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ABSTRACT

Anthropogenic heat flux (Qs) originates from energy consumption in buildings, industrial
plants, vehicle exhaust, and human metabolism. Qr is an important component of the urban
Surface Energy Balance (SEB) system and a key to understanding many urban environmental
issues. Climate change affects building energy consumption in many ways, and building energy
consumption is the largest contributor to Qs in many cities. One of these contributions comprises
changes in heating and cooling demands in buildings. The increase in annual energy use in cities
results in more carbon emissions and constitutes a great challenge to urban sustainability because
traditional fossil fuels remain major resources for the production of electricity for heating and
cooling in buildings. The primary objectives of this dissertation are to 1) develop a high spatial
and temporal Qf profile that can be readily incorporated into the urban energy balance models
and be used to analyze Qr across multiple spatial and temporal scales; 2) develop a useful
database that can allow a city government to foresee the different regional sensitivities to climate
change in the city from building energy demand increases at different spatial and temporal
scales; and 3) test the potential mitigation effects of green roofs and solar photovoltaic (PV)
systems on buildings that are more vulnerable to climate change. Los Angeles County,
California, USA, was chosen as the study area, because it was the most populous county in the
USA and contained various microclimate conditions.

To achieve the objectives of this study, a hybrid Qs modeling approach was developed

that combined census inventory data and Geographic Information System (GIS) methods to



0\
create a 365-day hourly Qs profile at 120-m spatial resolution for Los Angeles County. In a
subsequent step, a GIS-based approach was used to combine climate change modeling, building
energy simulation, and fine-scale (individual building) inventory data of building characteristics
to quantify the effect of climate change on building energy demand at the sub-city scale. In the
final step, the potential mitigation effects of PV-green roofs for building energy demand were
assessed based on selected buildings that were predicted to have increased energy needs in the
context of climate change.

The results showed different magnitudes and diurnal patterns in Qr between workdays,
with one peak in the morning and the other in the evening rush hours (dual-peak shape) and
weekends/holidays. Additionally, Qr varied seasonally and among different land use types.
Building energy consumption was identified as the dominant contributor to Qs in the downtown
area of Los Angeles, which was found to have the largest mean Qs among all neighborhoods
throughout the entire year. Most building types showed increased energy demands under both
scenarios of climate change. Larger changes were observed at finer time scales. The energy
demand for buildings increased from April to October, whereas it decreased from November to
March. Areas with dense tall commercial buildings would see the largest increase in energy
demand. All buildings with green roofs showed positive energy savings with regard to total
energy and electricity. In addition, the energy saving ability of green roofs was affected by
seasonal effect, building types and technologies, and irrigation saturation, which is the threshold
of soil moisture that allows for irrigation. All three objectives of this dissertation were achieved,
and the methodology allows city governments to foresee the sensitivity of building energy

demands at different spatiotemporal scales and tailor needed strategies.
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CHAPTER 1

INTRODUCTION
1.1 Research Background

Although urban areas cover only approximately 2% of the total global land area, 55%
(4.2 billion) of the world’s population lives in urban areas as of 2018. This proportion is
expected to increase to 68% by 2050, which could add another 2.5 billion people to urban areas
(United Nations Department of Economic and Social Affairs, 2018). North America is the most
urbanized region worldwide, with 82% of its population living in urban areas as of 2018 (United
Nations Department of Economic and Social Affairs, 2018). The unprecedented rate of
urbanization could bring many unforeseen environmental problems. Increased energy demand is
one of the most important issues to be considered. Urbanized areas account for 67—76% of global
final energy consumption and 71-76% of fossil fuel-related greenhouse gas (GHG) emissions
(Guneralp et al., 2017; Seto et al., 2014). Because the world’s urban population will continue to
increase, energy demand in cities is predicted to increase over the next 20 years and likely
beyond (International Energy Agency, 2009; Quah & Roth, 2012). Continued urbanization will
impact urban climate, as the increasing anthropogenic heat flux (Qr) associated with growing
energy consumption in cities can directly affect the urban boundary layer (UBL) and urban
canopy layer (UCL) over different spatial and temporal scales (Oke, 1976; Oke, 2006). The UCL

lies below the mean roof level and consists of many microclimates as a result of the
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heterogeneous nature of the urban environment, while the UBL is the overlying layer of UCL,
which has characteristics that are modified by the integration of the UCL effects into a regional
or mesoscale climate (Roth, Oke, & Emery, 1989). Qr can originate from energy consumption in
buildings, releases from industrial plants and vehicle exhaust, and human metabolism effects
within cities. Qf is an important component of the urban Surface Energy Balance (SEB) system,
which is a key to understanding urban environmental issues and can be quantified by the

following equation (Oke, 1987):

R,+Qf =H+LE+G 1)

where Ry is net radiation, Qr is anthropogenic heat flux, H is sensible heat, LE is latent heat, and
G is ground heat. The sum of the net radiation and anthropogenic heat denotes the total available
energy in urban environments, whereas the sum of sensible heat, latent heat, and ground heat is
the dissipation of available energy through turbulent transport, evaporation, condensation, and
advection (Nie, Sun, & Ni, 2014).

For dense cities with high-energy demands, Qf can potentially be an important or even a
dominant component of the SEB (Hamilton et al., 2009; Hu, Yang, Zhou, & Deng, 2012; Nie et
al., 2014). In previous studies, a comparison between Qr and solar radiation indicated that Qr can
be equal to, or even greater than, the incident solar radiation during winter (Hamilton et al.,
2009; Nie et al., 2014). Moreover, Qs was demonstrated to be a major contributor to urban heat
island (UHI) formation (Fan & Sailor, 2005; Hu et al., 2012; Ohashi et al., 2003; Wong et al.,

2015). The notion of an UHI effect can be characterized by a large stretch of nonevaporating
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impervious materials covering urban areas such as concrete, brick, and asphalt, with a
consequent rise in sensible heat flux at the expense of latent heat flux (Oke, 1987).

Building energy consumption is the largest contributor to Qs (Hamilton et al., 2009; Nie
et al., 2014; Quah & Roth, 2012; Sailor & Lu, 2004; Zhou, Weng, Gurney, Shuai, & Hu, 2012)
in many cities. Building energy consumption accounted for 41% of U.S. primary energy
consumption in 2010, and approximately 50% of building energy consumption was for space
heating and cooling (United States Department of Energy, 2012; Huang & Gurney, 2016).
Climate change will affect the energy system in a number of ways, one of which is through
changes in the demands for heating and cooling in buildings (Wang & Chen, 2014; Xu, Huang,
Miller, Schlegel, & Shen, 2012; Zhou, Eom, & Clarke, 2013). Tropical, subtropical, and some
mid-latitude cities can expect different levels of increase in annual building energy use because
the increase in cooling energy consumption cannot be offset by the decrease in heating energy
consumption that might result from climate warming. The increase in annual building energy
usage in these cities will result in higher carbon emissions, as traditional fossil fuels are still the
major electricity production resources that are used for heating and cooling in buildings. Since
buildings account for major parts of a city’s energy consumption, it is vital to more seriously
consider building sector energy in support of urban sustainability (Mastrucci, Baume, Stazi, &
Leopold, 2014; Shi, Fonseca, & Schlueter, 2017), especially in the context of global warming.

1.2 Problem Statement

Because Qs is significant for understanding the urban SEB, urban energy transfer, and its
effect on urban climate, numerous studies have been conducted to estimate Qr in mid-latitude
cities (Chapman, Watson, & McAlpine, 2016; Ferreira, de Oliveira, & Soares, 2010; Grimmond,

1992; Hamilton et al., 2009; Ichinose, Shimodozono, & Hanaki, 1999; Lee, Song, Baik, & Park,
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2009; Nie et al., 2014; Papachristos, 2015; Sailor & Lu, 2004; Smith, Lindley, & Levermore,
2009; Zhou et al., 2012), subtropical cities (Chow et al., 2014; Park, Schade, Werner, Sailor, &
Kim, 2016; Wong et al., 2015), tropical cities (Quah & Roth, 2012; Zhang, Weng, Lin, & Zhang,
2015), and at the global scale (Allen, Lindberg, & Grimmond, 2011; Flanner, 2009; Makar et al.,
2006). The winter Qs profile is generally greater in magnitude than the corresponding summer
profile in mid-latitude cities (Lee et al., 2009; Sailor & Lu, 2004). However, in subtropical or
tropical cities, Qr in warmer months is equal to or larger than Qs in cooler months (Ichinose et al.,
1999; Quah & Roth, 2012; Wong et al., 2015). In addition to the climate effect, the population
density also contributes to differences in Qr among cities (Ichinose et al., 1999; Wong et al.,
2015). The magnitude of Qs varies greatly not only between cities but also within cities, and is
subject to per capita energy use, building density, and meteorological conditions (Chapman et
al., 2016; Chow et al., 2014; Hamilton et al., 2009; Heiple & Sailor, 2008; Ichinose et al., 1999;
Quah & Roth, 2012; Smith et al., 2009).

The majority of previous studies used one of three approaches to estimate Q. (1) the
energy budget residual approach, (2) the inventory approach, and (3) the Geographic Information
Systems (GIS) modeling approach. The energy balance residual approach estimates Qr through
Equation (1) by measuring net radiation, sensible heat, latent heat, and ground heat using remote
sensing meteorological data (Hu et al., 2012; Kato & Yamaguchi, 2005; Kato, Yamaguchi, Liu,
& Sun, 2008; Wong et al., 2015; Xu, Wooster, & Grimmond, 2008; Yang, Chen, & Cui, 2014;
Zhou et al., 2012), and long-term eddy covariance from a flux tower (Chow et al., 2014; Park et
al., 2016). The inventory approach, which is also called top-down approach, estimates
anthropogenic heat based on population density and energy consumption statistical data from

buildings and vehicles (Grimmond, 1992; Ichinose et al., 1999; Ktysik, 1996; Pigeon, Legain,
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Durand, & Masson, 2007; Sailor, Georgescu, Milne, & Hart, 2015; Sailor & Lu, 2004; Smith et
al., 2009). The GIS modeling approach (Hamilton et al., 2009; Heiple & Sailor, 2008; Quah &
Roth, 2012; Sailor, Brooks, Hart, & Heiple, 2007; Zhou et al., 2012) is also called the bottom-up
approach. Unlike the inventory approach, the GIS approach uses energy consumption modeled at
fine scales (e.g., individual buildings) to aggregate the information up to broader scales of
interest (Quah & Roth, 2012).

These three approaches have their respective advantages and disadvantages. The
limitation of the inventory approach is that the estimation accuracy relies on data availability and
quality. Moreover, it would be difficult to quantify Qs at fine scales due to spatial (usually county
or statewide) and temporal (usually annual or monthly) resolution limitations on the data. The
energy balance residual approach is more straightforward, but each component in the model can
introduce uncertainties and propagate errors towards the final estimated result (Zhou et al.,
2012). The approach can also be limited by the spatial and temporal resolutions of remote
sensing satellite images and meteorological data, as it is difficult to account for hourly variations
in Qf emissions. The GIS-based spatial analysis approach is the only approach that can measure
Qr at any temporal (e.g., annual, monthly, weekly, daily, and diurnal) or spatial resolution. In
other words, the GIS-based approach is more reliable than the other two approaches as it can
directly measure Qr from each of the contributing sources at fine spatial (individual building
level) and temporal (daily and diurnal) scales. However, this approach is time consuming and
requires large volumes of data. A common drawback in the existing studies is the absence of
validation for the estimated Qs at fine scales.

The difficulties in estimating Qr mainly originate from the uncertainties in building

energy consumption, which is a major contributor to Qs because buildings in urban areas were
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constructed during different periods and with different technologies, functions, schedules, and
vacancy statuses. However, in developing urban sustainability strategies, policy makers need to
consider more sustainable means of building energy supply and consumption. These means may
include efforts to transfer building energy sources from traditional fossil fuels to renewable
energy sources (Chemisana & Lamnatou, 2014; Feng, Zheng, Wang, Yu, & Su, 2015; Waibel,
Evins, & Carmeliet, 2017), increasing the efficiency of energy transport (Sathaye et al., 2012;
Sathaye et al., 2013), and advancing the energy-saving abilities of new and existing buildings
(Dimond & Webb, 2017; Herrera-Gomez, Quevedo-Nolasco, & P&ez-Urrestarazu, 2017; Tang
& Qu, 2016; Taylor, de Menezes, & McSharry, 2006). Decision making for urban building
energy savings must not only consider current regional environmental and social-economic
factors in specific cities but also project future changes, including climate change, which may
impact or exacerbate the current urban environmental issues caused by greenhouse gases emitted
by buildings. Previous researchers have used different approaches to study the impact of climate
change on building energy demand (Andri¢ et al., 2016; Huang & Gurney, 2016; Sailor, 2001,
Shen, 2017; Wang & Chen, 2014; Xu et al., 2012). This impact can be affected by many
environmental and social-economic factors, such as current local climate conditions, city
function, economic status, population density, and building thermal characteristics. The
approaches that have been used in existing studies can be grouped into two categories: top-down
and bottom-up strategies. The top-down strategy focuses on the broader spatial (global, national,
and state levels) and temporal scales (annual), which compare the impacts of climate change on
heating and cooling energy across different states and countries. On the other hand, the bottom-
up strategy focuses on fine spatial (district, neighborhood, and individual building) and temporal

(hourly) scales (Andri¢ et al., 2016; Berger et al., 2014; Cellura, Guarino, Longo, & Tumminia,
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2018; Dirks et al., 2015; Huang & Gurney, 2016; Li et al., 2018; Shen, 2017; Wan, Li, Pan, &
Lam, 2012; Wang & Chen, 2014). This strategy typically simulates future energy demands for
individual buildings based on detailed building or building prototype information and the
projected future climate. Then, the simulated energy demands are compared with current energy
demands to quantify the differences.

