn_log_malware_42$local_resp)] <- 0 

conn_log_malware_42$missed_bytes[is.na(conn_log_malware_42$missed_bytes)] <- 0 

conn_log_malware_42$orig_pkts[is.na(conn_log_malware_42$orig_pkts)] <- 0 

conn_log_malware_42$orig_ip_bytes[is.na(conn_log_malware_42$orig_ip_bytes)] <- 0 

conn_log_malware_42$resp_pkts[is.na(conn_log_malware_42$resp_pkts)] <- 0 

conn_log_malware_42$resp_ip_bytes[is.na(conn_log_malware_42$resp_ip_bytes)] <- 0 

conn_log_malware_42$tunnel_parents[is.na(conn_log_malware_42$tunnel_parents)] <- 0 

conn_log_malware_42$label <- NULL #redundant with the primary DV 

 

#worked! 

 

View(conn_log_malware_42) 

 

### 

 

conn_log_malware_43$timestamp <- NULL 

conn_log_malware_43$userid <- NULL 
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conn_log_malware_43$id.orig_h <- NULL 

conn_log_malware_43$id.resp_h <- NULL 

conn_log_malware_43$duration <- as.numeric(conn_log_malware_43$duration) 

conn_log_malware_43$orig_bytes <- as.numeric(conn_log_malware_43$orig_bytes) 

conn_log_malware_43$resp_bytes <- as.numeric(conn_log_malware_43$resp_bytes) 

conn_log_malware_43$resp_pkts <- as.numeric(conn_log_malware_43$resp_pkts) 

conn_log_malware_43$orig_pkts <- as.numeric(conn_log_malware_43$orig_pkts) 

conn_log_malware_43$orig_ip_bytes <- as.numeric(conn_log_malware_43$orig_ip_bytes) 

conn_log_malware_43$resp_ip_bytes <- as.numeric(conn_log_malware_43$resp_ip_bytes) 

 

conn_log_malware_43$service <- as.character(conn_log_malware_43$service) 

conn_log_malware_43$local_orig <- as.numeric(conn_log_malware_43$local_orig) 

conn_log_malware_43$local_resp <- as.numeric(conn_log_malware_43$local_resp) 

 

#for character IVs 

 

conn_log_malware_43[conn_log_malware_43=="-"]<-"0" 

 

 

conn_log_malware_43$missed_bytes <- as.numeric(conn_log_malware_43$missed_bytes) 

conn_log_malware_43[conn_log_malware_43=="(empty)"]<-"0" 

conn_log_malware_43$tunnel_parents <- as.numeric(conn_log_malware_43$tunnel_parents) 

#conn_log_malware_43[is.na(conn_log_malware_43)] <- 0 

conn_log_malware_43$id.orig_p[is.na(conn_log_malware_43$id.orig_p)] <- 0 

conn_log_malware_43$id.resp_p[is.na(conn_log_malware_43$id.resp_p)] <- 0 

conn_log_malware_43$duration[is.na(conn_log_malware_43$duration)] <- 0 

conn_log_malware_43$orig_bytes[is.na(conn_log_malware_43$orig_bytes)] <- 0 

conn_log_malware_43$resp_bytes[is.na(conn_log_malware_43$resp_bytes)] <- 0 

conn_log_malware_43$local_orig[is.na(conn_log_malware_43$local_orig)] <- 0 

conn_log_malware_43$local_resp[is.na(conn_log_malware_43$local_resp)] <- 0 

conn_log_malware_43$missed_bytes[is.na(conn_log_malware_43$missed_bytes)] <- 0 

conn_log_malware_43$orig_pkts[is.na(conn_log_malware_43$orig_pkts)] <- 0 

conn_log_malware_43$orig_ip_bytes[is.na(conn_log_malware_43$orig_ip_bytes)] <- 0 

conn_log_malware_43$resp_pkts[is.na(conn_log_malware_43$resp_pkts)] <- 0 

conn_log_malware_43$resp_ip_bytes[is.na(conn_log_malware_43$resp_ip_bytes)] <- 0 

conn_log_malware_43$tunnel_parents[is.na(conn_log_malware_43$tunnel_parents)] <- 0 

conn_log_malware_43$label <- NULL #redundant with the primary DV 

 

#worked! 

 

View(conn_log_malware_43) 

 

### 

 

 

### 
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conn_log_malware_44$timestamp <- NULL 

conn_log_malware_44$userid <- NULL 

conn_log_malware_44$id.orig_h <- NULL 

conn_log_malware_44$id.resp_h <- NULL 

conn_log_malware_44$duration <- as.numeric(conn_log_malware_44$duration) 

conn_log_malware_44$orig_bytes <- as.numeric(conn_log_malware_44$orig_bytes) 

conn_log_malware_44$resp_bytes <- as.numeric(conn_log_malware_44$resp_bytes) 

conn_log_malware_44$resp_pkts <- as.numeric(conn_log_malware_44$resp_pkts) 

conn_log_malware_44$orig_pkts <- as.numeric(conn_log_malware_44$orig_pkts) 

conn_log_malware_44$orig_ip_bytes <- as.numeric(conn_log_malware_44$orig_ip_bytes) 

conn_log_malware_44$resp_ip_bytes <- as.numeric(conn_log_malware_44$resp_ip_bytes) 

 

conn_log_malware_44$service <- as.character(conn_log_malware_44$service) 

conn_log_malware_44$local_orig <- as.numeric(conn_log_malware_44$local_orig) 

conn_log_malware_44$local_resp <- as.numeric(conn_log_malware_44$local_resp) 

 

#for character IVs 

 

conn_log_malware_44[conn_log_malware_44=="-"]<-"0" 

 

 

conn_log_malware_44$missed_bytes <- as.numeric(conn_log_malware_44$missed_bytes) 

conn_log_malware_44[conn_log_malware_44=="(empty)"]<-"0" 

conn_log_malware_44$tunnel_parents <- as.numeric(conn_log_malware_44$tunnel_parents) 

#conn_log_malware_44[is.na(conn_log_malware_44)] <- 0 

conn_log_malware_44$id.orig_p[is.na(conn_log_malware_44$id.orig_p)] <- 0 

conn_log_malware_44$id.resp_p[is.na(conn_log_malware_44$id.resp_p)] <- 0 

conn_log_malware_44$duration[is.na(conn_log_malware_44$duration)] <- 0 

conn_log_malware_44$orig_bytes[is.na(conn_log_malware_44$orig_bytes)] <- 0 

conn_log_malware_44$resp_bytes[is.na(conn_log_malware_44$resp_bytes)] <- 0 

conn_log_malware_44$local_orig[is.na(conn_log_malware_44$local_orig)] <- 0 

conn_log_malware_44$local_resp[is.na(conn_log_malware_44$local_resp)] <- 0 

conn_log_malware_44$missed_bytes[is.na(conn_log_malware_44$missed_bytes)] <- 0 

conn_log_malware_44$orig_pkts[is.na(conn_log_malware_44$orig_pkts)] <- 0 

conn_log_malware_44$orig_ip_bytes[is.na(conn_log_malware_44$orig_ip_bytes)] <- 0 

conn_log_malware_44$resp_pkts[is.na(conn_log_malware_44$resp_pkts)] <- 0 

conn_log_malware_44$resp_ip_bytes[is.na(conn_log_malware_44$resp_ip_bytes)] <- 0 

conn_log_malware_44$tunnel_parents[is.na(conn_log_malware_44$tunnel_parents)] <- 0 

conn_log_malware_44$label <- NULL #redundant with the primary DV 

 

#worked! 

 

View(conn_log_malware_44) 

 

### 
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### 

 

conn_log_malware_48$timestamp <- NULL 

conn_log_malware_48$userid <- NULL 

conn_log_malware_48$id.orig_h <- NULL 

conn_log_malware_48$id.resp_h <- NULL 

conn_log_malware_48$duration <- as.numeric(conn_log_malware_48$duration) 

conn_log_malware_48$orig_bytes <- as.numeric(conn_log_malware_48$orig_bytes) 

conn_log_malware_48$resp_bytes <- as.numeric(conn_log_malware_48$resp_bytes) 

conn_log_malware_48$resp_pkts <- as.numeric(conn_log_malware_48$resp_pkts) 

conn_log_malware_48$orig_pkts <- as.numeric(conn_log_malware_48$orig_pkts) 

conn_log_malware_48$orig_ip_bytes <- as.numeric(conn_log_malware_48$orig_ip_bytes) 

conn_log_malware_48$resp_ip_bytes <- as.numeric(conn_log_malware_48$resp_ip_bytes) 

 

conn_log_malware_48$service <- as.character(conn_log_malware_48$service) 

conn_log_malware_48$local_orig <- as.numeric(conn_log_malware_48$local_orig) 

conn_log_malware_48$local_resp <- as.numeric(conn_log_malware_48$local_resp) 

 

#for character IVs 

 

conn_log_malware_48[conn_log_malware_48=="-"]<-"0" 

 

 

conn_log_malware_48$missed_bytes <- as.numeric(conn_log_malware_48$missed_bytes) 

conn_log_malware_48[conn_log_malware_48=="(empty)"]<-"0" 

conn_log_malware_48$tunnel_parents <- as.numeric(conn_log_malware_48$tunnel_parents) 

#conn_log_malware_48[is.na(conn_log_malware_48)] <- 0 

conn_log_malware_48$id.orig_p[is.na(conn_log_malware_48$id.orig_p)] <- 0 

conn_log_malware_48$id.resp_p[is.na(conn_log_malware_48$id.resp_p)] <- 0 

conn_log_malware_48$duration[is.na(conn_log_malware_48$duration)] <- 0 

conn_log_malware_48$orig_bytes[is.na(conn_log_malware_48$orig_bytes)] <- 0 

conn_log_malware_48$resp_bytes[is.na(conn_log_malware_48$resp_bytes)] <- 0 

conn_log_malware_48$local_orig[is.na(conn_log_malware_48$local_orig)] <- 0 

conn_log_malware_48$local_resp[is.na(conn_log_malware_48$local_resp)] <- 0 

conn_log_malware_48$missed_bytes[is.na(conn_log_malware_48$missed_bytes)] <- 0 

conn_log_malware_48$orig_pkts[is.na(conn_log_malware_48$orig_pkts)] <- 0 

conn_log_malware_48$orig_ip_bytes[is.na(conn_log_malware_48$orig_ip_bytes)] <- 0 

conn_log_malware_48$resp_pkts[is.na(conn_log_malware_48$resp_pkts)] <- 0 

conn_log_malware_48$resp_ip_bytes[is.na(conn_log_malware_48$resp_ip_bytes)] <- 0 

conn_log_malware_48$tunnel_parents[is.na(conn_log_malware_48$tunnel_parents)] <- 0 

conn_log_malware_48$label <- NULL #redundant with the primary DV 

 

#worked! 
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View(conn_log_malware_48) 

 

### 

 

 

 

### 

 

conn_log_malware_49$timestamp <- NULL 

conn_log_malware_49$userid <- NULL 

conn_log_malware_49$id.orig_h <- NULL 

conn_log_malware_49$id.resp_h <- NULL 

conn_log_malware_49$duration <- as.numeric(conn_log_malware_49$duration) 

conn_log_malware_49$orig_bytes <- as.numeric(conn_log_malware_49$orig_bytes) 

conn_log_malware_49$resp_bytes <- as.numeric(conn_log_malware_49$resp_bytes) 

conn_log_malware_49$resp_pkts <- as.numeric(conn_log_malware_49$resp_pkts) 

conn_log_malware_49$orig_pkts <- as.numeric(conn_log_malware_49$orig_pkts) 

conn_log_malware_49$orig_ip_bytes <- as.numeric(conn_log_malware_49$orig_ip_bytes) 

conn_log_malware_49$resp_ip_bytes <- as.numeric(conn_log_malware_49$resp_ip_bytes) 

 

conn_log_malware_49$service <- as.character(conn_log_malware_49$service) 

conn_log_malware_49$local_orig <- as.numeric(conn_log_malware_49$local_orig) 

conn_log_malware_49$local_resp <- as.numeric(conn_log_malware_49$local_resp) 

 

#for character IVs 

 

conn_log_malware_49[conn_log_malware_49=="-"]<-"0" 

 

 

conn_log_malware_49$missed_bytes <- as.numeric(conn_log_malware_49$missed_bytes) 

conn_log_malware_49[conn_log_malware_49=="(empty)"]<-"0" 

conn_log_malware_49$tunnel_parents <- as.numeric(conn_log_malware_49$tunnel_parents) 

#conn_log_malware_49[is.na(conn_log_malware_49)] <- 0 

conn_log_malware_49$id.orig_p[is.na(conn_log_malware_49$id.orig_p)] <- 0 

conn_log_malware_49$id.resp_p[is.na(conn_log_malware_49$id.resp_p)] <- 0 

conn_log_malware_49$duration[is.na(conn_log_malware_49$duration)] <- 0 

conn_log_malware_49$orig_bytes[is.na(conn_log_malware_49$orig_bytes)] <- 0 

conn_log_malware_49$resp_bytes[is.na(conn_log_malware_49$resp_bytes)] <- 0 

conn_log_malware_49$local_orig[is.na(conn_log_malware_49$local_orig)] <- 0 

conn_log_malware_49$local_resp[is.na(conn_log_malware_49$local_resp)] <- 0 

conn_log_malware_49$missed_bytes[is.na(conn_log_malware_49$missed_bytes)] <- 0 

conn_log_malware_49$orig_pkts[is.na(conn_log_malware_49$orig_pkts)] <- 0 

conn_log_malware_49$orig_ip_bytes[is.na(conn_log_malware_49$orig_ip_bytes)] <- 0 

conn_log_malware_49$resp_pkts[is.na(conn_log_malware_49$resp_pkts)] <- 0 

conn_log_malware_49$resp_ip_bytes[is.na(conn_log_malware_49$resp_ip_bytes)] <- 0 

conn_log_malware_49$tunnel_parents[is.na(conn_log_malware_49$tunnel_parents)] <- 0 
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conn_log_malware_49$label <- NULL #redundant with the primary DV 

 

#worked! 

 

View(conn_log_malware_49) 

 

### 

 

### 

 

conn_log_malware_52$timestamp <- NULL 

conn_log_malware_52$userid <- NULL 

conn_log_malware_52$id.orig_h <- NULL 

conn_log_malware_52$id.resp_h <- NULL 

conn_log_malware_52$duration <- as.numeric(conn_log_malware_52$duration) 

conn_log_malware_52$orig_bytes <- as.numeric(conn_log_malware_52$orig_bytes) 

conn_log_malware_52$resp_bytes <- as.numeric(conn_log_malware_52$resp_bytes) 

conn_log_malware_52$resp_pkts <- as.numeric(conn_log_malware_52$resp_pkts) 

conn_log_malware_52$orig_pkts <- as.numeric(conn_log_malware_52$orig_pkts) 

conn_log_malware_52$orig_ip_bytes <- as.numeric(conn_log_malware_52$orig_ip_bytes) 

conn_log_malware_52$resp_ip_bytes <- as.numeric(conn_log_malware_52$resp_ip_bytes) 

 

conn_log_malware_52$service <- as.character(conn_log_malware_52$service) 

conn_log_malware_52$local_orig <- as.numeric(conn_log_malware_52$local_orig) 

conn_log_malware_52$local_resp <- as.numeric(conn_log_malware_52$local_resp) 

 

#for character IVs 

 

conn_log_malware_52[conn_log_malware_52=="-"]<-"0" 

 

 

conn_log_malware_52$missed_bytes <- as.numeric(conn_log_malware_52$missed_bytes) 

conn_log_malware_52[conn_log_malware_52=="(empty)"]<-"0" 

conn_log_malware_52$tunnel_parents <- as.numeric(conn_log_malware_52$tunnel_parents) 

#conn_log_malware_52[is.na(conn_log_malware_52)] <- 0 

conn_log_malware_52$id.orig_p[is.na(conn_log_malware_52$id.orig_p)] <- 0 

conn_log_malware_52$id.resp_p[is.na(conn_log_malware_52$id.resp_p)] <- 0 

conn_log_malware_52$duration[is.na(conn_log_malware_52$duration)] <- 0 

conn_log_malware_52$orig_bytes[is.na(conn_log_malware_52$orig_bytes)] <- 0 

conn_log_malware_52$resp_bytes[is.na(conn_log_malware_52$resp_bytes)] <- 0 

conn_log_malware_52$local_orig[is.na(conn_log_malware_52$local_orig)] <- 0 

conn_log_malware_52$local_resp[is.na(conn_log_malware_52$local_resp)] <- 0 

conn_log_malware_52$missed_bytes[is.na(conn_log_malware_52$missed_bytes)] <- 0 

conn_log_malware_52$orig_pkts[is.na(conn_log_malware_52$orig_pkts)] <- 0 

conn_log_malware_52$orig_ip_bytes[is.na(conn_log_malware_52$orig_ip_bytes)] <- 0 

conn_log_malware_52$resp_pkts[is.na(conn_log_malware_52$resp_pkts)] <- 0 
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conn_log_malware_52$resp_ip_bytes[is.na(conn_log_malware_52$resp_ip_bytes)] <- 0 

conn_log_malware_52$tunnel_parents[is.na(conn_log_malware_52$tunnel_parents)] <- 0 

conn_log_malware_52$label <- NULL #redundant with the primary DV 

 

#worked! 

 

View(conn_log_malware_52) 

 

### 

 

### 

 

conn_log_malware_60$timestamp <- NULL 

conn_log_malware_60$userid <- NULL 

conn_log_malware_60$id.orig_h <- NULL 

conn_log_malware_60$id.resp_h <- NULL 

conn_log_malware_60$duration <- as.numeric(conn_log_malware_60$duration) 

conn_log_malware_60$orig_bytes <- as.numeric(conn_log_malware_60$orig_bytes) 

conn_log_malware_60$resp_bytes <- as.numeric(conn_log_malware_60$resp_bytes) 

conn_log_malware_60$resp_pkts <- as.numeric(conn_log_malware_60$resp_pkts) 

conn_log_malware_60$orig_pkts <- as.numeric(conn_log_malware_60$orig_pkts) 

conn_log_malware_60$orig_ip_bytes <- as.numeric(conn_log_malware_60$orig_ip_bytes) 

conn_log_malware_60$resp_ip_bytes <- as.numeric(conn_log_malware_60$resp_ip_bytes) 

 

conn_log_malware_60$service <- as.character(conn_log_malware_60$service) 

conn_log_malware_60$local_orig <- as.numeric(conn_log_malware_60$local_orig) 

conn_log_malware_60$local_resp <- as.numeric(conn_log_malware_60$local_resp) 

 

#for character IVs 

 

conn_log_malware_60[conn_log_malware_60=="-"]<-"0" 

 

 

conn_log_malware_60$missed_bytes <- as.numeric(conn_log_malware_60$missed_bytes) 

conn_log_malware_60[conn_log_malware_60=="(empty)"]<-"0" 

conn_log_malware_60$tunnel_parents <- as.numeric(conn_log_malware_60$tunnel_parents) 

#conn_log_malware_60[is.na(conn_log_malware_60)] <- 0 

conn_log_malware_60$id.orig_p[is.na(conn_log_malware_60$id.orig_p)] <- 0 

conn_log_malware_60$id.resp_p[is.na(conn_log_malware_60$id.resp_p)] <- 0 

conn_log_malware_60$duration[is.na(conn_log_malware_60$duration)] <- 0 

conn_log_malware_60$orig_bytes[is.na(conn_log_malware_60$orig_bytes)] <- 0 

conn_log_malware_60$resp_bytes[is.na(conn_log_malware_60$resp_bytes)] <- 0 

conn_log_malware_60$local_orig[is.na(conn_log_malware_60$local_orig)] <- 0 

conn_log_malware_60$local_resp[is.na(conn_log_malware_60$local_resp)] <- 0 

conn_log_malware_60$missed_bytes[is.na(conn_log_malware_60$missed_bytes)] <- 0 

conn_log_malware_60$orig_pkts[is.na(conn_log_malware_60$orig_pkts)] <- 0 
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conn_log_malware_60$orig_ip_bytes[is.na(conn_log_malware_60$orig_ip_bytes)] <- 0 

conn_log_malware_60$resp_pkts[is.na(conn_log_malware_60$resp_pkts)] <- 0 

conn_log_malware_60$resp_ip_bytes[is.na(conn_log_malware_60$resp_ip_bytes)] <- 0 

conn_log_malware_60$tunnel_parents[is.na(conn_log_malware_60$tunnel_parents)] <- 0 

conn_log_malware_60$label <- NULL #redundant with the primary DV 

 

#worked! 

 

View(conn_log_malware_60) 

 

### 

 

 

#now start combining these sub-dataframes into the single final "master" dataframe using dplyr's 

bind_row function. 

 

#WIP v1.. 