The other important direction in urban sustainability research is to apply mitigation
strategies such as urban greening and increasing renewable energy sources to ease environmental
problems, especially the UHI caused by urbanization. Urban greening is one of the most
effective strategies that can reduce UHIs by intercepting solar energy, providing shade to the
surface and increasing latent heat exchange for the evapotranspiration process (Wang & Akbari,
2016). Research on urban greening strategies mainly include tree planting (Mohajerani, Bakaric,
& Jeffrey-Bailey, 2017; Wang, Akbari, & Chen, 2016; Wang & Akbari, 2016), facade greening
(Li & Ratti, 2018; Moren & Korjenic, 2017), and roof greening (Morakinyo, Dahanayake, Ng, &
Chow, 2017; Sailor, 2008; Shafique, Kim, & Rafig, 2018; Susca, Gaffin, & Dell'osso, 2011). In
high-density urban commercial areas, street trees provide limited contributions to UHI mitigation
because their canopies cannot provide shade for buildings taller than the trees themselves.
Moreover, there are ground surface area limitations for ground level tree planting (Morakinyo et
al., 2017). Therefore, green roofs and rooftop solar photovoltaic (PV) systems research (Dimond
& Webb, 2017; Luka¢ & Zalik, 2013; Schuffert, 2013; Zheng & Weng, 2014) have become
popular. A green roof is a roof with suitable growing media and vegetation. Since green roofs
and PV systems are both commonly accepted as sustainable roofing systems, a few studies
(Chemisana & Lamnatou, 2014; Lamnatou & Chemisana, 2014, 2015; Moren & Korjenic, 2017

Scherba, Sailor, Rosenstiel, & Wamser, 2011; Schindler et al., 2018) have assessed the benefits
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of PV-green roofs, which integrate green roofs with PV systems. However, the majority of these
studies focus on life cycle analyses (Lamnatou & Chemisana, 2014) and the effect of green
roofing on PV performance (Chemisana & Lamnatou, 2014; Lamnatou & Chemisana, 2015;
Moren & Korjenic, 2017; Schindler et al., 2018). Scherba et al. (2011) is the only study that has
attempted to assess the benefits of the PV-green roofs in urban sustainability by comparing these
systems with other roofing technologies, such as dark roofs, cool roofs, green roofs, and PV
roofs in terms of sensible heat reduction. Unfortunately, studies that focus on the mitigation
effects of PV-green roofs on building energy demand caused by climate change do not yet exist.

To develop a sustainable environment for a specific city under the context of climate
change, policy makers must understand the characteristics of Qs as well as its major contributors,
as these factors may exacerbate the UHI effect under a warmer climate in the future. Since Qr has
large spatial and temporal variations, there is a need for high spatial and temporal resolution
simulations. However, such simulations of Qs are subject to data availability from multiple
sources and the robustness of time-dependent simulation models (Sailor, 2011) and are difficult
to conduct using a single approach. Therefore, a hybrid approach that estimates each component
of Qr with high spatial and temporal resolution in large urban areas is in high demand.

Attention should be given to building energy consumption, as this factor is the major
component of Qr and is also sensitive to climate change. Existing studies have either combined
climate change modeling with broad-scale (annual and state level) inventory data of buildings
and social-economic activities or used representative building prototypes to assess the effects of
climate change in different climate zones. However, cities, especially megacities, are mixed with
different types of buildings, which may be constructed during different periods and with different

technologies, functions, and schedules. Therefore, for municipal governments, the sustainable
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development goals are different even among neighborhoods. In developing “green and
sustainable” communities, municipalities would need disaggregated data, which cover an entire
city with high spatial and temporal resolutions to understand the current urban energy flows and
potential changes in future energy demands at local scales. Only in this way can appropriate
measures be chosen that are targeted to specific locations. Clearly, the approaches used in the
existing studies cannot aid in achieving those sustainable development goals. In other words, an
essential city government approach that assesses the impact of climate change on building
energy demand at fine scales (sub-city level) is lacking. Moreover, in many cases, the mitigation
potential of building energy consumption increases induced by climate change has been briefly
discussed in existing publications (Cellura et al., 2018; Herrera-Gomez et al., 2017; Li et al.,
2018; Sathaye et al., 2012; Shafique et al., 2018). Little research has been conducted to test the
performance of mitigation options, such as sustainable roofs (green roofs, PV roofs, or PV-
greens), based on the results of previous studies, which can be valuable in guiding policy makers.
1.3 Research Objectives
The GIS modeling technique has a strong ability to capture, manipulate, analyze, and
manage large amounts of inventoried data with geographic attributes at high spatial and temporal
resolutions. However, GIS modeling has not been applied fully in urban building energy use and
sustainable urban energy management studies. The objective of this dissertation is to fill gaps in
the current literature by proposing a novel hybrid Qr modeling approach, which combines
inventory and GIS modeling methods to create a 365-day, hourly Qs profile at the sub-city scale.
In the following section, a GIS-based approach that combines climate change modeling, building
energy simulations, and fine-scale (individual building level) inventory data of building

characteristics is detailed to quantify the effects of climate change on building energy demand.
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Finally, the potential mitigation effects of PV-green roofs on increased building energy demand

were assessed for selected buildings, as these buildings were found to have greater energy

increases than others in the context of climate change. More specifically, the objectives of this

dissertation are:

1)

2)

3)

To develop a high spatial and temporal resolution Qr profile that can be readily
incorporated into urban energy balance and analyze Qr across multiple spatial and
temporal scales;

To develop an analytical method and useful database that can allow the city
government to foresee the sensitivity of different city regions to climate change
regarding building energy demand at different spatial and temporal scales; and
To test the potential mitigation effects of green roofs and PV-green roofs on the
buildings that are more vulnerable to climate change in terms of energy demand
increase. Through this research, the development of a useful approach for the city
government to work towards a sustainable city is expected by tailoring adaption and
mitigation strategies for buildings in different districts.

1.4 Research Questions

In this dissertation, an attempt was made to answer the following research questions:

1)

2)

3)

What are the typical diurnal Qs profiles for all four seasons during workdays and
weekends across different land use types, and what are the major contributors to Qf?
What changes in annual building energy demand are predicted to occur by 2050, and
do these trends remain the same when examined at finer temporal scales?

Which city areas are more vulnerable to climate change and what are the driving

forces?
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4) To what extent do green roofs or PV-green roofs mitigate the building energy demand
increase caused by climate change? What building types can receive the most benefit
from energy savings?

To answer the four research questions, five hypotheses are put forth:

1) Building energy demand is the major contributor to Qr, and building energy demand

can make the typical diurnal Qs profiles across all four seasons appear to have different

shapes due to changes in cooling and heating demands;

2) The majority of building types show an obvious annual increase in energy demand by

2050, and the variation in energy increases across different building types will be even

larger at finer temporal scales (i.e., monthly and diurnal);

3) Areas with more commercial buildings are more vulnerable to climate change because

commercial buildings have higher energy consumption intensities than residential

buildings;

4) The installation of PV-green roofs can reduce at least 20% of net building energy

demand increase caused by climate change for all chosen types of test buildings, and the

reduction extent will vary by building type; and

5) Building types that are predicted to have the highest energy demand increase caused

by climate change receive the most benefits in terms of energy savings.

1.5 Structure of the Dissertation

This dissertation comprises eight chapters. In Chapter one, an introduction of the research
background, problem statement, research objectives, and research questions are presented. In
Chapter two, previous efforts related to the proposed study are reviewed, including Qf modeling,

simulations of climate change impacts on building energy demand, and relevant studies on green
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roofs and PV-green roofs. A brief description of the study area and dataset used are provided in
Chapter three. In Chapter four, the methodology of the study is described, including research
design, data acquisition, and data processing. The results of the Q+ profile estimation at high
spatial and temporal resolutions are presented in Chapter five. In Chapter six, the results of
modeling climate change effects on building energy demand are described. The results of
Chapter 5 and Chapter 6 have been published (Zheng & Weng, 2018; Zheng & Weng, 2019) and
are available in Appendix A and B. The potential mitigation effects of green roofs and PV-green
roofs on buildings that are more vulnerable to climate change in terms of energy demand
increase are analyzed in Chapter seven. This work will be submitted to Energy and Buildings for
publication. Finally, in Chapter eight, the major findings of this dissertation and future work are

discussed.
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CHAPTER 2

LITERATURE REVIEW
2.1 Introduction

In this chapter, the existing publications related to the proposed study are reviewed. More
specifically, the literature covering the following topics was discussed: 1) the methods used to
estimate Qs; 2) energy demand changes for different building types in different climate zones
caused by climate change, and the methods applied to model this effect; and 3) studies evaluating
the role of green roofs and PV-green roofs to reduce building surface temperature, sensible heat,
and building energy consumption.

2.2 Anthropogenic Heat Discharge Estimation in Urban Areas

Based on the SEB theory, UHI is mainly caused by the combination of energy
consumption, vegetation decreases, and impervious surface area increases (Kato & Yamaguchi,
2005; Zhou et al., 2012). Quantifying Qs and its spatial pattern is important for improving the
understanding of human impacts on the urban environment, which is a key issue in global
climate change (Zhou et al., 2012). In this section, three major categories of approaches used in
previous studies are discussed to estimate Qr: (1) the energy budget residual approach, (2) the
inventory approach, and (3) the GIS modeling approach.

2.2.1 Anthropogenic Heat Flux Estimation Using the Energy Budget Residual Approach
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The energy budget residual approach was designed based on the energy balance equation
developed by Oke (1987), which estimates Qs as the residual term of sensible heat flux, latent
heat flux, ground heat flux, and net radiation. The majority of studies (Hu et al., 2012; Kato &
Yamaguchi, 2005; Kato et al., 2008; Wong et al., 2015; Xu et al., 2008; Yang et al., 2014; Zhou
et al., 2012) have used a combination of remote sensing and meteorological data. Kato and
Yamaguchi (2005) were the first to separate Qf from natural heat radiation in sensible heat flux,
based on the energy balance model using Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER) imagery and ground meteorological data. Xu et al. (2008) used
the Operative Modular Imaging Spectrometer (OMIS) along with a survey map and
meteorological data to model urban sensible heat in Shanghai, China, at multiple spatial scales.
The researchers considered Qr to be the increased sensible and latent heat value forms. Hu et al.
(2012) were the first to apply a continuous layer of meteorological data along with remote
sensing data (two ASTER images) in the estimation of Qr and its seasonal and spatial variations
in Beijing, China. Wong et al. (2015) developed a novel algorithm to model Qr for mixed pixels,
which decomposed image pixels of HJ-1B satellite imagery into fractions of impervious surfaces
and vegetation. Some other studies (Chow et al., 2014; Park et al., 2016) used data from long-
term eddy covariance flux towers, which are the stations built near an urban center that utilize
micrometeorological techniques to measure the fluxes over the surface, to estimate daily local
Qr.

Although the energy balance residual approach is simpler and more convenient, this
approach contains notable limitations and drawbacks. First, the model can introduce
uncertainties and propagate errors towards the final estimated result (Zhou et al., 2012) due to

algorithm complexity, inconsistencies in spatial and temporal resolutions between remote
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sensing and meteorological data, and difficulty in obtaining surface morphometric input data.
The accumulation of errors in the measurements of sensible heat, latent heat, and ground heat
can result in under- or over-estimation of Qs (Park et al., 2016). Moreover, this approach can be
limited by the spatial and temporal resolutions of remote sensing satellite images and
meteorological data, as it is difficult to account for hourly variations in Qr emissions. Although
studies that use data from long-term eddy covariance flux towers have obtained hourly
estimations of Q, the locations of long-term eddy covariance flux towers can be a disadvantage,
as the towers are not available in most parts of a studied city.
2.2.2 Anthropogenic Heat Flux Estimation Using the Inventory Approach

The inventory approach, which is also called the top-down approach, estimates
anthropogenic heat based on population density and energy consumption statistics data from
buildings and vehicles (Grimmond, 1992; Ichinose et al., 1999; Ktysik, 1996; Pigeon et al., 2007;
Sailor et al., 2015; Sailor & Lu, 2004; Smith et al., 2009). The inventory approach requires data
at broad aggregate scales (e.g., annual) and downscales these data into finer scales of interest
(e.g., hourly) (Quah & Roth, 2012). Since energy consumption data are available at broad scales,
this approach has been applied to estimate Qs in cities throughout the world, for example, in
Vancouver, Canada (Grimmond, 1992), Lodz, Poland (Ktysik, 1996), Tokyo, Japan (Ichinose et
al., 1999), Toulouse, France (Pigeon et al., 2007), and Manchester, Unite Kingdom (Smith et al.,
2009). The limitation of an inventory approach is that estimation accuracy relies on data
availability and quality. As mentioned in the Introduction, due to the limitations in the spatial
(usually county or statewide) and temporal (usually annual or monthly) resolution of inventory
data, it is difficult to quantify Qs at fine spatial (within-city level) and temporal (daily or hourly)

scales.
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2.2.3 Anthropogenic Heat Flux Estimation Using the GIS Modeling Approach

In contrast to the inventory approach, the GIS modeling approach (Hamilton et al., 2009;
Heiple & Sailor, 2008; Quah & Roth, 2012; Sailor et al., 2007; Zhou et al., 2012) uses energy
consumption modeled at fine spatial scales (e.g., individual buildings) to aggregate the
information to broader scales of interest (Quah & Roth, 2012). Earlier studies (Kikegawa,
Genchi, Kondo, & Hanaki, 2006; Kikegawa, Genchi, Yoshikado, & Kondo, 2003; Masson, 2000;
Ohashi et al., 2007) simply estimated Qs by integrating building energy simulation results with
an urban canopy meteorological model. Recent studies (Hamilton et al., 2009; Heiple & Sailor,
2008; Sailor et al., 2007; Zhou et al., 2012) have integrated more detailed building energy
simulations for prototypical buildings with GIS database containing attributes such as building
types, ages, and sizes. Other studies (Chapman et al., 2016; Ferreira et al., 2010; Lee et al., 2009;
Quah & Roth, 2012) have added traffic emissions and human metabolism to Qs estimations.