 

#perform memory garbage collection after all of this large dataframe manipulation, to free up 

any memory that is still in the cache. 

gc() 

 

 

final_master_df <- bind_rows(conn_log_malware_1, conn_log_malware_3, 

conn_log_malware_7, conn_log_malware_8, conn_log_malware_9, conn_log_malware_17, 

conn_log_malware_20, conn_log_malware_21, conn_log_malware_33, conn_log_malware_34, 

conn_log_malware_35, conn_log_malware_36, conn_log_malware_39, conn_log_malware_42, 

conn_log_malware_43, conn_log_malware_44, conn_log_malware_48, conn_log_malware_49, 

conn_log_malware_52, conn_log_malware_60) 

 

#setwd("C://ISU_PhD//COT711_Dissertation//") 

#write.csv(final_master_df, "final_master_df.csv") 

 

#finished here on evening of 9/5/22. Master DF is fully merged. Still need to balance these factor 

classes with raw row copies: 

# C&C, C&C-Torii, C&C-HeartBeat, C&C-Mirai, C&C-HeartBeat-Attack, C&C-

PartOfAHorizontalPortScan, Attack, C&C-FileDownload, Okiru-Attack, Pa 

##############################################################################

############################################################################## 

 

setwd("C://ISU_PhD//COT711_Dissertation//") 

getwd() 

#[1] "C:/ISU_PhD/COT711_Dissertation" 

 

 library(readr) 

 final_master_df <- read_csv("final_master_df.csv") 
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#remove artifact first IV (row count IV) created by the write.csv function to the output df. 

final_master_df$..1 <- NULL 

 

 

 

#New names:  

#• `` -> `..1` 

#Rows: 146924220 Columns: 19 

#── Column specification ───────────────────────────

───────────────────────────────────────

─── 

#Delimiter: "," 

#chr (5): proto, service, conn_state, history, detailed-label 

#dbl (14): ..1, id.orig_p, id.resp_p, duration, orig_bytes, resp_bytes, local_orig, local.. 

# 

#ℹ Use `spec()` to retrieve the full column specification for this data. 

#ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message. 

 

 View(final_master_df) 

 

 

#free up junk from RAM with garbage collection routine. 

gc() 

# used (Mb) gc trigger (Mb) max used (Mb) 

#Ncells 863013 46.1 1479600 79.1 1479600 79.1 

#Vcells 2718659811 20741.8 5418587411 41340.6 5363517157 40920.4 

 

#show the class balance current state 

 table(final_master_df$`detailed-label`) 

 

# - 0  

# 75955 11139745  

# Attack C&C  

# 8865 17613  

# C&C-FileDownload C&C-HeartBeat  

# 53 26962  

# C&C-HeartBeat-Attack C&C-HeartBeat-FileDownload  

# 834 11  

# C&C-Mirai C&C-PartOfAHorizontalPortScan  

# 2 888  

# C&C-Torii DDoS  

# 30 12267750  

# FileDownload Okiru  

# 18 38317947  
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# Okiru-Attack Pa  

# 3 1  

# PartOfAHorizontalPortScan PartOfAHorizontalPortScan-Attack  

# 85067519 5  

 

 #manually balance these ultra-minority classes to ~500k each 

 

#for research paper one, convert all of these character IVs to factors, then convert those factors 

(nominal data) into 

#numeric values (e.g., recode the nominal qualitative data into ordinal numeric dummy variables, 

then run an npmanova/permanova test. 

 

#then write up the results, hopefully with a p-value below an alpha test statistic so we can reject 

our null hypothesis. 

 

 

final_master_df$proto <- as.factor(final_master_df$proto) 

final_master_df$service <- as.factor(final_master_df$service) 

final_master_df$conn_state <- as.factor(final_master_df$conn_state) 

final_master_df$history <- as.factor(final_master_df$history) 

final_master_df$`detailed-label` <- as.factor(final_master_df$`detailed-label`) #convert the DV 

to factors 

 

#now convert these nominal factors to ordinal values (numeric scores) by recoding them to 

as.numeric, which uses their sorted index values 

 

final_master_df$proto <- as.numeric(final_master_df$proto) 

final_master_df$service <- as.numeric(final_master_df$service) 

final_master_df$conn_state <- as.numeric(final_master_df$conn_state) 

final_master_df$history <- as.numeric(final_master_df$history) 

final_master_df$`detailed-label` <- as.numeric(final_master_df$`detailed-label`) #convert the 

DV to ordinal 

 

#bring vegan package into memory 

library(vegan) 

 

y <- final_master_df 

y$`detailed.label` <- NULL 

#y becomes my predictor variables list (IVs), without the DV present. 

 

 

#x1 <- adonis(y ~ final_master_df$`detailed-label`, method = "euclidean", permutations = 999) 

 

#I need to randomly subsample the df in order to be able to be processed by adonis. 

library(dplyr) 
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set.seed(123)  

#subset this very large dataframe by randomly selecting 75000 rows of data, to be able to fit the 

permanova function vector into RAM 

final_master_df_small <- sample_n(final_master_df, 75000) 

 

#also do 70k subsample (easier), and still meets critieria from the Chi-square goodness of fit 

sample size test 

 

y2 <- final_master_df_small 

y2$`detailed-label` <- NULL 

 

x2 <- adonis(y2 ~ final_master_df_small$`detailed-label`, method = "euclidean", permutations = 

200) #alpha = 0.05 

 

 

#now flip the y and x variables around, so I can see which specific IVs are statistically 

significant against our DV. 

y2 <- final_master_df_small 

y2$`detailed-label` <- NULL 

 

final_master_df_small$..1 <- NULL 

  

 x1 <- colnames(final_master_df_small)[colnames(final_master_df_small) != "detailed-label"]  

 x1 

 

#make the 'detailed-label' the true DV for a predictive model, and get the individual IVs that are 

statistically significant, along 

#with the residuals for the entire model so I can show both the p-value for the entire model and 

the p-values for the best KRIs. 

x2b <- adonis2(final_master_df_small$'detailed-label' ~ x1, method = "euclidean", permutations 

= 200) #alpha = 0.05 

x2b 

 

 

#see email notes re: Chi-Squared Goodness of Fit test to determine random sample size for 20 

groups with the effect size parameters I've selected. 

 

 

#see https://www.researchgate.net/topic/Adonis, adonis function will work with unbalanced 

design group data. 

#however I may want to use method = "bray" if Euclidean becomes problematic for me. 

 

#x4$aov.tab 

#Permutation: free 

#Number of permutations: 200 

# 
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#Terms added sequentially (first to last) 

# 

# Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)  

#final_master_df_small$`detailed-label` 1 2.0887e+18 2.0887e+18 4.9588 0.00017 0.02985 * 

#Residuals 29998 1.2635e+22 4.2121e+17 0.99983  

#Total 29999 1.2637e+22 1.00000  

#--- 

#Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

x4$coefficients #use a function to format this "more nicer" for publication :) 

 

# id.orig_p id.resp_p proto service 

#(Intercept) 32598.8016 24731.1250 2.038494345 1.882805319 

#final_master_df_small$`detailed-label` 274.1975 -442.1074 -0.002402864 0.002810256 

# duration orig_bytes resp_bytes conn_state 

#(Intercept) 1.37163018 42990743 2.1899780 6.329912 

#final_master_df_small$`detailed-label` -0.07898488 -2065813 -0.1347239 0.032525 

# local_orig local_resp missed_bytes history 

#(Intercept) 0 0 0 62.7266961 

#final_master_df_small$`detailed-label` 0 0 0 0.2737409 

# orig_pkts orig_ip_bytes resp_pkts resp_ip_bytes 

#(Intercept) 1.648871362 98.191130 0.022566426 3.2372304 

#final_master_df_small$`detailed-label` -0.007264689 -2.139809 -0.001313123 -0.1959011 

# tunnel_parents 

#(Intercept) 0 

#final_master_df_small$`detailed-label` 0 

 

#we are statistically significant against the alpha test statistic :) 

 

 

 

 

#permutations 999 is equivalent of stating that my alpha test statistic is 0.01 (1 out of 999 events 

taking place due to random chance) 

 

 

 

 

##### 

#start the h2o model build process here. 

library(h2o) 

h2o.init(nthreads=-1, max_mem_size = "50G") 

 

 

#factorize / convert the original raw df before bringing it into h2o. 

final_master_df$proto <- as.factor(final_master_df$proto) 
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final_master_df$service <- as.factor(final_master_df$service) 

final_master_df$conn_state <- as.factor(final_master_df$conn_state) 

final_master_df$history <- as.factor(final_master_df$history) 

final_master_df$`detailed-label` <- as.factor(final_master_df$`detailed-label`) #convert the DV 

to factors 

 

#now convert these nominal factors to ordinal values (numeric scores) by recoding them to 

as.numeric, which uses their sorted index values 

  

#final_master_df$proto <- as.numeric(final_master_df$proto) 

#final_master_df$service <- as.numeric(final_master_df$service) 

#final_master_df$conn_state <- as.numeric(final_master_df$conn_state) 

#final_master_df$history <- as.numeric(final_master_df$history) 

#final_master_df$`detailed-label` <- as.numeric(final_master_df$`detailed-label`) #convert the 

DV to ordinal 

 

 

 

#iris.h2o <- as.h2o(localH2O, iris.r, key="iris.h2o") 

final_master_df.h2o <- as.h2o(final_master_df, key="final_master_df.h2o") 

 

#clean out the original raw df so I free up memory. 

final_master_df <- NULL 

 

################################now build an ANN classification predictive model. 

 

set.seed(123) 

# Split dataset giving the training dataset 70% of the data 

final_master_split <- h2o.splitFrame(data = final_master_df.h2o, ratios = 0.70) 

print(dim(final_master_split[[1]])) 

#[1] 102847073 18 

print(dim(final_master_split[[2]])) 

#[1] 44077147 18 

 

# Create a training set from the 1st dataset in the split 

final_master_train <- final_master_split[[1]] 

 

# Create a testing set from the 2nd dataset in the split 

final_master_test <- final_master_split[[2]] 

 

#build the working prototype ANN model for RQ1 :) 

 

############################################################################# 

# Build and train the model: 

dl <- h2o.deeplearning(x = 1:17, 

 y = "detailed-label", 
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 distribution = "multinomial", 

 hidden = c(40,40,40), 

 epochs = 10, 

 overwrite_with_best_model = T, 

 reproducible = FALSE, 

 activation = "Tanh", 

 single_node_mode = FALSE, 

 balance_classes = TRUE, 

 force_load_balance = FALSE, 

 seed = 12345, 

 categorical_encoding = "Eigen", 

 rate = 0.05, 

 adaptive_rate = T, 

 score_training_samples = 10000, 

 score_validation_samples = 10000, 

 training_frame = final_master_train, 

 validation_frame = final_master_test, 

 variable_importances = T, 

 stopping_metric = "misclassification", 

 stopping_tolerance = 0.01, 

 stopping_rounds = 0 ) 

 

 

#see: https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/deep-learning.html 

 

 

 

 

 

#continue here on tues. 9/6/22, modify this code to apply to each of the special minority classes 

listed above, but apply it to the  

#final_master_df dataframe, not the individual sub dataframes. 

 

#ZZZZZ 

 

library(tidyverse) 

 

conn_log_malware_1 %>% filter(`detailed-label` == "C&C") 

conn_log_malware_1_C&C <- conn_log_malware_1 %>% filter(`detailed-label` == "C&C") 

conn_log_malware_1_CC <- conn_log_malware_1 %>% filter(`detailed-label` == "C&C") 

View(conn_log_malware_1_CC) 

#worked!!! 

 

#now upsample conn_log_malware_1_CC by 66200 times. 
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rebalanced_conn_log_malware_1_CC <- 

conn_log_malware_1_CC[rep(seq_len(nrow(conn_log_malware_1_CC)), each = 66200), ] 

View(rebalanced_conn_log_malware_1_CC) 

 

#now rbind this rebalanced df into the conn_log_malware_1 df 

conn_log_malware_1_balanced <- bind_rows(conn_log_malware_1, 

rebalanced_conn_log_malware_1_CC) 

 

table(conn_log_malware_1$`detailed-label`) 

 

#before: 

#0 C&C PartOfAHorizontalPortScan 

#469275 8 539465 

 

 

table(conn_log_malware_1_balanced$`detailed-label`) 

 

#after: 

#0 C&C PartOfAHorizontalPortScan 

#469275 529608 539465 

 

 

 

table(conn_log_malware_1$`detailed-label`) 

 

#before: 

#0 C&C PartOfAHorizontalPortScan 

#469275 8 539465 

 

 

table(conn_log_malware_1_balanced$`detailed-label`) 

 

#after: 

#0 C&C PartOfAHorizontalPortScan 

#469275 529608 539465 

 

 

#once that takes place then convert the master df character IVs to factors, including the DV. 

Then start creating the first h2o model for RQ1. 

 

 

 

#now convert the character IVs above to factors, but since we are factorizing this nominal data, 

we don't want to convert the IVs to 

#factors until the very end when all dataframe segments are merged together. So that becomes 

the last step before we randomly subset 
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#the data into the new training dataset. 

 

 

 

 

 

 

#in my Results section, discuss how I manually oversampled the C&C class (code above), and 

will also probably do the same with the 

#C&C-Torii, C&C-HeartBeat, C&C-Mirai, C&C-HeartBeat-Attack, C&C-

PartOfAHorizontalPortScan, Attack, C&C-FileDownload, 

#Okiru-Attack, Pa classes which were also each very rare (~30 observations or less). 

#All other classes can be balanced inside h2o using statistical methods 

#inside the h2o cluster as sufficient raw observations exist to provide baseline pattern data. 

 

#for the statistical class balancing, this will all be handled inside the h2o cluster model as a 

parameter for the deep learning ANN. 

 

 

 

#View DV classes from the first half of all dataframes. 

 

 table(conn_log$`detailed-label`) 

 

# -  

#452  

 

 table(conn_log_5_1$`detailed-label`) 

 

# -  

#1374  

 

 table(conn_log_7_1$`detailed-label`) 

 

# -  

#130  

 

 table(conn_log_malware_1$`detailed-label`) 

 

# - C&C PartOfAHorizontalPortScan  

# 469275 8 539465  

 

 table(conn_log_malware_3$`detailed-label`) 

 

# - Attack C&C  

# 4536 5962 8  
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#PartOfAHorizontalPortScan  

# 145597  

 

 table(conn_log_malware_7$`detailed-label`) 

 

# - C&C-HeartBeat DDoS Okiru  

# 75955 5778 39584 11333397  

 

 table(conn_log_malware_8$`detailed-label`) 

 

# - C&C  

#2181 8222  

 

 table(conn_log_malware_9$`detailed-label`) 

 

# - PartOfAHorizontalPortScan  

# 22548 6355745  

 

 table(conn_log_malware_17$`detailed-label`) 

 

# - Attack  

# 14567 4  

# C&C-HeartBeat DDoS  

# 3198 6450012  

# Okiru PartOfAHorizontalPortScan  

# 6449728 12899552  

#PartOfAHorizontalPortScan-Attack  

# 5  

 

 table(conn_log_malware_20$`detailed-label`) 

 

# - C&C-Torii  

# 3193 16  

  

table(conn_log_malware_21$`detailed-label`) 

 

# - C&C-Torii  

# 3272 14  

 

 

 

table(conn_log_malware_33$`detailed-label`) 

 

 

# - C&C-HeartBeat Okiru  

# 629104 2203 6180343  
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#PartOfAHorizontalPortScan  

# 17917351  

 

 

table(conn_log_malware_34$`detailed-label`) 

 

# - C&C DDoS  

# 1923 6706 14394  

#PartOfAHorizontalPortScan  

# 122  

 

 

table(conn_log_malware_35$`detailed-label`) 

 

# - Attack C&C C&C-FileDownload DDoS  

# 8262389 3 81 12 2185302  

# 

 

 

table(conn_log_malware_36$`detailed-label`) 

 

# - C&C-HeartBeat Okiru Okiru-Attack  

#2663 15688 13626744 3  

 

 

 

table(conn_log_malware_39$`detailed-label`) 

 

# - Attack C&C  

# 1514 144 333  

# Pa PartOfAHorizontalPortScan  

# 1 15511726  

 

 

table(conn_log_malware_42$`detailed-label`) 

 

#FileDownload 

# 3 

 

 

table(conn_log_malware_43$`detailed-label`) 

 

# - C&C C&C-FileDownload  

# 1706280 313 14  

# FileDownload Okiru PartOfAHorizontalPortScan  

# 1 727735 3127319 
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table(conn_log_malware_44$`detailed-label`) 

 

# - C&C C&C-FileDownload DDoS  

# 211 14 11 1  

# 

 

 

 

table(conn_log_malware_48$`detailed-label`) 

 

# - Attack C&C-HeartBeat-Attack  

# 3734 2752 834  

# C&C-HeartBeat-FileDownload C&C-PartOfAHorizontalPortScan PartOfAHorizontalPortScan  

# 11 888 3386119  

 

 

 table(conn_log_malware_49$`detailed-label`) 

 

# - C&C C&C-FileDownload  

# 3665 1922 1  

# FileDownload PartOfAHorizontalPortScan  

# 14 5404959  

  

 

table(conn_log_malware_52$`detailed-label`) 

 

# - C&C C&C-FileDownload  

# 1794 6 12  

# C&C-Mirai PartOfAHorizontalPortScan  

# 2 19779564  

 

 

table(conn_log_malware_60$`detailed-label`) 

 

# - C&C-HeartBeat DDoS  

# 2476 95 3578457  

 

 

 

 

#after all of these dataframes get trimmed (kill redundant DV and the biasing IVs) I can use the 

dplyr package and bind_rows 

#to merge all 23 of these dataframes into a single dataset, THEN utilize another package to 

randomly subsample ~500k observations 
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#from each one, and THEN save that off as the "final" dataframe to be used for all 4 RQs, and 

create an 80/20 train:test split of this 

#subsampled data. 

 

#Then the data munging/data prep is all done, and it's just building the models and permanova 

validations, etc. etc. and writing 

#up all of the results in the paper. 

 

 

getwd() 

#[1] "C:/ISU_PhD/COT711_Dissertation" 

 

 # save the model 

 model_path <- h2o.saveModel(object = dl, path = getwd(), force = TRUE) 

 print(model_path) 

#[1] "C:\\ISU_PhD\\COT711_Dissertation\\DeepLearning_model_R_1663034499858_1" 

 

#see: https://docs.h2o.ai/h2o/latest-stable/h2o-docs/save-and-load-model.html for loading/saving 

h2o DL models in R. 

 

#also see second note file, dl_ANN_h2o_validation_metrics_15sep2022.txt for more extensive 

validation and dl model performance evaluation metrics including RMSE against the 

#validation partition and the KRIs, etc. 

 

  

 h2o.varimp_plot(dl) 

 

 h2o.varimp(dl) 

 

#Variable Importances:  

# variable relative_importance scaled_importance percentage 

#1 orig_ip_bytes 1.000000 1.000000 0.343957 

#2 orig_pkts 0.343250 0.343250 0.118064 

#3 missed_bytes 0.118205 0.118205 0.040657 

#4 id.resp_p 0.089839 0.089839 0.030901 

#5 history.S 0.072771 0.072771 0.025030 

# 

#--- 

# variable relative_importance scaled_importance percentage 

#381 history.ShAdDaFRRRf 0.000505 0.000505 0.000174 

#382 history.ShADFfr 0.000504 0.000504 0.000173 

#383 history.missing(NA) 0.000000 0.000000 0.000000 

#384 conn_state.missing(NA) 0.000000 0.000000 0.000000 

#385 service.missing(NA) 0.000000 0.000000 0.000000 

#386 proto.missing(NA) 0.000000 0.000000 0.000000 
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 varimpdetails <- h2o.varimp(dl) 

 View(varimpdetails) 

 write.csv(varimpdetails, "dl_varimpdetails_KRIs_15sep2022.csv") 

 

#see varimpdetails .csv export file for the full analysis of KRIs. Note that these KRIs are the 

result of one-hot encoding of all of the IVs. Would have been faster to use 

#Eigen factor encoding but it's OK for now. 

 

 

#now predict on the h2o test partition of the dataframe: 

 

pred2 <- h2o.predict(dl, final_master_test) 

 

 

##############################################################################

########################## 

 

#work on the permanova test for the result of the ANN model (dl) against a random subset of the 

test partition (use the 19th column as the DV, e.g. my ANN prediction output). 

#need to determine what the random sample size is, and then run that random sample against 

adonis (will take awhile). 

#This will finalize RQ1. 

  

######################################################################## 

################################ 

 

#code from 9/18 to do this final before and after permanova on full model (using subset data 

with 40k random observations) to test for whole-model statistical significance. 