The GIS approach is considered more reliable than the other two approaches, since this
approach measures Qs directly from each of the contributing sources, such as building energy
consumption, traffic emission, industrial emission, and human metabolism. The GIS approach
has the advantage of measuring Qs at any temporal (annual, monthly, weekly, daily, and diurnal)
or spatial resolution because any unrelated information can be related, such as hourly
meteorological data and individual building information by using location as the key index
variable. In the existing studies, a common drawback of this approach is the absence of
validation data. For example, Zhou et al. (2012) simulated building energy consumption at the
individual building level in the city of Indianapolis but used commercial and residential building

energy consumption survey data for the entire Census Division to validate their simulation
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results. Using validation data at broader scales, such as national, central census division, or at the
state level provides limited aid in improving the accuracy of within-city simulations.
2.2.4 Anthropogenic Heat Flux Estimation Using the Hybrid Approach

Because the above three approaches have their respective advantages and disadvantages,
the integration of multiple approaches is needed. Although the majority of previous studies were
restricted to a single approach, a few studies in recent years combined multiple approaches to
estimate Qf (Chow et al., 2014; Nie et al., 2014; Park et al., 2016; Zhou et al., 2012). Zhou et al.
(2012) examined the similarities of Qs spatial patterns estimated by the energy balance residual
approach and the GIS modeling approach. However, the GIS modeling approach only included
building energy consumption modeling and ignored emissions from traffic, human metabolism,
and industrial plants. These studies (Chow et al., 2014; Nie et al., 2014; Park et al., 2016) were
also restricted to small study areas at the local spatial scale. The data required by the energy
balanced residual approach (Chow et al., 2014; Park et al., 2016) were measured by a long-term
eddy covariance flux tower built near the study area, which is not available in every city or every
part of the city. The inventory approach adopted by Nie et al. (2014) was based on an on-campus
survey, which may be infeasible at broader spatial scales due to the unavailability of such data.
In addition, the differences between workdays and weekends were ignored due to lack of high
temporal Qr simulation. Therefore, despite combined approaches, the greatest challenge in the
estimation of Qr that remains unsolved is the availability and quality of data from multiple
sources and the robustness of time-dependent simulation models.

2.3 Estimating the Effect of Climate Change on Building Energy Demand in Urban Areas
Building energy consumption is a major component of Qs and UHI. Previous studies have

applied different approaches to study the impact of climate change on building energy demand.
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Approaches used in the existing studies can be grouped into two categories: top-down and
bottom-up strategies.
2.3.1 Top-down Strategy of Building Energy Demand Modeling

The top-down strategy focuses on broad spatial (global, national, and state levels) and
temporal scales (annual), which compare the impact of climate change on heating and cooling
energy across different states and countries. There are two types of widely used approaches in
the top-down strategy: observation based regression/prediction (Sailor, 2001; Sathaye et al.,
2012; Sathaye et al., 2013; Xu et al., 2012) and global/regional energy modeling (McFarland et
al., 2015; Scott et al., 2015; Zhou et al., 2014; Zhou & Gurney, 2010; Zhu, Pan, Huang, & Xu,
2016). The observation-based approach uses the historical relationship of energy consumption
and climate data to predict future energy consumption under a changing climate. Although this
approach makes predictions based on the reference data, the output resolution is determined by
the historical input data resolution, and the estimation accuracy depends on the quality of the
selected regression model (Huang & Gurney, 2016). Moreover, this approach ignores the effect
of changing building technologies, which may play an important role in energy consumption.
The global/regional energy modeling approach uses a numerical model to estimate national/state-
level building energy consumption by combining building technologies, policy, economy,
population growth, and climate. The impact of global warming on building energy consumption
is based on simulations of different Intergovernmental Panel on Climate Change (IPCC)
scenarios. For example, Zhou et al. (2014) presented a detailed building energy model with U.S.
state-level representation, nested in an integrated assessment framework of the Global Change

Assessment Model (GCAM). This study revealed the spatial heterogeneity of the global warming
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impact on heating and cooling energy and fuel uses in the building sector across all 50 states of
the United States.
2.3.2 Bottom-up Strategy of Building Energy Demand Modeling

The bottom-up strategy focuses on fine spatial (district, neighborhood, and individual
building) and temporal (hourly) scales (Andri¢ et al., 2016; Berger et al., 2014; Cellura et al.,
2018; Dirks et al., 2015; Ghedamsi et al., 2016; Huang & Gurney, 2016; Li et al., 2018; Shen,
2017; Wan et al., 2012; Wang & Chen, 2014). This strategy typically simulates future energy
demands for individual buildings based on detailed information of the building or building
prototype and the projected future climate. Then, the simulated energy demands are compared
with the current energy demands to quantify the differences. Berger et al. (2014) calculated and
compared heating and cooling demands from nine selected office buildings under current and
future conditions in Vienna, Australia. This study discovered distinct differences in the energy
performance of buildings from different periods of construction that adopted various building
technologies. Andri¢ et al. (2016) compared the energy simulation results from a district of
buildings in Lisbon, Portugal, from 2010 and 2050 and discovered that heat demand density
could decrease by 22.3-52.4% by 2050. Huang and Gurney (2016) used the building prototypes
developed by the U.S. Department of Energy (DOE), which included 18 types and three age
groups, and weather data from different climate zones to assess the variations in climate change
impact on different spatial and temporal scales. Their results suggested that the impact variation
within climate zones can be larger than the variation between climate zones and that the potential
bias may be substantial when estimating climate-zone scale changes with a small number of

representative buildings. Shen (2017) downscaled the future climate data into hourly scales using
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a “morphing” method to predict the future energy use of residential buildings in the United
States.

Although the bottom-up strategy can quantify the impact of climate change on building
energy demands at the scale of individual building, a common drawback in this approach is that
only a few buildings were assessed. The conclusions drawn cannot represent the entire building
stocks in the study area.

2.4 Studies on the Roles of Green Roofs in Building Energy Consumption Reduction in Urban
Areas

Since ground trees can provide only limited cooling in high-density cities, especially for
buildings taller than tree canopies, green roofs have become popular as a potential alternative
means for re-establishing the connection between nature and a city (Alcazar, Olivieri, & Neila,
2016), enhancement of the aesthetic appearance of buildings (Catalano, MarcenQ Laudicina, &
Guarino, 2016) and improvement of environmental quality (Morakinyo et al., 2017). Modern
green roofs generally consist of a number of layers, including vegetation, growth substrate, filter
fabric, drainage elements, root barriers, insulation, and water proofing membranes, which are
dependent upon location and city requirements (Hashemi, Mahmud, & Ashraf, 2015; Lamera,
Becciu, Rulli, & Rosso, 2014; Morakinyo et al., 2017; Vijayaraghavan, 2016). These layers can
enhance the insulation capacity of a conventional roof by controlling heat transfer into buildings
(Tam, Wang, & Le, 2016). Because solar radiation is often the main heat source in buildings,
roof vegetation can absorb solar heat and evaporate water through evapotranspiration, which
creates a cooling effect in the surrounding environment. Green roofs can be classified into
intensive and extensive based on the thickness of the substrate layer and the vegetation species

planted. Extensive green roofs have thinner substrate layers (up to 15 cm) and limited types of
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grasses planted on top (Heusinger, Sailor, & Weber, 2018). The intensive green roofs, which are
also called roof gardens, have thicker substrate layers and are planted with taller vegetation, such
as shrubs and small trees (Heusinger et al., 2018).

Existing studies have examined the performance of green roofs in building indoor
temperature reduction and energy consumption savings by considering various factors, including
climate (Morakinyo et al., 2017; Susca et al., 2011; Sailor, Elley, & Gibson, 2012; Semaan &
Pearce, 2016; Yang et al., 2018), green roof types (Morakinyo et al., 2017; Silva, Gomes, &
Silva, 2016), spatial coverage (Morakinyo et al., 2017), maintenance status (Heusinger et al.,
2018; Yang et al., 2018), building density (Morakinyo et al., 2017), and building height (Herrera-
Gomez et al., 2017). The majority of existing studies simulated the performance of green roofs
using an energy balance model of vegetated rooftops integrated in EnergyPlus software, which
was developed by Sailor (2008). This energy balance model was initially designed and has been
updated based on validated data collected from monitored green roofs in Florida and Oregon.

Morakinyo et al. (2017) presented a parametric study on the effects of four green roof
types (full-extensive, semi-extensive, full-intensive, and semi-intensive) on outdoor/indoor
temperature and cooling demand under four different climates (hot-dry, hot-humid, warm-humid,
and temperate) and three urban densities. Their results suggested that during the daytime, the
cooling effect of green roofs was more apparent in the full-intensive type under all climate
conditions. However, the extensive green roof types were demonstrated to have better UHI
mitigation potential due to less solar heat absorption during the daytime. Moreover, the cooling
effect was also found to follow the order of hot-dry (Cairo), hot-humid (Hong Kong), warm-
humid (Tokyo), and temperate (Paris) from strongest to weakest, which can be explained by the

interplay between solar intensity, air temperature, and relative humidity. Morakinyo et al. (2017)
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also suggested that spatial coverage and building density had less effect than climate conditions
and green roof types in cooling performance. Herrera-Gomez et al. (2017) conducted a case
study in Seville, Spain, to discuss green roofs as a supplement to existing urban green spaces to
buffer the negative effect of increased maximum temperatures due to climate change. They
verified the inverse relationship between Land Surface Temperature (LST) and the abundance of
vegetation, expressed by the Normalized Difference Vegetation Index (NDV1), and predicted
that at least 207 ha of green roof surface (11.3% of the existing roofs) should be added. The
researchers also suggested that green roofs can be even more efficient when the height of the
building is less than 10 meters, and that the installation of green roofs on taller buildings could
have its own benefits, such as providing a cooling effect above the street canopy. Heusinger et al.
(2018) discovered that maintenance, such as irrigation, played a vital role in the performance of
green roofs. Their results suggested that green roofs reduced urban excess heat by 15-75% when
using different irrigation methods in comparison to traditional roofs. However, green roofs only
reduced the urban excess heat by 3% when irrigation was not performed. Moren and Korjenic
(2017) suggested that plants in the wall-mounted PV-green systems can grow behind PV systems
mounted on the facgade and promote the performance of the PV systems by reducing their
operating temperatures. They further stated that at P\V-green system could achieve better
performance if it was installed on the south side of a building.

Many existing studies (Sailor et al., 2012; Silva et al., 2016; Susca et al., 2011; Yang et
al., 2018) compared green roofs with cool roofs in terms of their cooling abilities; cool roofs are
roofs made of a highly reflective type of paint to reflect more sunlight and absorb less heat
(United States Department of Energy, 2018). Yang et al. (2018) examined the UHI mitigation

potential of green roofs in a tropical climate (Singapore). Their results showed that during peak
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hours (9 am to 5 pm), cool roofs reduced heat gain by approximately 0.14 kwh/m? (8%) and
green roofs mitigated considerably less at approximately 0.008 kwh/m? (0.4%). For the whole of
a summer design day, cool and green roofs can reduce heat gain by 15.53% (37%) and 13.14
(31%) kwh/m?, respectively. However, Susca et al. (2011) suggested the opposite results, as they
concluded that green roofs saved more building energy than cool roofs at all four testing sites in
New York City. Despite the performance in temperature cooling and energy saving, green roofs
can provide multiple ecosystem benefits to air quality, biodiversity, retention performance, and
microclimate in contrast to single benefit of cool roofs (Heusinger et al., 2018).

In recent years, a few studies (Chemisana & Lamnatou, 2014; Lamnatou & Chemisana,
2014, 2015; Moren & Kaorjenic, 2017; Scherba et al., 2011; Schindler et al., 2018) have
suggested the integration of green roofs with a solar PV system. Scherba et al. (2011) modeled
the impact of PV-green roofs on sensible heat reduction in cities located in six climate zones.
Their results indicated that the replacement of a traditional black membrane roof with a PV-
green roof would reduce the total sensible flux by 50%. Chemisana and Lamnatou (2014) stated
that vegetation provided a cooling effect to the PV systems, which can lead to an increase in
output, and this cooling effect varies by plant species. Lamnatou and Chemisana (2014)
suggested that PV systems can also bring benefits to roof vegetation by protecting the vegetation
from exposure to too much sunlight during the summer. Schindler et al. (2018) indicated that the
presence of vegetation did not provide any benefit to PV electricity production. However, they
stated that the lack of irrigation for vegetation could be the reason because little
evapotranspiration occurred.

Although many studies have estimated the cooling effect of green roofs, few studies have

evaluated their performance under the context of climate change, especially when integrated with
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PV systems. Scherba et al. (2011) are the only researchers thus far who have attempted to assess
the benefits of PV-green roofs in sensible heat reduction by comparing it with other roofing
technologies. However, they did not quantify the potential mitigation effect of green roofs on
building energy demand caused by climate change.
2.5 Summary
Previous attempts related to the research topics in this study were reviewed in this
chapter. The greatest remaining challenges in the estimation of Qs are data availability and
quality from multiple sources, and the robustness of time-dependent simulation models.
Therefore, a hybrid approach that estimates each component of Qs with high spatial and temporal
resolutions in large urban areas is urgently needed. In developing green and sustainable
communities, municipal governments need disaggregated data, which covers the entire city in
high spatial and temporal resolutions, to understand current urban energy flows and the potential
change in future energy demands at local scales as a result of climate change. Clearly, the
approaches discussed in the existing literature cannot aid in achieving these goals. In other
words, an approach essential to municipal governments that assesses the impact of climate
change on building energy demand at fine scales (sub-city level) is lacking. In addition, the
potential mitigation effects of green roofs and PV-green roofs on building energy demand in the
context of climate change have not been fully evaluated. The intent of this dissertation is to fill
these research gaps by developing an integrated approach of GIS, modeling, and climate change
simulation, which has great potential for applications in urban use planning and sustainable

urban energy management.
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CHAPTER 3

STUDY AREA AND DATA
3.1 Study Area

The study area, Los Angeles County, is located in California, USA (Figure 3.1). The
county has a population of 9,818,605 according to the 2010 U.S. Census (United States Census
Bureau, 2017), making this county the most populous in the nation. Los Angeles County
occupies three climate zones according to the Koppen climate classification. The coastal area has
a “warm summer Mediterranean” (Csb) climate with dry and warm summers and moist winters.
The inland area, on the other hand, has a “hot summer Mediterranean” (Csa) climate with hotter
summers than the coastal area. The northern part of Los Angeles County has a “cold semiarid”
(Bsk) climate, which has warm to hot summers and cold winters. The microclimate, which is
caused by the topography, makes the county unique, because there are large temperature
variations among nearby areas. For example, during the summer, the average temperature along
the Santa Monica coast is less than 27 <C (80.6 ), but inland areas are greater than 32 <C
(89.6 F).

The 2010 inventory data provided by the Energy Atlas show that the building sector
emitted the largest amount of greenhouse gases, which accounted for 39.2% of the annual total

greenhouse gas emissions (Table 3.1). Therefore, managing building energy consumption under
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the climate change context is important for developing a sustainable urban environment in Los

Angeles County.
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Figure 3.1. The location of the study area, Los Angeles County, California, USA.
3.2 Datasets
The major datasets used in this study area are listed in Table 3.2. To simulate 365-day
hourly building energy consumption, datasets included Los Angeles countywide building
outlines, building prototypes, Los Angeles County parcel shapefiles, and typical meteorological
year (TMY) records. Building outlines provided information on building height, building area,
type, and year of construction. The outlines were captured from stereo imagery as part of the

LAR-1AC2 Project (2008 acquisition) and updated as part of the LAR-IAC4 (2014) imagery
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Table 3.1

Greenhouse gas (GHG) emissions in Los Angeles County by sector (Energy Atlas, 2017; Zheng

& Weng, 2019).

Sector Emissions (MT CO2e) Percent of Inventory
Building Energy 38,900,762 39.2%
On-Road Transportation 33,226,317 33.5%
Stationary Sources 19,516,169 19.7%
Solid Waste 4,327,123 4.4%
Water Conveyance 1,117,283 1.1%
Ports 1,059,131 1.1%
Off-Road Transportation 515,044 0.5%
Wastewater Treatment 443,832 0.4%
Agriculture 26,105 0.0%
Los Angeles World Airport 2,760 0.0%
Total 99,134,526

acquisition. On the other hand, the Los Angeles County parcel data contain information on land
use types, which were collected from the Los Angeles County Enterprise GIS website. This sixth
version of neighborhood boundaries was defined by the Los Angeles Times

(http://boundaries.latimes.com/set/la-county-neighborhoods-v6/) in June 2010, which expanded

beyond the city to cover all of Los Angeles County and represents the boundary of communities
and social organizations within each city; these data were downloaded from the Los Angeles
County Enterprise GIS website. Building prototypes and typical meteorological year records
were obtained from the U.S. DOE and National Solar Radiation Data Base (NSRDB),
respectively. The TMY data was a collation of hourly weather data, which was selected from a
database containing data from multiple years, for a specific location in a one-year period. The
data included seasonal and diurnal variations and represented the typical climatic conditions for a
location. Census Transportation Planning Product (CTPP) shapefiles were used for hourly human

metabolism estimation. Annual average daily traffic (AADT) data and county road shapefiles
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were acquired to estimate hourly traffic emissions. The annual county energy consumption data
were downloaded from the Energy Atlas website, which recorded historical energy consumption
data from different sectors (commercial, residential, and industrial) by year and were used for
validation and calibration. Finally, open-source solar potential data for all houses in the United
States were published by Google on their Project Sunroof website

(https://www.google.com/get/sunroof#p=0). This data explorer estimates the technical potential

of solar power for a single house or region chosen by the user, which was used to analyze the
performance of PV-green roofs in the study area.

Diverse spatial scales were found in the data obtained from different sources (Table 3.2).
For example, AADT data were collected at a broader scale than the road shapefiles, which can
bring challenges to the traffic emission modeling because the heterogeneity at the fine scale
(road shapefiles) cannot be reflected at the broad scale (AADT). This dissertation applied
different solutions to bridge the gap between broad- and fine-scale datasets in different parts to
avoid biases in the modeling results. A downscaling method was used to adjust the AADT data,
which were initially at the 1:25,000 scale, and to assign the estimated traffic volumes to all road
segments at the 1:12,000 scale. TMY data was not downscaled in the building energy demand
simulation because no literature has suggested that temperature, which is the most important
factor that affecting building energy consumption (Huang & Gurney, 2016; Sailor & Lu, 2004),
varies at the individual building (1:5,000) or neighborhood (1:24,000) scale. Therefore, the same
meteorological data were used for different buildings, if they were located within the same TMY
weather zone. The specific workflows for scale integration in the building energy consumption
simulation and traffic emission modeling are presented in detail in Sections 4.2.2 and 4.2.3,

respectively.


https://www.google.com/get/sunroof#p=0

Table 3.2

Datasets used in this study and data sources (Zheng & Weng, 2018).
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Data

Source

Scale

Census Transportation Planning
Product (CTPP) shapefiles

U.S. Census website

Approx. 1:12,000

Los Angeles countywide
building outline dataset

Los Angeles County Data
Portal

Approx. 1:5,000

Building prototypes

U.S. Department of Energy
(DOE)

No Spatial Scale

Los Angeles County parcel
shapefiles

Los Angeles County Enterprise
GIS

Approx. 1:5,000

Los Angeles County
neighborhood shapefiles

Los Angeles County Enterprise
GIS

Approx. 1:24,000

shapefiles

Typical meteorological year National Solar Radiation 1:250,000
(TMY3) weather data Database

Annual average daily traffic California Department of 1:25,000
(AADT) data Transportation website

Los Angeles County road U.S. Census website 1:12,000

Annual county energy
consumption statistics

Energy Atlas

No Spatial Scale

Solar potential data

Google Project Sunroof
website

Approx. 1:12,000
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CHAPTER 4

METHODOLOGY
4.1 Introduction

In this chapter, the research methodology developed to fulfill the three objectives in this
dissertation are described. This chapter includes three major parts: 1) the inventory and GIS
approach are combined to create a 365-day hourly Qs profile at a 120-m spatial resolution for Los
Angeles County; 2) a GIS approach is developed to combine climate change modeling, building
energy simulation, and fine-scale (individual buildings) inventory data of building characteristics
to quantify the effects of climate change on building energy demand at the sub-city scale; and 3)
the potential mitigation effects of PV-green roofs in building energy demand are evaluated for
selected buildings, which have shown more energy increases than other buildings under a climate
change context. The following sections detail the specific methods used for each part. The
methodology described in Section 4.2 and 4.3 have been published (Zheng & Weng, 2018;
Zheng & Weng, 2019).

4.2 Anthropogenic Heat Discharge Estimation
The Qr sources can be divided into three major categories of wasted heat (Sailor & Lu,

2004):

Qf:Qb+Qv+Qm (2)
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where Qb, Qv, and Qm represent heat fluxes emitted by buildings, transportation, and human
metabolism, respectively. Figure 4.1 shows a flowchart for the proposed methods. Qm was
determined by the inventory approach at the 1:12,000 scale, while Q, and Qy were simulated by
using a combined GIS modeling and inventory approach at the 1:5,000 and 1:12,000 scales,
respectively. This dissertation calculated the Qf as the sum of Qp, Qv, and Qm. A gridded
algorithm (Heiple & Sailor, 2008; Smith et al. 2009; Zhou et al., 2012) was adopted to quantify
the Qr and each of its components. A 120-m resolution grid was created in the shapefile format,
and the spatial extent was matched with Landsat imagery. Therefore, the original modeling
results of Qn, Qv, and Qm were overlaid with the grid layer before they were summed.
4.2.1 Human Metabolism Simulation

Human metabolism (Qm) is the heat released by human bodies during daily activities,
which varies with population density, activity phase, and time of day. This study offered a
diurnal time-dependent population density-based method to simulate human metabolism in Los
Angeles County. The CTPP shapefiles created by the U.S. Census Bureau, which contained
information on the total population, number of workers in a work place, time of arrival at a work
place, school enrollment population, and employment status, were used to simulate hourly
population density. For working days, population density can be estimated by using the

following equation:

PD = (WP1 + WP2 + UE + S) / A (3)

where WPL1 is the working population of a workplace; WP2 is the population of people working

at home; UE is the unemployment population; S is the student population; and A is the census
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Figure 4.1. Flowchart of time-dependent hourly Qf estimation.

tract area. In the subsequent step, a diurnal human metabolism simulation model was created

from the time-dependent population distribution within each hour, which was based on data of 1)
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working/student population arriving at workplace/school and 2) working/student population
leaving home at each time interval. Table 4.1 presents the time schedule of where the typical
working population would be during the day. The schedule was designed based on several
assumptions: 1) the average daily working hours was 8 hours; 2) a 1-hour lunch break was
incorporated; and 3) the average time needed for each daily commute was 1 hour. Therefore, the
time between people leaving their home to work and arriving back home from work was set to
10 hours. The commuter flow for each census tract was estimated based on the following two
cases:

Case 1: If the population at a work place was (working hours) > residential population,
more workers and students from other census tracts were coming into this census tract than going

out. Thus, the time-dependent population can be calculated as follows:

5am—11am: Pop (t) = PP2 + Y"=5 (PP1 — PP2) X AR(t)/AR(total) 4)
12 pm -2 pm: Pop(t) = PP1 (5)
3pm-8pm: Pop(t) = PPl ->"=15(PP1 - PP2) X AR(t-10)/AR(total) (6)
9pm-—4am: Pop(t) =PP2 @)

where PP1 is the population at working day during working hours; PP2 is the total population
(residential) in each census tract; AR(t) is the population of workers and students arriving at
work places during time interval “t”, and AR(total) is the total population of workers and
students arriving at work places during an entire day.

Case 2: If the population at working day during working hours was < residential

population, workers and students from places other than this census tract were less than workers
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and students going to other census tracts during working hours. Then, the time-dependent

population at each census tract can be calculated as follows:

5am—11am: Pop (t) = PP2 - > =5 (PP2 — PP1) X L(t)/L(total) (8)
12 pm -2 pm: Pop(t) = PP1 9

3pm-8pm: Pop(t) = PPI + Y "=15(PP2 — PP1) X L(t-10)/L(total) (10)
9pm-—4am: Pop(t) =PP2 (11)

where L(t) is the population of workers and students leaving home during time interval “t”, and
L (total) is the total population of workers and students leaving home.

Table 4.1

Schedule of working population during the working day (Zheng & Weng, 2018).