 

converted_test_with_ANN_predicted_15sep2022 <- 

read.csv("C:/ISU_PhD/COT711_Dissertation/converted_test_with_ANN_predicted_15sep2022.

csv") 

 

View(converted_test_with_ANN_predicted_15sep2022) 

converted_test_with_ANN_predicted_15sep2022$X <- NULL 

 

View(converted_test_with_ANN_predicted_15sep2022) 

 

 converted_test_with_ANN_predicted_15sep2022$proto <- 

as.factor(converted_test_with_ANN_predicted_15sep2022$proto) 

 converted_test_with_ANN_predicted_15sep2022$service <- 

as.factor(converted_test_with_ANN_predicted_15sep2022$service) 

 converted_test_with_ANN_predicted_15sep2022$conn_state <- 

as.factor(converted_test_with_ANN_predicted_15sep2022$conn_state) 

 converted_test_with_ANN_predicted_15sep2022$history <- 

as.factor(converted_test_with_ANN_predicted_15sep2022$history) 
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 converted_test_with_ANN_predicted_15sep2022$detailed.label <- 

as.factor(converted_test_with_ANN_predicted_15sep2022$detailed.label) 

 converted_test_with_ANN_predicted_15sep2022$dl_prediction <- 

as.factor(converted_test_with_ANN_predicted_15sep2022$dl_prediction) 

  

 converted_test_with_ANN_predicted_15sep2022$proto <- 

as.numeric(converted_test_with_ANN_predicted_15sep2022$proto)  

 converted_test_with_ANN_predicted_15sep2022$service <- 

as.numeric(converted_test_with_ANN_predicted_15sep2022$service) 

 converted_test_with_ANN_predicted_15sep2022$conn_state <- 

as.numeric(converted_test_with_ANN_predicted_15sep2022$conn_state) 

 converted_test_with_ANN_predicted_15sep2022$history <- 

as.numeric(converted_test_with_ANN_predicted_15sep2022$history) 

 converted_test_with_ANN_predicted_15sep2022$detailed.label <- 

as.numeric(converted_test_with_ANN_predicted_15sep2022$detailed.label) 

  

#need to convert the DV to numeric as well; vegan requires all data to be numeric. I can decode 

the DV numeric values later by creating a copy of the original column. 

 converted_test_with_ANN_predicted_15sep2022$dl_prediction <- 

as.numeric(converted_test_with_ANN_predicted_15sep2022$dl_prediction) 

 

 after <- converted_test_with_ANN_predicted_15sep2022 

 before <- converted_test_with_ANN_predicted_15sep2022 

 before$dl_prediction <- NULL 

 after$detailed.label <- NULL 

 

library(dplyr) 

 

#40k subsample (easier), and still meets critieria from the Chi-square goodness of fit sample size 

test for statistical power with 23 categories 

set.seed(123)  

#subset this very large dataframe by randomly selecting 40000 rows of data, to be able to fit the 

permanova function vector into RAM 

before_small <- sample_n(before, 40000) 

x 

 

#temporarily do subset to 1k, just to test performance of the function. 

set.seed(123)  

#subset this very large dataframe by randomly selecting 40000 rows of data, to be able to fit the 

permanova function vector into RAM 

before_small <- sample_n(before, 18000) 

after_small <- sample_n(after, 18000) 

 

 

y2 <- before_small 

y2$`detailed-label` <- NULL 
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#x2 <- adonis(y2 ~ final_master_df_small$`detailed-label`, method = "euclidean", permutations 

= 200) #alpha = 0.05 

#try method = euclidean OR method = bray, to see which works better. 

x2 <- adonis2(y2 ~ before_small$detailed.label, method = "bray", permutations = 200, 

by=NULL) #alpha = 0.005, with by=NULL meaning model as a whole regardless of IV ordering 

is tested for significance. 

 

 

x2$`Pr(>F)` 

#[1] 0.004975124 NA NA 

x2 

 

#Permutation test for adonis under reduced model 

#Permutation: free 

#Number of permutations: 200 

# 

#adonis2(formula = y2 ~ before_small$detailed.label, permutations = 200, method = "bray", by 

= NULL) 

# Df SumOfSqs R2 F Pr(>F)  

#Model 1 16.1 0.00363 145.79 0.004975 ** 

#Residual 39998 4420.8 0.99637  

#Total 39999 4436.9 1.00000  

#--- 

#Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

x2$Df 

#[1] 1 39998 39999 

x2$R2 

#[1] 0.003631779 0.996368221 1.000000000 

x2$F 

#[1] 145.7934 NA NA 

x2$`Pr(>F)` 

#[1] 0.004975124 NA NA 

 

#now run the model for the "after" results from the ANN predictive model. 

 

after_small <- sample_n(after, 40000) 

 

after_small$dl_prediction <- as.factor(after_small$dl_prediction) 

after_small$dl_prediction <- as.numeric(after_small$dl_prediction) 

 

y2 <- NULL 

 

y2 <- after_small 

y2$dl_prediction <- NULL 
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x2 <- adonis2(y2 ~ after_small$dl_prediction, method = "bray", permutations = 200, by=NULL) 

#alpha = 0.005, with by=NULL meaning model as a whole regardless of IV ordering is tested for 

significance. 

 

#note: 44m test partition observations from IoT-23 (30% total population) were reduced to 

40,000 randomly sampled observations for use by the 200 permutation PERMANOVA test 

model. 

 

 

  

x2 <- adonis2(after_small$dl_prediction ~ 

y2$id.orig_p+y2$id.resp_p+y2$proto+y2$service+y2$duration+y2$orig_bytes+y2$resp_bytes+

y2$conn_state+y2$local_orig+y2$local_resp+y2$missed_bytes+y2$history+y2$orig_pkts+y2$o

rig_ip_bytes+y2$resp_pkts+y2$resp_ip_bytes+y2$tunnel_parents, method = "bray", 

permutations = 20, by=NULL) #alpha = 0.005, with by=NULL meaning model as a whole 

regardless of IV ordering is tested for significance. 

x2 

 

#permanova output of my ANN predictive test partition (randomly subsampled per Chi-square 

Goodness of Fit test): 

 

Permutation test for adonis under reduced model 

Permutation: free 

Number of permutations: 20 

 

adonis2(formula = after_small$dl_prediction ~ y2$id.orig_p + y2$id.resp_p + y2$proto + 

y2$service + y2$duration + y2$orig_bytes + y2$resp_bytes + y2$conn_state + y2$local_orig + 

y2$local_resp + y2$missed_bytes + y2$history + y2$orig_pkts + y2$orig_ip_bytes + 

y2$resp_pkts + y2$resp_ip_bytes + y2$tunnel_parents, permutations = 20, method = "bray", by 

= NULL) 

 Df SumOfSqs R2 F Pr(>F)  

Model 13 173.99 0.25057 1028.4 0.04762 * 

Residual 39986 520.40 0.74943  

Total 39999 694.39 1.00000  

--- 

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

#now calculate the beta dispersal, based on https://chrischizinski.github.io/rstats/adonis/ 

 

library(vegan) 

 

## Bray-Curtis distances between samples 

#dis <- vegdist(all.sites) 

dis <- vegdist(after_small) #kicked off at 10:30am Fri 9/23/22.. 
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#may need to call betadisrp with a smaller subset than 40k for after_small.. 

 

#next do: 

## Calculate multivariate dispersions 

#mod <- betadisper(dis, trt) 

mod <- betadisper(dis, after_small$dl_prediction) 

mod 

 

#alternatively, manually grab n number of samples from each group in the original (post-

forecasted) df, so all ~18 class types are represented. 

#use those n number of observations from each group for the betadispr function. 

 

# mod 

 

# Homogeneity of multivariate dispersions 

# 

#Call: betadisper(d = dis, group = after_small$dl_prediction) 

# 

#No. of Positive Eigenvalues: 88 

#No. of Negative Eigenvalues: 151 

# 

#Average distance to median: 

# 2 6 11 13 15  

#0.1079 0.0000 0.1585 0.0972 0.2081  

# 

#Eigenvalues for PCoA axes: 

#(Showing 8 of 239 eigenvalues) 

# PCoA1 PCoA2 PCoA3 PCoA4 PCoA5 PCoA6 PCoA7 PCoA8  

#82.8953 25.5788 6.2673 4.5102 2.8503 1.6121 1.2032 0.9142  

#record analytical output results 

 

> mod <- betadisper(dis, after_small$dl_prediction) 

Warning message: 

In betadisper(dis, after_small$dl_prediction) : 

 some squared distances are negative and changed to zero 

> mod 

 

 Homogeneity of multivariate dispersions 

 

Call: betadisper(d = dis, group = after_small$dl_prediction) 

 

No. of Positive Eigenvalues: 468 

No. of Negative Eigenvalues: 898 

 

Average distance to median: 

 1 2 4 6 11 13 15  
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0.29945 0.09943 0.04429 0.01938 0.18365 0.10657 0.21675  

 

Eigenvalues for PCoA axes: 

(Showing 8 of 1366 eigenvalues) 

 PCoA1 PCoA2 PCoA3 PCoA4 PCoA5 PCoA6 PCoA7 PCoA8  

1528.06 510.61 121.30 83.20 57.70 29.84 19.12 13.39  

>  

> Sys.time() 

[1] "2022-09-27 11:30:48 EDT" 

 

 

 

#also try: 

 

plot(mod) 

 

boxplot(mod) 

 

#and also see visualizing the multivariate homogeneity of group dispersions using methods 

shown in:  

#https://chrischizinski.github.io/rstats/adonis/ 

 

#re-run this betadisp procedure but manually grab n number of rows from each group 

hist(table(after_small$dl_prediction)) 

hist(table(after$dl_prediction)) 

hist(table(before$detailed.label)) 

 

#use dplyr function: 

new_df <- df %>% group_by(ID) %>% slice_sample(n=500) # do this for each group within the 

DV, into a separate sub-dataframe. 

#then merge all of these x sub-dataframes into a new "after" master dataframe, with which to 

perform the betadispr test on. 

then also try: 

#plot(mod) 

 

#boxplot(mod) 

 

 

new_df <- converted_test_with_ANN_predicted_15sep2022 %>% 

group_by(dl_prediction) %>% slice_sample(n=500, replace = TRUE) 

#replace = true tells dplyr to repeat group elements when n < 500 observastions 

View(new_df) 

#works! conduct the betadispr test on new_df 
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#recode the factor IVs to ordinal numeric data so it can be processed properly. Note that this is 

the random-sample ANN predictive model, e.g. "after" version. 

 new_df$proto <- as.factor(new_df$proto) 

 new_df$service <- as.factor(new_df$service) 

 new_df$conn_state <- as.factor(new_df$conn_state) 

 new_df$history <- as.factor(new_df$history) 

 new_df$detailed.label <- as.factor(new_df$detailed.label) 

 new_df$dl_prediction <- as.factor(new_df$dl_prediction) 

  

 new_df$proto <- as.numeric(new_df$proto)  

 new_df$service <- as.numeric(new_df$service) 

 new_df$conn_state <- as.numeric(new_df$conn_state) 

 new_df$history <- as.numeric(new_df$history) 

 new_df$detailed.label <- as.numeric(new_df$detailed.label) 

  

 new_df$dl_prediction <- as.numeric(new_df$dl_prediction) 

 

#get rid of the original DV first! 

new_df$detailed.label <- NULL 

  

 dis <- vegdist(new_df) #kicked off at 11:10pm Wed 9/25/22.. 

 mod <- betadisper(dis, new_df$dl_prediction) 

#took about 20 minutes with 8000 rows of data (19 classes x 500 observations each) 

 

#create plots (plot and boxplot) of this new_df beta dispersion, which is for the "after" random 

sample (e.g. the ANN predictive model). Be use to use main= parameter in the plot(). 