Arrival time at work place/time leaving Return time to home from work
home

5:00 — 5:59 am 3:00 — 3:59 pm

6:00 — 6:59 am 4:00 —4:59 pm

7:00 — 7:59 am 5:00 — 5:59 pm

8:00 — 8:59 am 6:00 — 6:59 pm

9:00 — 9:59 am 7:00 — 7:59 pm

10:00 — 10:59 am 8:00 — 8:59 pm

11:00 — 11:59 am 9:00 — 9:59 am

In the final step, human metabolism was calculated as follows:

Qmn=PD X Mt (12)
where PD is the population density per square meter and Mt is the amount of energy released per
person as a function of day in watts (W). In this study, 175 W was set for Mt to represent the
daytime metabolic rates in the urban area, according to Sailor and Lu (2004). Table 4.2 lists the

energy released per person as a function of hour of day (W). Since the initial Qm layer was at the
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same scale as the census tract (1:12,000), it was overlaid with the 120-m grid for Qs modeling at
the final step. Since the area of one census tract in Los Angeles County was larger than a 120-m
grid, the spatial relation between these two was used to determine the Qm value for each grid. If a
grid was completely within a census tract, the Qm value of that census tract was assigned to this
grid. If a grid intersected with two or more census tracts, the average value of Qm from all
intersected tracts was assigned to this grid.
Table 4.2

Energy released per person as a function of hour of day (W) (Zheng & Weng, 2018).

Time Period Time-dependent energy release per hour
12:00 am — 4:59 am 5 W

5:00 am — 7:59 am 125 W

8:00 am — 7:59 pm 175 W

8:00 pm — 11:59 pm 125 W

4.2.2 Building Energy Consumption Simulation

Qb was simulated as the energy consumption sum from industrial plants and commercial
and residential buildings. Although there is a time lag between the energy consumption and heat
emission into the atmosphere, detailed information on the ventilation systems and fabric of
buildings for the time delay estimation is not generally available (Smith et al., 2009). Moreover,
it is difficult to determine the percentage of consumed energy that was rejected as wasted heat
because this percentage was dependent on varying insulation levels and heat exchange rates in
different buildings (Sailor & Lu, 2004). Therefore, it was assumed in this study that all energy
consumed within the buildings was fully and instantaneously emitted into the environment as
wasted heat.

Building energy consumption includes space heating, cooling, lighting, ventilation, and

equipment use. The amount of energy consumption for individual buildings can vary, which
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depends on the physical parameters, prototype, operation schedule, occupant behaviors, and
regional climate conditions. For example, space heating and cooling accounted for
approximately 50% of building energy consumption (United States Department of Energy,
2012), but this percentage can be much higher during extreme weather conditions. Therefore,
there is a need for high-resolution simulations of building energy consumption, especially for
large areas such as Los Angeles County, which has microclimates and heterogeneous land cover.
In this case, the bottom-up GIS modeling approach is more suitable than the top-down inventory
approach, which is based on simulations of individual buildings by considering their attributes.

EnergyPlus, a well-known building energy simulation tool developed by the U.S. DOE
was used to simulate 365-day building energy consumption at hourly intervals in this study. This
software has been extensively tested and validated for the American Society of Heating,
Refrigerating and Air-Conditioning Engineers (ASHRAE) standards and widely used by
engineers and scientists to model building energy consumption (Huang & Gurney, 2016). Local
climate datasets and building prototypes (Table 3.2) were the two required input data sources.
The simulation models allowed for the customization of occupancy behaviors by providing
settings for attributes such as daylight schedule, balanced-point temperature, heating, ventilation,
and cooling (HVAC) operation hours, and the amount of equipment, which directly determined
the energy demand of buildings. The output included hourly site energy consumption by end-use
and fuel type for a building prototype under a given weather condition.
4.2.2.1 Local Climate Datasets and Building Prototypes

The hourly weather data files (Table 3.2) used in EnergyPlus were retrieved from the
third (and latest) TMY 3 collection. Each TMY 3 file included hourly weather data (temperature,

solar radiation, precipitation, relative humidity, and so on) in one-year durations for a specific
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location, which is developed based on either 1991-2005 weather data or 19762005 weather data
if the latter existed (Huang & Gurney, 2016). Because Los Angeles County covers a large area,
the climate can be different due to the urban island effect and the influences from different
topographies and land uses. Hourly TMY3 data from seven weather locations distributed
throughout the entire county were used to simulate hourly building energy consumption.

Sixteen commercial building prototypes developed by the U.S. DOE
(https://www.energy.gov/eere/buildings/commercial-reference-buildings) were used for the
simulations. The DOE created these building prototypes based on Commercial Buildings Energy
Consumption Survey (CBECS) data collected by the U.S. Energy Information Administration
(EIA), which provided information on building characteristics, including thermal properties,
operation schedules, and three different age categories (pre-1980, post-1980, and post-2004).
The age categories reflected differences in the building insulation, envelope, HVAC systems,
lighting, and equipment technologies for each building type, which led to different energy-saving
abilities under the same outdoor environmental conditions. Buildings with newer technology had
more energy-efficient equipment, better insulation to mitigate the impact of nonoptimal outside
temperatures, smaller energy intensity of lighting, and more energy-efficient HVAC systems
(Deru et al., 2011; Huang & Gurney, 2016).

Two prototypes of residential buildings, i.e., multifamily low-rise apartment buildings
and single-family detached houses, were developed by the DOE in 2009 based on building codes
specified in the International Energy Conservation Code (IECC) and Residential Energy
Consumption Survey (RECS). Each prototype was modified to represent three types of heating

systems (electric resistance, gas furnace, and heat pump), resulting in six residential sub-
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prototype residential houses (Huang & Gurney, 2016). An inventory approach was used to
disaggregate the industrial energy consumption data from broad scale to fine scale.
4.2.2.2 Schedules of Building and Occupant Behavior

In this study, separate profiles were designed for workdays and weekends/holidays to
obtain an accurate 365-day building energy-use simulation, which was usually ignored in
previous studies. The differences in operation hours and occupancy statuses between workdays
and weekends/holidays can result in a difference in energy use to a certain extent. The DOE-
generated building prototypes contained specific operation hours for each type of building on
workdays, weekends, and public holidays in the Los Angeles area based on the CBECS survey.
Office buildings, school buildings, and outpatient service buildings were set as closed during the
weekend and public holidays, while buildings such as fast-food restaurants, hospitals, and hotels
were set as open seven days a week, 24 hours a day.

Residential buildings did not have routine operational hours like commercial buildings,
and the energy consumption statuses of residential buildings are completely dependent on
occupancy behaviors. Therefore, during the workdays, a population distribution-based modeling
method was used. The hourly profiles of the population that works at home, the unemployed
population, and time leaving home and returning to home used to calculate human metabolism
were applied to determine whether a residential house was occupied. The occupancy number in a
residential house in each census district can be calculated by dividing the time-dependent
population by the number of residential houses. If the population number is lower than the
number of houses, it can be assumed that some houses were vacant during that particular time
period, and then, the energy consumption for vacant houses was set to zero. For occupied houses,

lighting load was determined from the time of sunset and the time of the sunrise, which assumed
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that lights turned on in the evening during sunset and turned off during sleep time, and this time
was set to 12 pm; lights were considered to be turned on again before sunrise in the morning. On
weekends and public holidays, all residential buildings were set as occupied at all times.

For commercial and residential buildings, heating and cooling energy consumption was
simulated depending on the comparison between indoor temperature and the balanced-point
temperature at which no cooling or heating was required. If the indoor temperature was higher
than the setup temperature, it can be assumed that the cooling system was working to maintain
the setup temperature; if the indoor temperature was lower than the comfort temperature, the
heating system was assumed to be turned on. The balanced-point temperature was usually
assumed to be 18.3 T (65 F) in previous studies (Wang & Chen, 2014). This dissertation
assigned 20 <C (68 F) as the temperature that was set up by the occupants on thermostats, which
was close to the balanced-point temperature.

Energy use in the industrial sector did not show a large difference from commercial and
residential buildings due to the relative insensitivity to variations in weather and a much more
uniform diurnal and seasonal distribution (Sailor, 2011). It is fairly common that energy
consumption in the industrial sector was assumed to be uniformly distributed among all 8,760
hours of the year (Sailor, 2011; Sailor & Lu, 2004).
4.2.2.3 Initial Annual Building Energy Consumption Simulation and Calibration

The 365-day building energy consumption simulation was categorized into eight different
“seasonal and day type” profiles: (1) spring workdays; (2) spring weekends/holidays; (3) summer
workdays; (4) summer weekends/holidays; (5) fall workdays; (6) fall weekends/holidays; (7)
winter workdays; and (8) winter weekends/holidays. The annual building energy consumption

from commercial and residential sectors was calculated based on the aggregation of energy
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consumed during each particular hour, day, and season. First, the hourly building energy use
intensity (EUI), defined as the hourly energy use per square meter, was simulated using
EnergyPlus. For commercial buildings, there were 2,688 different EUI values, which resulted
from the combination of eight “seasonal and day type” profiles, seven weather zones, 16 building
prototypes, and three age groups. Residential buildings exhibited 366 different values of EUls,
which resulted from the combination of eight “seasonal and day type” profiles, seven weather
zones, and six prototypes.

The energy consumption for an individual building (BE) i within a particular hour j can

be calculated by the following equation:
BEpourqi,jy = EUl;j X Apuitaing(iy X FNpuitaing (i) (13)

where Auuildingi) is the footprint area of building i, and FNbuildingy is the floor number, which was
estimated based on building height. The daily energy consumption of building i for day j was

calculated as follows:

24

BEaayijy = ) BEnourci (14)
j=1

The building energy consumption within a season k was calculated as follows:

t1 t2

BEseason(k) = Z BEworkday(i,j,k) + Z BEnon—workday(i,j,k) (15)
j=1 j=1
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where BEworkday(i,jk) @nd BEnonworkday(i jk) are the EUI at a particular hour i within day j during
season k on workdays and nonworkdays (weekends and holidays), respectively; and t1 and t2 are
the number of workdays and nonworkdays within season k, respectively. The annual building

energy consumption for sector | was calculated as follows:

4
BEannual(l) = Zk—l BEseason(k) (16)

Although the GIS modeling approach can simulate building energy consumption at much
finer spatial (individual building level) and temporal scales (hourly) than the inventory approach,
discrepancies remained between the simulation results and the actual energy consumption
(Herrando et al., 2016), which can be caused by uncertainties between the simulation and the
truth. Therefore, annual energy consumption data from the California Energy Commission (CEC,

2016) (http://ecdms.energy.ca.gov/elecbycounty.aspx) and the Energy Atlas

(http://www.energyatlas.ucla.edu/) were used as references to calibrate the simulation model.

The Energy Atlas is a database of building energy consumption created by the California Center
for Sustainable Communities (CCSC) at the University of California, Los Angeles (UCLA). The
building energy consumption data were created from a separate and confidential geospatial
relational database that contained approximately five billion unique records

(http://www.energyatlas.ucla.edu/). These records related the private account-level monthly

energy consumption data to building characteristics and census information

(http://www.energyatlas.ucla.edu/). This data source provided detailed historical annual energy

consumption data from all building energy sectors, including commercial, residential and


http://ecdms.energy.ca.gov/elecbycounty.aspx
http://www.energyatlas.ucla.edu/
http://www.energyatlas.ucla.edu/
http://www.energyatlas.ucla.edu/
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industrial sectors at a fine scale (city neighborhood level). Compared to previous studies, which
used county, state, or census division-level energy consumption data to calibrate the simulation,
the use of neighborhood-level reference data allowed us to address the regional variation in
energy consumption patterns in each building sector.

The annual energy consumptions of commercial buildings and residential buildings in
each neighborhood were calculated and compared to reference energy consumption data. In the
next step, the EUI of each type of commercial and residential building was calibrated using the
ratio between the simulated results and reference energy consumption data. Energy consumption
data for the industrial sector in some neighborhoods were masked out because many industrial
consumers did not share their data with the public. Therefore, the countywide consumption
percentage was used to obtain the total volume of industrial energy consumption in those
neighborhoods and applied the metrics of median consumption per square meter and total floor
areas of industrial plants in each neighborhood to create the EUI curve of industrial plants in
each neighborhood.
4.2.2.4 Final Building Energy Consumption Simulation

After EUI calibration for each type of building, the gridded algorithm was adopted to
quantify the building energy consumption in Los Angeles County for 8,760 individual hours
throughout the year. The 120-m grid layer was overlaid with building footprint layers, and each
grid cell contained 0, 1, or multiple fractions of buildings. Building energy consumption in a grid

cell can be estimated using the following equation:

31 EVIG) XAG)XFN()
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where EUI(j), A(j), and FN(j) are the hourly energy intensity index, floor areas, and floor
numbers of building prototype j, respectively. The algorithm summarized hourly energy
consumption from all the building prototypes in the given grid cell and divided this value by the
grid area A2, which equals 14,400 square meters.
4.2.3 Traffic Emission Simulation

Hourly traffic emissions within a particular day were simulated based on normalized
AADT data, which were adjusted by a seasonal scaling factor, weekday scaling factor, and
diurnal scaling factor. The 2010 AADT data, which were calculated by dividing 365 from the
total traffic volume of a road for one calendar year, were collected as point shapefiles from the
California Traffic Census Program in 808 traffic count stations. The data were distributed
throughout major roads in the study area. The 120-m grid, AADT traffic counts, and road
shapefiles were overlain together. The hourly traffic count values from the AADT were directly
assigned to the major road segments if the data were located within the same grid cell as AADT
points. For grid cells not containing the AADT points, the average values of traffic volume for
all the points in the same neighborhood were assigned. The traffic volume of the minor roads
was calculated by dividing the traffic volume of the major roads by 10 (Smith et al., 2009).

Similar to the building energy simulations, profiles for eight different types of days were
created. The temporal traffic variations for each day type were calculated by applying the
seasonal scaling factors and diurnal variation factors for the hourly traffic volume calculated by
AADT traffic counts. The seasonal scaling factors and the diurnal variation factors were
calculated using the hourly vehicle miles traveled (VMT) metric, which was available in the
Caltrans Performance Measurement System (PeMS) Database established by the California

Department of Transportation. The PeMS database contains historical hourly VMT data for each
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individual day from 1993 to present. VMT data from 2010 were used to construct the diurnal
vehicle volume profiles for 8 different types of days. The hourly vehicle volume factor was
simulated by averaging all the VMT values from the same time during days that were in the
same category.
The traffic emissions in each grid cell were calculated using the formula similar to Smith

et al. (2009), which is as follows:

Qv= Z(mei(t) x Lyi) X EFm/Ai (18)

where Qy represents the vehicle emissions in watts per square meter (W/m?), Nmyi is the
normalized traffic count number for vehicle type m on road x in grid cell i, t is the hour of day,
Lxi is the length of all roads x within the grid cell i, EFn is the fuel consumption emission factor
(3/m), which can be calculated, and Ai is the area of each grid cell (120 X 120 = 14,400 m?). The
fuel consumption emission factor (W/m) was calculated using the equation of Sailor and Lu

(2004):

EFm= NHC X pre/FE(J/m) (19)

where NHC is the mean net heat of vehicle gasoline and diesel combustion in kilojoules (KJ) per
gram, which is 45.85 KJ/g for petrol and 46 KJ/g for diesel (Smith et al., 2009); pruer IS the mean
density of gasoline (0.75 kg/l) and diesel (0.832 kg/l) (U.S. Energy Information Administration,
2014; Chow et al., 2014); FE is the mean fuel efficiency of all vehicles (7.5 km/l in 2010)

(United States Department of Transportation, 2011; Chow et al., 2014). Based on annual data
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from gasoline and diesel sales collected by the California State Board of Equalization

(http://www.boe.ca.gov/sptaxprog/spftrpts.htm), the ratio between the number of gasoline

vehicles and diesel vehicles in Los Angeles County was set to 5.25:1, and the mean fuel
consumption emission factor (EF) was estimated to be 4.668 KJ/m.

4.3 Modeling the Effects of Climate Change on Building Energy Demand
4.3.1 Future Weather Data Construction

Los Angeles County consisted of seven weather zones in the TMY 3 dataset (Figure 4.2),
including Burbank-Glendale, Los Angeles International Airport, Long Beach, Van Nuys,
Lancaster, Palmdale, and Point Mugu. Each weather zone contained different hourly weather
data collected from 1991-2005. Figure 4.3 shows the current average monthly temperature (° C)
in seven TMY 3 locations in Los Angeles County. The Long Beach, Los Angeles International
Airport, and Point Mugu weather zones had relatively smaller ranges of monthly temperatures
because these areas are located in coastal areas and all have Csb climates. The Lancaster and
Palmdale weather zones had the highest temperatures during the summer months but the lowest
temperatures during the winter months due to their “cold semiarid” climates. The Burbank-
Glendale and VVan Nuys weather zones, with the Csa climate, had similar temperatures during the
wintertime as the coastal areas but higher temperatures during the summer months.

The future hourly weather data were projected using HadCM3. Among all future weather
data construction models, HadCM3 has a smaller grid spacing, which means that the simulation
resolution is higher than other models and results in higher precision (Shen, 2017). This model
contains the atmospheric model HadAM3, with a horizontal resolution of 2.5 degrees latitude by
3.75 degrees longitude, which covers all Los Angeles County. This model provides monthly

changes in dry-bulb temperature, diurnal temperature variation, relative humidity, wind speed,
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Figure 4.2. TMY3 climate zones in Los Angeles County (Zheng & Weng, 2019).
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and solar radiation, which have a major impact on building heating and cooling loads.
There are various carbon dioxide emission scenarios projected by the IPCC, which is
associated with the likely global development projections to the year 2100, including
technologies, climate and energy policies, and social-economic developments. The most recent

IPCC Fifth Assessment Synthesis Report (AR5) https://www.ipcc.ch/report/ar5/syr/, which was

released in 2014, used Representative Concentration Pathways (RCPs) to make projections based
on these factors (Intergovernmental Panel on Climate Change [IPCC], 2014) to describe four
different 21% century pathways of GHG emissions and atmospheric concentrations, air pollutant
emissions, and land use. The RCPs include a stringent mitigation scenario (RCP2.6), two
intermediate scenarios (RCP4.5 and RCP6.0) and one scenario with very high GHG emissions
(RCP8.5).

In this study, RCP8.5 (high emission) and RCP6.0 (medium emission) were chosen for
simulations. The RCP6.0 scenario fits the current energy policies and emphasizes regional
differences, which is suitable for county/city level examinations. On the other hand, the RCP8.5
scenario represents the worst case and can be used for hazard assessment purposes. The low
emission scenario (RCP2.6) was not chosen because it assumes that the global annual GHG
emissions peak occurs between 2010 and 2020, and a decline thereafter likely keeps global
warming below 2 <C, which is overly optimistic according to the current trend, and unlikely to
occur in the near future. To create hourly data for 2050, the Climate Change World Weather File
Generator (CCWorldWeatherGen) tool was used; this tool was developed by the Sustainable
Energy Research Group (University of Southampton). CCWorldWeatherGen uses hourly
historical weather data (TMY2 and TMY3) as primary input and applies the HadCM3 model to

construct future hourly data. This tool uses the IPCC Fourth Assessment Report (AR4) model
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summary data of the HadCM3 A2 scenario, which is close to the intermediate scenario (RCP6.0)
in AR5. CCWorldWeatherGen has been widely adopted by a large number of researchers
(Andri¢ et al., 2016; Rey-Hernandez et al., 2018; Rubio-Bellido, P&ez-Fargallo, & Pulido-Arcas,
2016; Shen, 2017; Wang & Chen, 2014; Wong, Jusuf, Syafii, Li, & Tan, 2012; Yi & Peng, 2014)
in recent years. Because the HadCM3 model only provides monthly weather variation data,
which is insufficient for hourly energy simulation, the CCWorldWeatherGen tool applies a
morphing method to downscale monthly weather data to hourly weather data. The algorithm to

calculate future hourly weather data uses the following equation:

X = Xo + Axm + am(Xo-(Xo)m) (20)

where X, is the hourly weather data from the existing historical data (TMY2 or TMY3), 4 xmis

the predicted monthly average change obtained from HadCM3, am is the stretching factor
calculated based on the changes in monthly average value of a specific variable from future
weather files relative to the existing reference weather file, and (xo)m is the monthly average of
current weather data. Because the CCWorldWeatherGen tool can only simulate future weather
data under the IPCC A2 carbon emission scenario, a pattern-scaling method developed by the
Finnish Environment Institute (Ruosteenoja, Carter, Jylha, & Tuomenvirta, 2003) was adopted to
calculate future weather data under the A1F1 carbon emission scenario, which is close to the
very high GHG emissions (RCP8.5) observed in AR5. This pattern-scaling method can provide
the magnitude for future temperature changes under different IPCC scenarios based on a series of

factors, which also varies with locations in the world.
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4.3.2 Building Prototypes

The same commercial and residential building prototypes as the ones used in the Qs
simulation were used for the simulation. The DOE created these building prototypes based on
CBECS data from the U.S. EIA and provided information on building characteristics in three age
categories: pre-1980, post-1980, and post-2004. The age categories reflected differences in
building insulation, envelope, HVAC systems, lighting, and equipment technologies for each
building type, which led to different energy consumption abilities under the same outdoor
environmental conditions. Buildings with newer technologies had more energy-efficient
equipment, better insulation to mitigate the impact of nonoptimal outside temperatures, lower
lighting energy intensities, and more energy-efficient HVAC systems (Huang & Gurney, 2016).
Two prototypes of residential buildings, i.e., multifamily low-rise apartment buildings and
single-family detached houses, were developed by the DOE in 2009 based on building codes
specified in the IECC and RECS. This study assumed the building stock structure in Los Angeles
County remained unchanged throughout the simulation period.
4.3.3 Calibration of Reference Data

The calibration method used in the Qs estimation was adopted in this research to calibrate
the simulated current building energy consumption. Compared to the existing study that
calibrated building energy consumption at a coarse scale, such as the census division (Huang &
Gurney, 2016), the neighborhood-level reference data in this study can address the regional
variation in energy consumption patterns in both the commercial and residential sectors, which
was essential for the purpose of a local-scale study. Moreover, these data can overcome the
spatial resolution limitation, which was caused by the resolution of weather data (TMY 3 data).

Figure 4.4 presents the calibrated annual building energy consumption intensity for 16 types of
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commercial buildings in Los Angeles County, which was the simulation result based on the
historical TMY3 data (1991-2005). The two types of restaurants (full-service and fast-food)
consumed the largest amount of energy per square meter per year. The ratio between the before
and after-calibrated building energy consumption results was computed to calibrate the simulated
future building energy consumption under the two emission scenarios (RCP8.5 and RCP6.0).
4.4 Green Roof and Solar Photovoltaic Setting

To evaluate the performance of green and PV-green roof mitigation effects on the
potential building energy use increase caused by climate change, EnergyPlus software was used
in this dissertation to simulate hourly building energy consumption in Los Angeles County with
the proper green roof and photovoltaic modules. This strategy has been widely used in previous
research (Gargari, Bibbiani, Fantozzi, & Campiotti, 2016; Heusinger et al., 2018; Morakinyo et
al., 2017; Sailor et al., 2007; Sailor et al., 2012; Scherba et al., 2011; Silva et al., 2016; Tang &
Qu, 2016; Yang et al., 2018) to estimate green roof cooling effects for reduction in indoor
temperature and sensible heat fluxes, which can potentially lead to building energy reduction in
the summer months. However, studies that evaluate the mitigation potential of green roofs on
building energy increases caused by climate change are rare. The purpose of this part of the
dissertation is to fill this gap in the current literature and provide a means of evaluating the
potential contribution of green roofs based on the results of studies that modeled climate change
effects on building energy demand.

Figure 4.5 presents the methodology used in this study. The vulnerable buildings that are
susceptible to the largest increases in energy demand under the context of climate change were
identified based on the results from previous sections of this dissertation. Because solar potential

varies at the individual building level, this section was focus on a small study area, which
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Figure 4.4. The calibrated annual building energy consumption intensity in megajoules (MJ) per
square meter (m?) for 18 types of buildings in Los Angeles County. The simulation was based on

historical TMY 3 data (1991-2005) (Zheng & Weng, 2019).

contains less than 30 buildings in total, rather than all buildings in Los Angeles County. Multiple
study sites containing a high percentage of vulnerable buildings were selected. The solar
potential for each building roof was rated using the open-source roof solar potential data from

the Google Project Sunroof database (https://www.google.com/get/sunroof#p=0). According to

Google Project Sunroof, roofs in Los Angeles County should have at least 1,405 hours of usable
sunlight per year to be ranked as high solar potential roofs. Hours of usable sunlight per year
were estimated based on the daily analysis of weather patterns. In this dissertation, building roofs
with high solar potential were added to both green roofs and PV systems during the simulation.
However, only green roofs were added to buildings with low solar potential. The simulation
results of building energy consumption with green roofs or PV-green roofs under the projected

climate in 2050 were compared with the scenario of buildings with traditional roofs.
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4.4.1 EnergyPlus Green Roof Module Setting

In this study, the EnergyPlus green roof module was used to model green roof fluxes.
This module functions as an integral component of the simulation software, performing an
energy balance on a vegetated rooftop within each time step (Sailor et al., 2012). The input of
various green roof-related parameters, such as the Leaf Area Index (LAI), plant height, leaf
emissivity, soil layer thickness, soil thermal properties, and stomatal resistance, are allowed. The
module also accounts for longwave and shortwave radiative exchanges within the plant canopy,
plant canopy effects on convective heat transfer, evapotranspiration from soil and plants, and
heat conduction and storage in the soil layer (Scherba et al., 2011). Moreover, the module allows
the user to define different irrigation types and to set up specific schedules.