 

#repeat this process for the before random sample using sample_n, and produce the same 2 plots. 

Record the betadispr coefficients scores. Then good to go to finalize paper AND rq1 section of 

the dissertation. Move on to RQ2. 

 

mod # show results for the sub-sampled but balanced "after" ANN predictive output: 

 

 

 Homogeneity of multivariate dispersions 

 

Call: betadisper(d = dis, group = new_df$dl_prediction) 

 

No. of Positive Eigenvalues: 765 

No. of Negative Eigenvalues: 1546 

 

Average distance to median: 

 1 2 3 4 5 6 7 8 9  

3.406e-01 9.566e-02 1.370e-01 4.635e-02 1.073e-01 7.239e-02 4.512e-02 9.493e-13 1.667e-01  

 10 11 12 13 14 15 16  

1.322e-01 1.848e-01 4.262e-01 1.040e-01 7.986e-02 2.285e-01 1.200e-02  
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Eigenvalues for PCoA axes: 

(Showing 8 of 2311 eigenvalues) 

 PCoA1 PCoA2 PCoA3 PCoA4 PCoA5 PCoA6 PCoA7 PCoA8  

733.14 214.18 145.47 48.19 42.45 28.75 26.07 19.35  

 

 

#now do the same with the "before" subset. 

 

View(converted_test_with_ANN_predicted_15sep2022_orig) 

 

new_df <- converted_test_with_ANN_predicted_15sep2022 %>% 

group_by(detailed.label) %>% slice_sample(n=500, replace = TRUE) 

 

 

 #recode the factor IVs to ordinal numeric data so it can be processed properly. Note that this is 

the random-sample raw dataset, e.g. the "before" version showing the curatred labeled DV. 

 new_df$proto <- as.factor(new_df$proto) 

 new_df$service <- as.factor(new_df$service) 

 new_df$conn_state <- as.factor(new_df$conn_state) 

 new_df$history <- as.factor(new_df$history) 

 new_df$detailed.label <- as.factor(new_df$detailed.label) 

 new_df$dl_prediction <- as.factor(new_df$dl_prediction) 

  

 new_df$proto <- as.numeric(new_df$proto)  

 new_df$service <- as.numeric(new_df$service) 

 new_df$conn_state <- as.numeric(new_df$conn_state) 

 new_df$history <- as.numeric(new_df$history) 

 new_df$detailed.label <- as.numeric(new_df$detailed.label) 

  

  

 #get rid of the new DV (from ANN predictive model) 

 new_df$dl_prediction <- NULL 

  

 

 View(new_df) 

dis <- vegdist(new_df, na.rm = TRUE) 

mod <- betadisper(dis, new_df$detailed.label 

 

 Homogeneity of multivariate dispersions 

 

Call: betadisper(d = dis, group = new_df$detailed.label) 

 

No. of Positive Eigenvalues: 652 

No. of Negative Eigenvalues: 1385 
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Average distance to median: 

 1 2 3 4 5 6 7 8 9  

3.652e-01 1.153e-01 9.759e-02 9.281e-02 1.408e-01 1.298e-01 7.369e-02 5.806e-02 7.403e-02  

 10 11 12 13 14 15  

3.555e-01 1.851e-01 1.869e-01 1.012e-01 2.174e-01 6.436e-05  

 

Eigenvalues for PCoA axes: 

(Showing 8 of 2037 eigenvalues) 

 PCoA1 PCoA2 PCoA3 PCoA4 PCoA5 PCoA6 PCoA7 PCoA8  

695.63 343.28 132.23 58.44 55.14 33.34 21.42 20.34  

 

 

#model RQ2 (Shapley cohort values) - 29 SEP 2022 

 

gc() 

 

setwd("C://ISU_PhD//COT711_Dissertation//") 

getwd() 

 

library(readr) 

converted_test_with_ANN_predicted_15sep2022 <- 

read_csv("converted_test_with_ANN_predicted_15sep2022.csv", col_types = cols(..1 = 

col_skip(), dl_prediction = col_skip())) 

 

 

#now convert the character IVs to factor IVs 

 

converted_test_with_ANN_predicted_15sep2022$proto <- 

as.factor(converted_test_with_ANN_predicted_15sep2022$proto) 

converted_test_with_ANN_predicted_15sep2022$service <- 

as.factor(converted_test_with_ANN_predicted_15sep2022$service) 

converted_test_with_ANN_predicted_15sep2022$conn_state <- 

as.factor(converted_test_with_ANN_predicted_15sep2022$conn_state) 

converted_test_with_ANN_predicted_15sep2022$history <- 

as.factor(converted_test_with_ANN_predicted_15sep2022$history) 

converted_test_with_ANN_predicted_15sep2022$detailed.label <- 

as.factor(converted_test_with_ANN_predicted_15sep2022$detailed.label) 

 

library(h2o) 

h2o.init(nthreads=-1, max_mem_size = "55G") 

 

final_master_df.h2o <- as.h2o(converted_test_with_ANN_predicted_15sep2022, 

key="final_master_df.h2o") 

 

# Split into train & test 
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splits <- h2o.splitFrame(final_master_df.h2o, ratios = 0.7, seed = 123) 

train <- splits[[1]] 

test <- splits[[2]] 

 

#see:  

 

#recover some RAM by removing the original df from R memory. Keep everything in h2o for 

now. 

converted_test_with_ANN_predicted_15sep2022 <- NULL 

 

gc() 

 

#converted_multiclass_gbm <- h2o.gbm(x = 1:17, 

 y = 18, 

 model_id = "converted_multiclass_gbm", 

 categorical_encoding = "Eigen",  

 distribution = "multinomial", 

 max_depth = 5, 

 ntrees = 100, 

 learn_rate = 0.3, 

 seed = 12345, 

 keep_cross_validation_predictions = FALSE, 

 training_frame = train,  

 validation_frame = test, 

 balance_classes = TRUE) 

 

#revised h2o gbm call, this should run faster (no class balancing, no k-fold cross validation) 

 

converted_multiclass_gbm <- h2o.gbm(x = 1:17, 

 y = 18, 

 model_id = "converted_multiclass_gbm", 

 categorical_encoding = "Eigen",  

 distribution = "multinomial", 

 max_depth = 5, 

 ntrees = 30, 

 learn_rate = 1.0, 

 seed = 12345, 

 keep_cross_validation_predictions = FALSE, 

 training_frame = train,  

 balance_classes = FALSE) 

 

 

 

#now once the GBM is trained, conduct this: 
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# Eval performance: 

perf <- h2o.performance(converted_multiclass_gbm) 

 

perf 

 

 

# Generate predictions on a validation set (if necessary): 

pred <- h2o.predict(converted_multiclass_gbm, newdata = final_master_df.h2o) #predict on the 

entire df 

 

# Extract feature interactions: 

feature_interactions <- h2o.feature_interaction(converted_multiclass_gbm) 

 

 

#once all this works and this output is recorded, conduct the Shapley cohort score analysis: 

 

#https://towardsdatascience.com/a-minimal-example-combining-h2os-automl-and-shapley-s-

decomposition-in-r-ba4481282c3c 

 

#https://rdrr.io/github/laresbernardo/lares/man/h2o_shap.html 

 

#the below code taken from rdrr.io URL (link above): 

 

 

#upgrade to h2o 3.38 to get this to work. 

 

# Calculate SHAP values 

#SHAP_values <- h2o_shap(model) 

 

#SHAP_values <- h2o_shap(converted_multiclass_gbm) # this doesn't work. see docs 

shap_summary_plot <- h2o.shap_summary_plot(converted_multiclass_gbm, test) 

 

#shapley contributions not currently supported for multinomial models in h2o. 

 

print(shap_summary_plot) 

 

#h2o.shap_explain_row_plot() #use this function for Shap explanations of specific rows of data. 

#try this on a specific row. 

#Calculating contributions is currently not supported for multinomial models. 

# DAMN. 

 

 

 

expl1 <- h2o.explain(converted_multiclass_gbm, test) 

print(expl1) 

#doesn't seem to like eigenfactor encoded gbm models. :( 
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# Equivalent to: 

# SHAP_values <- h2o_shap( 

# model = model$model, 

# test = model$datasets$test, 

# scores = model$scores_test$scores) 

 

# Check SHAP results 

head(SHAP_values) 

 

# You must have "ggbeeswarm" library to use this auxiliary function: 

# Plot SHAP values (feature importance) 

install.packages('ggbeeswarm') 

library(ggbeeswarm) 

 

plot(SHAP_values) 

 

# Plot some of the variables (categorical) 

shap_var(SHAP_values, Pclass) 

 

# Plot some of the variables (numerical) 

shap_var(SHAP_values, Fare) 

 

## End(Not run) 

 

 

#forget h2o for shapley scores since it can't yet handle multinomial classification shapley scores. 

Let's consider using the fastshap package for this, using: 

#https://bgreenwell.github.io/fastshap/articles/fastshap.html 

 

#continue here after I skip past the h2o attempts above. 

#use a combination ranger forest model and then a fastshap Shapely calculation methodology. 

##############################################################################

#################### 

 

install.packages('fastshap') 

library(fastshap) 

 

#create a vector of the IVs (predictor vars), minus the y or DV 

X <- subset(converted_test_with_ANN_predicted_15sep2022, select = -detailed.label) 

 

 

#convert factors to ordinal values. 
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converted_test_with_ANN_predicted_15sep2022$proto <- 

as.factor(converted_test_with_ANN_predicted_15sep2022$proto) 

converted_test_with_ANN_predicted_15sep2022$service <- 

as.factor(converted_test_with_ANN_predicted_15sep2022$service) 

converted_test_with_ANN_predicted_15sep2022$conn_state <- 

as.factor(converted_test_with_ANN_predicted_15sep2022$conn_state) 

converted_test_with_ANN_predicted_15sep2022$history <- 

as.factor(converted_test_with_ANN_predicted_15sep2022$history) 

converted_test_with_ANN_predicted_15sep2022$detailed.label <- 

as.factor(converted_test_with_ANN_predicted_15sep2022$detailed.label) 

 

#convert the factor IVs to ordinal IVs 

converted_test_with_ANN_predicted_15sep2022$proto <- 

as.numeric(converted_test_with_ANN_predicted_15sep2022$proto) 

converted_test_with_ANN_predicted_15sep2022$service <- 

as.numeric(converted_test_with_ANN_predicted_15sep2022$service) 

converted_test_with_ANN_predicted_15sep2022$conn_state <- 

as.numeric(converted_test_with_ANN_predicted_15sep2022$conn_state) 

converted_test_with_ANN_predicted_15sep2022$history <- 

as.numeric(converted_test_with_ANN_predicted_15sep2022$history) 

 

converted_test_with_ANN_predicted_15sep2022$detailed.label <- 

as.numeric(converted_test_with_ANN_predicted_15sep2022$detailed.label) 

 

library(ranger) 

set.seed(102) 

#rfo <- ranger(y ~ ., data = converted_test_with_ANN_predicted_15sep2022) 

 

 

library(dplyr) 

 

set.seed(123)  

#subset this very large dataframe by randomly selecting 75000 rows of data, to be able to fit the 

permanova function vector into RAM 

#final_master_df_small <- sample_n(final_master_df, 60000) 

final_master_df_small <- sample_n(converted_test_with_ANN_predicted_15sep2022, 60000) 

 

 

y <- final_master_df_small 

y$`detailed.label` <- NULL 

#y becomes my predictor variables list (IVs), without the DV present. 