According to Heusinger et al. (2018), extensive green roofs have much lower static
requirements and are less expensive, so green roods are generally favored over intensive roof
types. Therefore, in this dissertation, an extensive green roof type was chosen instead of the
intensive green roof type. Additionally, other studies combined the extensive green roofs with
the solar PV system instead of intensive green roofs for PV-green roofs. The setting of
parameters in extensive green roofs used in this dissertation was follow the settings in Sailor
(2008), which was based on validated data in two monitored buildings installed with green roofs
at Portland State University, Oregon. The key green roof parameters include plant height (0.2 m),
LAI (2), soil depth (20 cm), dry soil conductivity (0.4 w/m-k), dry soil specific heat (1,000 J/kg-
k), and dry soil density (500 kg/m?®). For roof irrigation systems, a “smart schedule” was chosen
that follows the precipitation schedule and did not allow irrigation when soil is already moist
(30% saturation). This schedule was also activate an early morning irrigation system if the soil

volumetric moisture content falls below 0.15 m3/m3.
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4.4.2 EnergyPlus Solar Photovoltaic Module Setting

EnergyPlus offers different module performance algorithms for predicting the electricity
produced by solar electric PV panels. The three different options are (1) Simple, (2) Equivalent
One-Diode, and (3) Sandia; and the algorithm choice will determine the mathematical models
used to simulate energy production. The simple algorithm allows the user to input an arbitrary
efficiency that requires prior knowledge about different PV panel types. The other two models
use empirical relationships to predict PV operating performance based on many environmental
variables. In this dissertation, the Sandia PV performance algorithm, which is based on extensive
measurements and data collection performed at Sandia National Laboratory to predict electricity
generated by PV systems, was chosen for simulation. The Sandia model can accurately predict
daytime PV cell temperatures and aggregate multiple PV modules by defining the number of
cells in series and parallel. These parameters were set differently for each single building based
on recommendations such as the area available for solar panels and the recommended solar
installation size provided by the Google Project Sunroof website.

4.5 Summary

In this chapter, the methodology of this dissertation has been discussed in detail. The
results of this dissertation will aid municipal governments to tailor adaption and mitigation
strategies in different regions within megacities such as Los Angeles, which have a high degree
of diversity in building composition and population density. The mitigation potential assessment
of PV-green roofs is a good reference for reducing building net energy consumption by

increasing the supply of renewable energy while decreasing energy use.
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CHAPTER 5

HIGH SPATIAL AND TEMPORAL RESOLUTION ANTHROPOGENIC HEAT
DISCHARGE ESTIMATION IN LOS ANGELES COUNTY
5.1 Introduction

In this chapter, the results obtained from the estimation of the Q¢ profile at high spatial
and temporal resolutions in Los Angeles County are explained. The methods were presented in
detail in Section 4.2. This chapter has been divided into five sections. Section 5.2 outlines the
results of the temporal variation of Qr. Section 5.3 presents the results of Qr on extremely hot
summer days. Section 5.4 illustrates Qs in the urban core area. Section 5.5 discusses the
significance of the proposed work and presents a comparison with previously published work
based on the results and the applicability of the methodology. Results of this study were
published in Journal of Environmental Management (Zheng & Weng, 2018, Appendix A).

5.2 Temporal Variations of the Anthropogenic Heat Flux

The diurnal variation of the mean hourly Qs and its components on spring workdays,
spring nonworkdays, summer workdays, summer nonworkdays, fall workdays, fall
nonworkdays, winter workdays, and winter nonworkdays in Los Angeles County are presented
in Figure 5.1. In general, Qp and Qv contributed similar proportions to Qs but at different time,
and Qm contributed the least to Qs regardless of it being a workday or nonworkday. In all

profiles, the workday diurnal profiles of Qr exhibited two peaks, i.e., morning and evening peaks,
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while the nonworkday diurnal profiles of Qs exhibited parabola shapes with only the peak in the
evening hours. These shapes are related to traffic emissions peaking not only during the evening
rush but also during the morning rush on workdays. The peak values on workdays were higher
than on nonworkdays because many buildings were not in operation on nonworkdays. The
lowest values of Qr were found at 4 am on workdays and 5 am on nonworkdays.

Figure 5.1 also compares the diurnal variation of Qs in different seasons for (i) workdays
and (j) nonworkdays. The diurnal variations of Qs exhibited similar shapes but small differences
in magnitude. The Qr profiles in the summer exhibited higher values at noon (7.76 w/m?) and in
the evening on workdays and nonworkdays than that of the other seasons (Figure 5.1g). The
reason is that building energy consumption was highest at noon and in the evening hours in
summer (Figures 5.1c and d) due to extra energy being consumed for cooling. Moreover, the Qs
values on winter mornings on workdays and nonworkdays were higher than in the other seasons
because of the higher building energy consumption (Figures 5.1h and i) for heating to offset the
large difference between the indoor and outdoor temperatures on winter mornings. This reason
also explains why winter was the only season with the highest workday Qf value occurring in the
morning peak instead of the evening peak.

5.3 Anthropogenic Heat Fluxes on Extremely Hot Summer Days

Qr appeared to have the highest values on summer workdays in Los Angeles County,
with its maximum value reaching 7.76 w/m? (Figure 5.1g). Because traffic emissions and human
metabolisms did not exhibit obvious seasonal variations, the most significant driver of the
increased energy use in summer came from the building sector, which required increased energy
consumption for cooling. This study performed compared Qr on an extremely hot summer

workday with the averaged summer workday value to examine if there was an obvious increase
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Figure 5.1. Diurnal variation of Qf, Qb, Qv, and Qm (W/m?) in Los Angeles, USA., based on the
average values from all (a) spring workdays, (b) spring nonworkdays, (c) summer workdays, (d)
summer nonworkdays, (e) fall workdays, (f) fall nonworkdays, (g) winter workdays, and (h)
winter nonworkdays; comparison of the diurnal variation of Qs in different seasons on (i)

workdays and (j) nonworkdays in Los Angeles, USA (Zheng & Weng, 2018).
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in building energy demand on extremely hot days and to what extent the energy use increased.

August 25, 2015, was selected as the extremely hot summer workday for comparison in
this study because the high temperature reached 37 <C (98.6 F) at 1 pm. The temperature
remained above 30 <C (86 F) for 10 hours (from 10 am to 7 pm). Figure 5.2a presents a
comparison between Qr on the selected extremely hot summer workday (August 25, 2005) and
the average of all summer workdays. On the extremely hot summer workday, Qr was
substantially higher than the average of all summer workdays from 8 am to 11 pm, with its
maximum value reaching 8.14 w/m?.

Figure 5.2b shows the time series of the ratio between the anthropogenic heat fluxes (blue
solid), building emissions (red dash), and traffic emissions (green dash) on the extremely hot
summer workday and for the average of all summer workdays. When the heat fluxes on the
extremely hot summer workday exceeded those of the average of all summer workdays, the ratio
was larger than 1. Higher ratios indicated enhanced heat fluxes were produced on the extremely
hot summer day. The major contributor of the higher anthropogenic heat fluxes on the extremely
hot summer day varied with time. According to Figure 5.2b, building emissions were the major
contributor for most of the day (from 9 am to 6 pm and from 8 pm to 9 pm), as the ratio was
significantly higher than that of the traffic emissions and anthropogenic heat fluxes during these
periods. The building ratio increased gradually from 8 am to 11 am because the temperature
difference between the extremely hot summer day and the average of all summer workdays
increased. This ratio remained high from 12 pm to 4 pm because the temperature difference
reached its maximum during the daytime, and the air condition systems consumed more energy
to offset the larger indoor/outdoor temperature difference on the extremely hot summer day.

During the daytime (8 am to 6 pm), traffic emission contributed less to the higher Qs on the
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extremely hot summer day, as indicated by the traffic ratio being generally lower than the
building ratio. However, at night, the traffic ratio increased dramatically while the building ratio
remained high, which resulted in a larger Qs increment on the extremely hot summer workday.
The reason that there was a significantly larger traffic volume on the selected day must be further

studied. Possible factors included traffic congestion or nighttime activities.
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Figure 5.2. (a) Comparison between Q¢ (w/m?) on an extremely hot summer workday (August
25, 2005) and the average of all summer workdays; (b) time series of the ratios between the
anthropogenic heat fluxes, building emissions, and traffic emissions on the extremely hot

summer workday and those of average summer workdays (Zheng & Weng, 2018).
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5.4 Anthropogenic Heat Fluxes in the Urban Core Area

Although the daily maximum Qs estimated in Los Angeles County on the extremely hot
summer workday did not exceed the average of all summer workdays by 10 w/m?, there was a
large within-county variation in Qs for different regions. Figure 5.3 presents the spatial
distribution of Qs estimated at 5 pm on the summer workdays in Los Angeles County, when Qs
exhibited its highest value (Figure 5.2). The spatial distribution of Qf was uneven, with high
values (larger than 100 w/m?) being located in some clusters, such as the downtown area, Korean
Town, Beverly Hills, Hollywood, West Los Angeles, Long Beach, and Santa Monica, which are
characterized as commercial and industrial zones. Moreover, high Qs values can be found along
the major freeways due to heavy traffic emissions during the evening rush hours. Moderate Q¢
values (20 to 100 w/m?) were detected in residential zones with high housing and population
density, while low Qf values (less than 20 w/m?) were located in cities with small populations
(Palmdale and Lancaster), low-density residential zones, and minor roads. The downtown area
was found to have the highest mean Qs throughout the year because there are more densely
distributed tall commercial buildings in this area. Figure 5.3b shows the spatial distribution of Qs
in the downtown area at 5 pm during summer workdays. The spatial variation of Qs is
characterized by low values in the southeast part of the downtown area, with values increasing
dramatically towards the northwest. This spatial distributed reflected the fact that most of the tall
commercial buildings are located in northwest part of the downtown area. Less tall commercial
buildings, historical office buildings, apartment complexes, and warehouses are located in the
southeast part of the downtown area, contributing to a lower Qs value. Some areas with high Qs

values in this region are representative of freeways.



61
Figure 5.4 shows a comparison of the diurnal variation of Qs in downtown Los Angeles
for different seasons on (a) workdays and (b) nonworkdays. It can be concluded that Qs in the
downtown was much higher on workdays than that on nonworkdays, and its maximum value
reached 100 w/m? (4 pm on summer workdays). From 9 am to 5 pm, Qr on summer workdays
was higher than on other workdays (Figure 5.4a), while from 5 am to 9 am, Qr on winter
weekends was highest (Figure 5.4b). Building energy consumption was the most important factor

that contributed to Qs (Figure 5.5).
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Figure 5.3. Spatial distribution of Qr (w/m?) in (a) Los Angeles County and (b) downtown Los

Angeles (Zheng & Weng, 2018).
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Human Traffic Building Human Traffic Building
o 100 0.30 0.33 0.31 0.28
100 8.72 7.79 8.31 8.91 ' 2036 21.02 1950  16.26
80 22.83 2090  21.80 2288 80
60

60

| 40 - 79.34 65 S0ED 89S
0 7 Lux 7130 6989 6821 i

20 20

Percentage contribution to

Percentage contribution to
Qf from 9am to Spm (%)
Qf from Sam to 9am( % )

0 0
Spring Summer  Fall Winter Spring Summer  Fall Winter

(@) (b)
Figure 5.5. Percentage breakdown (%) of the individual components contributing to Qs from (a)
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(Zheng & Weng, 2018).

5.5 Discussion and Conclusions
This section discusses the significance of the aforementioned results. Compared to prior
studies, the advantage of the approach used in this study is the design of separate profiles for

workdays and weekends. In this way, higher values of Qr on winter mornings and summer
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evenings on workdays can be identified. These contrasts would be less significant if workday
and weekend Qs profiles were not separated from each other.

In addition, a large within-county difference in Qf was uncovered for different regions
and land use types in the studied area, which agrees with the results of many previous studies
(Chapman et al., 2016; Chow et al., 2014; Hamilton et al., 2009; Ichinose et al., 1999; Quah &
Roth, 2012; Smith et al., 2009). The intensity of Qs can be affected by the spatial extent that was
used for measurement. Downtown Los Angeles was found to have the largest mean Qs
throughout the year, among all neighborhoods. The maximum Qs value in the downtown Los
Angeles can exceed 100 w/m? (Figure 5.4a) on workdays, which was significantly higher than
that throughout the county (7.76 w/m?) (Figure 5.1g). Building energy consumption was
identified as the dominant contributor to the overall Qs in the downtown area. When compared
with previous studies (Ichinose et al., 1999; Nie et al., 2014; Quah & Roth, 2012; Wong et al.,
2015) which estimated Qs in cities or regions with higher population densities (Tokyo, Hong
Kong, Singapore), traffic emissions were found to account for a higher percentage of Qs in Los
Angeles County, while human metabolism contributed less.

This study proposed an approach to estimate Qs at high spatial and temporal resolution
for a large metropolitan area with diverse geographic settings. However, the data availability was
still a major limitation in this study and resulted in uncertainties. The discrepancies between the
building simulation results and the actual building energy consumption can be caused by many
factors. First, the simulation model used in EnergyPlus cannot account for all factors that
determine actual building energy consumption, such as the occupancy status and behaviors.
Moreover, the building prototypes were developed based on the most common building

technologies/characteristics in the survey data for Los Angeles County, which may not represent
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all buildings in reality. Therefore, for validation purposes, this dissertation used the actual
building energy consumption data at the neighborhood scale to validate the building energy
consumption simulation results. The simulated energy consumption from all buildings within
each neighborhood and each sector were aggregated to compare with the corresponding sector in
each neighborhood in the referenced data. For all neighborhoods, the ratio between the simulated
results and the reference data ranged from 0.85 (West Los Angeles) to 1.92 (Avalon), with a
mean value of 1.38. This validation result suggests that the building energy simulation model
tended to overestimate the actual building energy consumption. After calibration, potential bias
and uncertainty in the simulated results can be corrected at the neighborhood scale, while the
differences among individual sectors and buildings within a neighborhood over a given time
period remain. This result is essential for city governments to work towards a sustainable city by
tailoring adaption and mitigation strategies at the regional level.