 

#based on https://bgreenwell.github.io/fastshap/articles/fastshap.html : 

 

rfo <- ranger(detailed.label ~ ., data = final_master_df_small) 

 



 

 

147 

rfo 

 

Ranger result 

 

Call: 

 ranger(detailed.label ~ ., data = final_master_df_small)  

 

Type: Classification  

Number of trees: 500  

Sample size: 60000  

Number of independent variables: 17  

Mtry: 4  

Target node size: 1  

Variable importance mode: none  

Splitrule: gini  

OOB prediction error: 2.04 %  

 

 

#2.04% = pretty good ;) 

 

X <- subset(final_master_df_small, select = -detailed.label) # feature columns only 

 

 

 

# Prediction wrapper 

pfun <- function(object, newdata) { 

 predict(object, data = newdata)$predictions 

} 

 

 

# Compute fast (approximate) Shapley values using 10 Monte Carlo repetitions 

system.time({ # estimate run time 

 set.seed(5038) 

 shap <- explain(rfo, X = X, pred_wrapper = pfun, nsim = 10) 

}) 

 

 

 mtcars.ppr <- ppr(detailed.label ~ ., data = final_master_df_small, nterms = 1) 

Error in ppr.default(X, Y, w, ..) :  

 'ppr' applies only to numerical variables 

 

#make the DV an ordinal conversion value 

 final_master_df_small$detailed.label <- as.numeric(final_master_df_small$detailed.label) 

  

 # Fit a projection pursuit regression model 

 mtcars.ppr <- ppr(detailed.label ~ ., data = final_master_df_small, nterms = 1) 
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#model RQ4 (ANN Anomalies and statistical validation vs the curated DV using statistical 

equivalency) - 15 OCT 2022 

 

gc() 

 

setwd("C://ISU_PhD//COT711_Dissertation//") 

getwd() 

 

library(readr) 

converted_test_with_ANN_predicted_15sep2022 <- 

read_csv("converted_test_with_ANN_predicted_15sep2022.csv", col_types = cols(..1 = 

col_skip(), dl_prediction = col_skip())) 

 

library(readr) 

 final_master_df <- read_csv("final_master_df.csv", col_types = cols(..1 = col_skip())) 

 

#now from here, I need to convert the curated DV to being either "good" (benign) or bad, so I 

have a true/false outcome DV to conduct the 

#test of statistical equivalence against. I also want to make sure that my benign class data is in 

the majority. 

 

 

 

table(final_master_df$`detailed-label`) 

 

# - 0  

# 75955 11139745  

# Attack C&C  

# 8865 17613  

# C&C-FileDownload C&C-HeartBeat  

# 53 26962  

# C&C-HeartBeat-Attack C&C-HeartBeat-FileDownload  

# 834 11  

# C&C-Mirai C&C-PartOfAHorizontalPortScan  

# 2 888  

# C&C-Torii DDoS  

# 30 12267750  

# FileDownload Okiru  

# 18 38317947  

# Okiru-Attack Pa  
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# 3 1  

# PartOfAHorizontalPortScan PartOfAHorizontalPortScan-Attack  

# 85067519 5  

 

#need to randomly subsample (reduce) the number of PartOfAHorizontalPortScan observsations 

to ~10000 each, along with DDos and Okiru. 

 

#use stratified from Github to do this: 

 

library(devtools) ## To download "stratified" 

source_gist("https://gist.github.com/mrdwab/6424112") 

 

subsample1 <- stratified(final_master_df, "detailed-label", 10000) 

 

#now remove the "-" and "0" (benign) classes from this attack subset df, because we want all of 

those raw observations, not just 10000. 

#remove just the "-" because "0" is malware (zero day attack class) 

 

subsample2 <- subsample1[!(subsample1$`detailed-label` =="-"),] 

View(subsample2) 

 

#now do the opposite, KEEP the - and 0 (benign) classes from the original (raw) df. 

#subsample3 <- final_master_df[(final_master_df$`detailed-label` =="-" | 

final_master_df$`detailed-label`=="0"),] 

subsample3 <- final_master_df[(final_master_df$`detailed-label` =="-"),] 

  

  

#now merge subsample2 and subsample3 into a new final df. 

 minority_attack_class_df <- rbind(subsample2, subsample3) 

 

 getwd() 

#[1] "C:/ISU_PhD/COT711_Dissertation" 

write.csv(minority_attack_class_df, "rq4_minority_attack_class_df15oct2022.csv") 

  

 

#rename the two benign classes to be the same class so it makes it easier to label the new 

benign/malicious DV. 

#minority_attack_class_df$`detailed-label` <- gsub('0', '-', minority_attack_class_df$`detailed-

label`) 

 

#now create a new secondary DV which is either "benign" or "attack" to make it easier for 

csalculating accuracy 

 

#set default value of new DV to Malicious. 

minority_attack_class_df$new_DV <- "Malicious" 

View(minority_attack_class_df) 
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#if old DV is of class -, then new DV is Benign. That way I don't have to do a whole huge CASE 

statement for each malware sub-type. 

minority_attack_class_df$new_DV[minority_attack_class_df$`detailed-label` == '-'] <- 

"Benign" 

View(minority_attack_class_df) 

table(minority_attack_class_df$new_DV) 

 

#fixed.. zero day attacks should now be included here as a part of the malicious DV class. 

################ 

 

table(minority_attack_class_df$new_DV) 

 

# Benign Malicious  

# 75955 70729  

#now set up the h2o cluster, and start ingesting the character IVs to be factors (inside the h2o 

cluster, due to the size of the df). 

 

h2o.init(max_mem_size = "50g", nthreads = -1) 

h2o.removeAll() 

 

minority_attack_class_df_hf <- as.h2o(minority_attack_class_df) 

 

#now factor-ize the IVs in the h2o df 

 

minority_attack_class_df_hf["proto"] <- as.factor(minority_attack_class_df_hf["proto"]) 

minority_attack_class_df_hf["service"] <- as.factor(minority_attack_class_df_hf["service"]) 

minority_attack_class_df_hf["conn_state"] <- 

as.factor(minority_attack_class_df_hf["conn_state"]) 

minority_attack_class_df_hf["history"] <- as.factor(minority_attack_class_df_hf["history"]) 

  

#finished performing the IV factorizations. 

 

#now build a deep learning anomaly detecting autoencoding neural network model. 

 

#IV columns 1:17 will be used as predictor input IVs. 

 

#continue with the ANN model now: 

 

 

#attack_detection_auto_model = h2o.deeplearning(x = 1:17, training_frame = 

minority_attack_class_df_hf, autoencoder = TRUE, hidden = c(13, 13), adaptive_rate = TRUE, 

rho = 0.99, epsilon = 1e-08, rate = 0.005, rate_annealing = 1e-06, rate_decay = 1, epochs = 5) 

 

#model parms above resulted in unstable model. simplify (remove the rho, etc. parms and go 

with defaults). 
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#v1 

#this works but it is giving weak results (known attack records showing low anomaly sensitivity) 

attack_detection_auto_model = h2o.deeplearning(x = 1:17, training_frame = 

minority_attack_class_df_hf, autoencoder = TRUE, hidden = c(13, 13), epochs = 5) 

 

malicious_anom = h2o.anomaly(attack_detection_auto_model, minority_attack_class_df_hf) 

head(malicious_anom, 20) 

 

malicious_anom_per_feature = h2o.anomaly(attack_detection_auto_model, 

minority_attack_class_df_hf, per_feature = TRUE) 

head(malicious_anom_per_feature, 20) 

 

 

 

#v2 

attack_detection_auto_model2 = h2o.deeplearning(x = 1:17, training_frame = 

minority_attack_class_df_hf, autoencoder = TRUE, hidden = c(13, 13), epochs = 50) 

malicious_anom = h2o.anomaly(attack_detection_auto_model2, minority_attack_class_df_hf) 

head(malicious_anom, 20) 

 

malicious_anom_per_feature = h2o.anomaly(attack_detection_auto_model2, 

minority_attack_class_df_hf, per_feature = TRUE) 

head(malicious_anom_per_feature, 20) 

 

 

#v3 

attack_detection_auto_model3 = h2o.deeplearning(x = 1:17, training_frame = 

minority_attack_class_df_hf, categorical_encoding = "Eigen", autoencoder = TRUE, hidden = 

c(13, 13), epochs = 50) 

malicious_anom = h2o.anomaly(attack_detection_auto_model3, minority_attack_class_df_hf) 

head(malicious_anom, 20) 

 

malicious_anom_per_feature = h2o.anomaly(attack_detection_auto_model3, 

minority_attack_class_df_hf, per_feature = TRUE) 

head(malicious_anom_per_feature, 20) 

 

 

#v4, columns 1:16 only (dropping tunnel_parents). reducing to 1 hidden layer to see if it helps 

stability. 

attack_detection_auto_model4 = h2o.deeplearning(x = 1:16, training_frame = 

minority_attack_class_df_hf, categorical_encoding = "Eigen", autoencoder = TRUE, hidden = 

c(10), epochs = 50) 

 

 

#much better with v5 below. 
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#v5, columns 1:16 only (dropping tunnel_parents). reducing to 1 hidden layer to see if it helps 

stability. used the tanh activation function to prevent exponential growth. 

attack_detection_auto_model5 = h2o.deeplearning(x = 1:16, training_frame = 

minority_attack_class_df_hf, categorical_encoding = "Eigen", activation = c("Tanh"), 

autoencoder = TRUE, hidden = c(10), epochs = 50) 

 

 

malicious_anom = h2o.anomaly(attack_detection_auto_model5, minority_attack_class_df_hf) 

head(malicious_anom, 20) 

 

malicious_anom_per_feature = h2o.anomaly(attack_detection_auto_model5, 

minority_attack_class_df_hf, per_feature = TRUE) 

head(malicious_anom_per_feature, 20) 

 

#nice on v5 features and anomaly scores above, we are actually detecting things now LOL :) 

 

 

#v5, columns 1:16 only (dropping tunnel_parents). reducing to 1 hidden layer to see if it helps 

stability. used the tanh activation function to prevent exponential growth. 

attack_detection_auto_model6 = h2o.deeplearning(x = 1:16, training_frame = 

minority_attack_class_df_hf, categorical_encoding = "Eigen", activation = c("Tanh"), 

autoencoder = TRUE, hidden = c(10), epochs = 50) 

 

 

malicious_anom = h2o.anomaly(attack_detection_auto_model5, minority_attack_class_df_hf) 

head(malicious_anom, 20) 

 

malicious_anom_per_feature = h2o.anomaly(attack_detection_auto_model5, 

minority_attack_class_df_hf, per_feature = TRUE) 

head(malicious_anom_per_feature, 20) 

 

 

#v6, improved v5. columns 1:16 only (dropping tunnel_parents). now 2 hidden layers. used the 

tanh activation function to prevent exponential growth. 

attack_detection_auto_model6 = h2o.deeplearning(x = 1:16, training_frame = 

minority_attack_class_df_hf, categorical_encoding = "Eigen", activation = c("Tanh"), 

autoencoder = TRUE, hidden = c(11, 11), epochs = 50) 

 

 

malicious_anom = h2o.anomaly(attack_detection_auto_model6, minority_attack_class_df_hf) 

head(malicious_anom, 20) 

 

malicious_anom_per_feature = h2o.anomaly(attack_detection_auto_model6, 

minority_attack_class_df_hf, per_feature = TRUE) 

head(malicious_anom_per_feature) 
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#great job with v6! Now write the anomaly score output from v6 into the origiinal 

minority_attack_class df. 

 anomaly_score <- as.data.frame(malicious_anom) 

 minority_attack_class_df$anomaly_score <- anomaly_score$Reconstruction.MSE 

 

#works great. 

 

 

# *** use this scatterplot in the Discussion section for RQ4. 

#create a scatterplot of univariate data (anomaly_score DV). Note that it will be really slow 

because (gulp..) there are ~11.2m rows of data to get plotted.. 

#this takes ~25 mins to be produced on my machine. 

library(ggplot2) 

ggplot(minority_attack_class_df, aes(x = 1:nrow(minority_attack_class_df), y = 

anomaly_score)) + geom_point() 

 

 

#But what really want to do is create a color-coded scatterplot of the anomaly_scores by the two 

groups, e.g. benign vs malicious. 

ggplot(minority_attack_class_df, aes(x = 1:nrow(minority_attack_class_df), y = anomaly_score, 

color=newDV)) + geom_point() 

 

 

#boxplots of the two groups 

ggplot(minority_attack_class_df, aes(x = 1:nrow(minority_attack_class_df), y = anomaly_score, 

color = new_DV)) + geom_boxplot() 

 

 

#also per rq4, want to calculate the anomaly score means between those same 2 groups. 

#get mean(anomaly_score) for each of the two groups in new_DV 

 

#then lastly conduct a permanova for variance between two groups. 

 

ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ 

 

# Benign Malicious 

# 75955 70729  

 

#subset my data into two groups 

benign <- minority_attack_class_df %>% filter(str_detect(new_DV,"Benign")) 

malicious <- minority_attack_class_df %>% filter(str_detect(new_DV,"Malicious")) 

 

 

#now create a numeric-converted version of the factors in the df. 
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minority_attack_class_df_numeric$proto <- as.factor(minority_attack_class_df_numeric$proto) 

minority_attack_class_df_numeric$proto <- 

as.numeric(minority_attack_class_df_numeric$proto) 

 

minority_attack_class_df_numeric$service <- 

as.factor(minority_attack_class_df_numeric$service) 

minority_attack_class_df_numeric$service <- 

as.numeric(minority_attack_class_df_numeric$service) 

 

minority_attack_class_df_numeric$conn_state <- 

as.factor(minority_attack_class_df_numeric$conn_state) 

minority_attack_class_df_numeric$conn_state <- 

as.numeric(minority_attack_class_df_numeric$conn_state) 

  

minority_attack_class_df_numeric$history <- 

as.factor(minority_attack_class_df_numeric$history) 

minority_attack_class_df_numeric$history <- 

as.numeric(minority_attack_class_df_numeric$history) 

 

 

#now conduct a beta dispersion test between the two groups. 

library(vegan) 

#df[c(1, 2, 4)] 

#dis <- vegdist(varespec) 

#dis <- vegdist(minority_attack_class_df_numeric[c(1:16,20)] 

 

 

# data <- (minority_attack_class_df_numeric2[c(1:16,20)]) 

data <- (minority_attack_class_df_numeric2[c(1:8,11:16,18,19)]) 

 

View(data) 

nrow(data) 

#[1] 146667 

  

 

data2 <- sample_n(data, 40000) 

#40000 observations of 16 variables. 

 

DVgroup <- data2$newDV 

 

data2$new_DV <- NULL #remove the factor DV from data2. 

 

gc() 

 

#Description 
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#Implements Marti Anderson's PERMDISP2 procedure for the analysis of multivariate 

homogeneity of group dispersions (variances). 

# betadisper is a multivariate analogue of Levene's test for homogeneity of variances. Non-

euclidean distances between objects and group centres (centroids or medians) are handled 

# by reducing the original distances to principal coordinates. This procedure has latterly been 

used as a means of assessing beta diversity. There are anova, scores, plot and boxplot 

# methods. 

 

#TukeyHSD.betadisper creates a set of confidence intervals on the differences between the mean 

distance-to-centroid of the levels of the grouping factor with the specified family-wise 

probability of coverage. The intervals are based on the Studentized range statistic, Tukey's 

'Honest Significant Difference' method. 

 

 

 

#calculate the Bray-Curtis distances between samples. using 40k randomly selected observations 

from the original balanced training dataset of 146,684 observations. 

dis <- vegdist(data2, na.rm = TRUE) 

 

mod <- betadisper(dis, DVgroup) # in progress on 5:39pm on Sun., 10/16. 

 

#####continue from here on Sunday evening. Capture all of these outputs for the RQ4 results 

section of the dissertation: 

 

mod 

 

#Homogeneity of multivariate dispersions 

# 

#Call: betadisper(d = dis, group = DVgroup) 

# 

#No. of Positive Eigenvalues: 1887 

#No. of Negative Eigenvalues: 3560 

# 

#Average distance to median: 

# Benign Malicious  

# 0.3640 0.2801  

# 

#Eigenvalues for PCoA axes: 

#(Showing 8 of 5447 eigenvalues) 

# PCoA1 PCoA2 PCoA3 PCoA4 PCoA5 PCoA6 PCoA7 PCoA8  

#2762.98 1920.99 1436.38 507.96 273.90 159.07 113.66 73.54  

 

 

 

## Perform test 

anova(mod) 
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## Permutation test for F 

permutest(mod, pairwise = TRUE, permutations = 99) 

 

#Permutation test for homogeneity of multivariate dispersions 

#Permutation: free 

#Number of permutations: 99 

# 

#Response: Distances 

# Df Sum Sq Mean Sq F N.Perm Pr(>F)  

#Groups 1 70.3 70.297 1160.5 99 0.01 ** 

#Residuals 39998 2422.9 0.061  

#--- 

#Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

# 

#Pairwise comparisons: 

#(Observed p-value below diagonal, permuted p-value above diagonal) 

# Benign Malicious 

#Benign 0.01 

#Malicious 9.1268e-251  

 

## Tukey's Honest Significant Differences 

(mod.HSD <- TukeyHSD(mod)) 

plot(mod.HSD) 

 

## Plot the groups and distances to centroids on the 

## first two PCoA axes 

plot(mod) 

 

#continue here when I get home the weekend of 10/21. 

## with data ellipses instead of hulls 

plot(mod, ellipse = TRUE, hull = FALSE) # 1 sd data ellipse 

plot(mod, ellipse = TRUE, hull = FALSE, conf = 0.90) # 90% data ellipse 

 

plot(mod, main = "IoT-23 Multivariate Homogeneity of Group Dispersions", ellipse = TRUE, 

hull = FALSE, conf = 0.90) # 90% data ellipse 

 

scores(mod) 

 

#then we are DONE. :) 

 

##############################################################################

############################################# 

 

 

mod <- betadisper(dis, DVgroup) 



 

 

157 

Error in readChar(con, 5L, useBytes = TRUE) : cannot open the connection 

In addition: Warning message: 

In readChar(con, 5L, useBytes = TRUE) : 

 cannot open compressed file 'C:/Users/twool/AppData/Local/Temp/RtmpstsYPG/rs-graphics-

3d781a85-a4bb-44ea-98aa-fcc68eb32024/f9658e1f-46d3-4ed0-acb2-870243e54edf.snapshot', 

probable reason 'No such file or directory' 

Graphics error: Plot rendering error 

> mod 

 

 Homogeneity of multivariate dispersions 

 

Call: betadisper(d = dis, group = DVgroup) 

 

No. of Positive Eigenvalues: 1887 

No. of Negative Eigenvalues: 3560 

 

Average distance to median: 

 Benign Malicious  

 0.3640 0.2801  

 

Eigenvalues for PCoA axes: 

(Showing 8 of 5447 eigenvalues) 

 PCoA1 PCoA2 PCoA3 PCoA4 PCoA5 PCoA6 PCoA7 PCoA8  

2762.98 1920.99 1436.38 507.96 273.90 159.07 113.66 73.54  

>  

> ## Perform test 

> anova(mod) 

Analysis of Variance Table 

 

Response: Distances 

 Df Sum Sq Mean Sq F value Pr(>F)  

Groups 1 70.3 70.297 1160.5 < 2.2e-16 *** 

Residuals 39998 2422.9 0.061  

--- 

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

>  

> ## Permutation test for F 

> permutest(mod, pairwise = TRUE, permutations = 99) 

 

Permutation test for homogeneity of multivariate dispersions 

Permutation: free 

Number of permutations: 99 

 

Response: Distances 

 Df Sum Sq Mean Sq F N.Perm Pr(>F)  

Groups 1 70.3 70.297 1160.5 99 0.01 ** 
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Residuals 39998 2422.9 0.061  

--- 

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Pairwise comparisons: 

(Observed p-value below diagonal, permuted p-value above diagonal) 

 Benign Malicious 

Benign 0.01 

Malicious 9.1268e-251  

>  

> ## Tukey's Honest Significant Differences 

> (mod.HSD <- TukeyHSD(mod)) 

 Tukey multiple comparisons of means 

 95% family-wise confidence level 

 

Fit: aov(formula = distances ~ group, data = df) 

 

$group 

 diff lwr upr p adj 

Malicious-Benign -0.08388974 -0.08871624 -0.07906324 0 

 

> plot(mod.HSD) 

>  

> ## Plot the groups and distances to centroids on the 

> ## first two PCoA axes 

> plot(mod) 

> 
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