The proposed approach has a higher degree of applicability for Qs estimation in large
areas than approaches proposed in previous studies, as all the data used were available to the
public. Compared with other recent studies (Chow et al., 2014; Nie et al., 2014, Park et al.,
2016), which relied on data that were only available for local regions, this research was not
restricted to small study areas because all data were available for all of Los Angeles County.
Therefore, this approach can be readily applied to similar studies in different study areas with
different climates. Qf in the mid-latitude cities should have its peak value during winter mornings
when the offset between the indoor and outdoor temperature reaches its maximum value,

especially on workdays, because more buildings would be in operation than on weekends.
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CHAPTER 6

MODELING THE EFFECT OF CLIMATE CHANGE ON BUILDING ENERGY DEMAND
IN LOS ANGELES COUNTY USING A GIS-BASED HIGH SPATIAL AND TEMPORAL
RESOLUTION APPROACH
6.1 Introduction

The effect of climate change on the building energy demand in Los Angeles County is
discussed in this chapter, which comprises four sections. The methods were presented in detail in
Section 4.3. In Section 6.2, the impact of climate change on the building energy demand at
different temporal scales (annual, monthly, and hourly) is presented. The spatial variations of the
energy demand change at the neighborhood scale are described in Section 6.3. Major findings,
implications, and the strengths and limitations of the approach applied in this study compared
previously published works are discussed in Section 6.4. Results of this study were published in
Energy (Zheng & Weng, 2019, Appendix B).

The impact of climate change on buildings can be influenced by multiple factors. Each
factor was analyzed for seven TMY weather zones, three building technologies, eighteen
building prototypes, and two IPCC carbon dioxide emission scenarios. This chapter analyzes the
climate impact at three different temporal scales (annual, monthly, and hourly) and assesses
changes in the spatial patterns of the building energy demand across the Los Angeles County

using the relative change (RC) and absolute difference (AD). The RC can be calculated by the
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following formula:

RC = (Ef - Ep)/Ep * 100% 21)

The RC reflects the energy consumption difference between the calibrated current energy
consumption (Ep) and projected future energy consumption (Ef). The AD represents the

difference in energy consumption intensity, which can be calculated as follows:

AD = (Ef - Ep)/FA (22)

where FA is the building floor area, which is the product of the number of floors in a particular

building and the area of each floor.

6.2 Impact of Climate Change on the Building Energy Demand at Different Temporal Scales

6.2.1 Variation at the Annual Scale
The variation across building types, ages, and weather zones at the annual scale was first

analyzed. Tables 6.1 and 6.2 show the annual average building energy demand, as measured by
the RC and AD, between 2050 and the present (1991-2005) in Los Angeles County for
commercial and residential buildings. The majority of building types showed an apparent
increase in energy demand under both emission scenarios, and the energy demand increase was
higher under the high-emission scenario. A large variation in energy consumption change across
different types of buildings was identified. For example, the ADs ranged from -28.7 MJ/m?

(warehouse) to 68.2 MJ/m? (Outpatient), and the RCs ranged from -11.8% (warehouse) to 7.9%
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(medium office) under the RCP8.5 scenario. Due to the higher energy consumption intensity
under the current climate, the majority of commercial buildings showed higher ADs than two
types of residential houses.

Because of global warming, the cooling energy intensity for all types of buildings should
increase under both emission scenarios, while the energy intensity for heating in all types of
buildings should decrease. The change in the cooling and heating energy demand in the future
showed even greater changes than the total energy demand change. The RC for cooling energy
increase ranged from 5.9 MJ/m? (warehouse) to 166.8 MJ/m? (full-service restaurant) under the
RCP8.5 scenario. However, the dramatic changes in the cooling and heating energy demand can
easily be ignored due to the smaller changes in the total energy demand, if no further analysis
was performed. For example, under the RCP8.5 scenario, the full-service restaurant category
showed much larger AD than the hospital category with regard to both the cooling and heating
energy intensity, although the increase in cooling would nearly be offset by the decrease in
heating, resulting in a smaller total energy AD than that of the hospital category. The two types
of restaurants showed the largest ADs in cooling and heating energy intensity among all types of
buildings, which might be attributed to their large exposure to the outdoor environment and air
intake in addition to the need for regulating waste heat from cooking. Moreover, restaurants
should experience a larger heating energy demand decline under a warmer climate because the
internal heat gain through high-intensity cooking can compensate for the need for space heating
energy in winter months. Therefore, restaurants should expect to be more sensitive to climate

change.
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Table 6.1
Relative change (%) and absolute difference (MJ/m?) in the average annual building energy
demand between 2050 and present (1991-2005) in Los Angeles County under the RCP8.5

emission scenario (Zheng & Weng, 2019).

Building Type Total Total Cooling Heating
AD RC AD AD

Commercial

Full-Service Restaurant 1.3 0.1% 166.8 -169.2
Hospital 14 1.0% 44.6 -38
Large Hotel 515 3.5% 74.1 -30.6
Large Office 24.4 4.8% 29.5 -12.8
Mid-Rise Apartment 30.45 4.5% 498 -25.15
Medium Office 46.9 7.9% 55 -12.3
Outpatient 68.2 4.0% 102.9 -36.3
Primary School 31.5 4.8% 51.5 -24.6
Fast-Food Restaurant 18.3 0.3% 151  -1429
Secondary School 36.7 6.2% 68 -38.9
Small Hotel 40.7 5.2% 45.8 -9.2
Small Office 31 4.9% 43.3 -13.8
Stand-Alone Retail 6.8 1.0% 54.6 -47.5
Strip Mall 4.1 0.4% 57.7 -53.2
Supermarket -18.1 -0.9% 347 -1141
Warehouse -28.7  -11.8% 5.9 -34.1
Residential: Multiple Family 7.2 4.1% 10.9 -5.9
Residential: Single Family 2.8 2.3% 10.4 -9.5

The effect of building technologies on the energy performance was further analyzed.
Figure 6.1 presents the differences in total annual energy consumption intensity (a), cooling (b),
and heating (c) for commercial buildings between the year 2050 and 1991-2005 under the
RCP8.5 emission scenario, presented for three periods of time: after 2004 (post-2004), 1980 to
2004 (post-1980), and before 1980 (pre-1980). Although no substantial differences can be
observed between the pre-1980 and post-1980 buildings regarding the energy consumption
caused by global warming, the post-2004 buildings exhibited the smallest increase in the annual

total energy demand for the majority of the studied building types. As shown in Figure 6.1b, the
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post-2004 buildings had the smallest increase in space cooling energy demand for all types of
buildings. It can be concluded that the newly constructed buildings in Los Angeles County
should be less sensitive to higher outdoor temperatures in the future. They have the ability to
maintain a comfortable indoor environment more efficiently due to their better insulation and
advanced energy-saving technologies (Deru et al., 2011), such as the installation of air-
conditioning systems with a higher coefficient of performance (COP) to decrease the energy
demand, especially electricity demand on hot summer days.
Table 6.2
Relative change (%) and absolute difference (MJ/m?) in the average annual building energy
demand between 2050 and present (1991-2005) in Los Angeles County under the RCP6.0

emission scenario (Zheng & Weng, 2019).

Building Type Total Total Cooling Heating
AD RC AD AD

Commercial

Full-Service Restaurant -20.4 -0.4% 119.7 -1374
Hospital 8.6 0.5% 31.2 -29.3
Large Hotel 34.4 2.2% 534 -24.9
Large Office 16.7 3.1% 21.6 -10.5
Mid-Rise Apartment 20.75 3.0% 36.05 -19.3
Medium Office 32.9 5.5% 40.9 -9.3
Outpatient 53.1 3.1% 75.8 -25.3
Primary School 20.4 3.1% 37.5 -20
Fast-Food Restaurant -6.9 0.0% 107.6 -116.4
Secondary School 21.7 3.7% 48.8 -31.6
Small Hotel 28.5 3.5% 33 -7.4
Small Office 20.7 3.4% 314 -11.2
Stand-Alone Retail -0.1 0.1% 40.7 -38.5
Strip Mall -2.5 -0.2% 42.8 -43.1
Supermarket -24.1 -1.1% 25 -90.3
Warehouse -23.9 -9.8% 4.2 -27.4
Residential: Multiple Family 4.8 2.7% 8.3 -4.9

Residential: Single Family 1.3 1.1% 7.8 -1.7
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Figure 6.1. Differences in the total annual energy consumption intensity (a), space cooling (b),

2005 under

and space heating (c) (MJ/m?) for commercial buildings between the 2050 and 1991

the RCP8.5 emission scenario (Zheng & Weng, 2019).
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6.2.2 Variation at the Monthly Scale

Because the impact of global warming on the building energy demand may have larger
variations at finer geographical scales, this study further analyzed the impact at monthly scales.
The RCP8.5 scenario was assessed at finer time scales to examine the vulnerability of buildings
under extreme hot weather. Although the majority of buildings had positive annual AD values,
all of them had both positive and negative monthly AD values throughout the year. Moreover, all
buildings showed increased cooling energy demand and decreased heating energy demand in all
months (Figures 6.2b and c). The largest positive AD in total energy for all buildings occurred in
August (Figure 6.2a), when the increase in cooling reached its peak and there was little heating
demand. From April to October, the total energy demand increased because the increased
cooling energy exceeded the decreased heating energy, and from November to March, the total
energy demand declined because the increased heating demand could not be offset by the
decreased cooling demand. Residential buildings showed smaller ADs than commercial
buildings, regardless of the month and energy type. The total energy AD varied from -1.09
MJ/m? (January) to 2.02 MJ/m? (August) for multiple-family apartments, which showed a
slightly larger variation than single-family houses. Commercial buildings showed not only larger
monthly ADs but also a greater variation among the different building types. In January, the AD
in the total energy ranged from -25.8 MJ/m? (full-service restaurant) to 2.9 MJ/m? (outpatient
buildings), and the increased heating energy use was the major driver. In August, as the cooling
energy demand reached its peak, the AD in total energy ranged from 1.8 MJ/m? (warehouse) to
30.9 MJ/m? (full-service restaurant).

Figure 6.2d shows the AD in the monthly energy intensity under the RCP8.5 emission

scenarios across the different TMY 3 weather zones. The Burbank-Glendale weather zone
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presented the largest increase in the total energy intensity from April to October. Because the
Burbank-Glendale weather zone exhibited the largest cooling energy increase (Figure 6.2e),
which was caused by its basin topography, there would likely be a larger temperature increase
than in the other weather zones. The Lancaster and Palmdale weather zones exhibited the largest
negative ADs in the context of the total energy demand from October to March because they had
the largest decrease in heating energy demand. This finding could be the result of the cold,
semiarid steppe climate of these areas, which have colder and windier winters than the other
zones. These weather zones were not found to have a large positive AD for cooling. Because the
average temperature in summer under the current climate is already much higher than the
comfort temperature (18.3 <C) (Figure 4.3), they already have a high cooling demand. Figure 6.3
presents the total (a), space cooling (b), and space heating (c) monthly energy consumption
intensity differences (MJ/m?) between the year 2050 and 1991-2005 under the RCP8.5 emission
scenario for commercial buildings constructed at different times. The post-2004 buildings
exhibited the smallest increase in the cooling energy demand and decrease in the heating energy
for all months, which contributed to the smallest change in the total energy demand throughout
the year.
6.2.3 Variation at the Hourly Scale

It was discovered that the largest total energy increase occurred in the summer months,
especially in August. This section presents a more detailed analysis of the hourly ADs across
different weather zones in August. Diurnal time series were created to explain the hourly energy
consumption changes. For each specific time period, the average value of the energy
consumption during the same hour over 31 days in August was used. Because there is usually

little heating energy demand in August, the analysis was only based on total and cooling energy
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intensity change (Zheng & Weng, 2019).
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& Weng, 2019).
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demands. Figures 6.4a and b show the average hourly building total and cooling energy intensity
AD between 2050 and 1991-2005 under the RCP8.5 emission scenario across building types.
Although all buildings exhibited increased total and cooling energy demand throughout the day,
all commercial buildings showed a larger positive AD and greater variation. Restaurants showed
a considerably larger positive AD in total energy than the other building types, with a maximum
AD of 67.5 KJ/m? (fast-food restaurants at 12 pm). All commercial buildings showed a larger
positive AD in the daytime than at night, although the time of the peak AD was different for
some building categories. The majority of commercial buildings showed the largest positive AD
from 9 am to 5 pm, whereas hotels and residential buildings showed positive ADs in the early
morning hours and at night. Restaurants observed two AD peaks during the daytime,
corresponding to lunch and dinner.

The variation in the diurnal cooling energy demand was much smoother than that of the
total energy (Figure 6.4c and d) because the total energy demand was affected by additional
factors in addition to the diurnal temperature variation. The diurnal variation in the total and
cooling energy ADs at the Los Angeles International Airport was much closer to that of
commercial buildings. This was surprising because the Los Angeles International Airport
weather zone possessed the highest percentage of commercial building floor area (30.82%)
(Table 6.3). The diurnal variation patterns of the total and cooling energy ADs in the Lancaster
weather zone appeared similar to that of residential buildings because this area had the highest

percentage of residential building floor area (91.10%).
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intensity change (Zheng & Weng, 2019).
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Table 6.3
The percentage (%) of residential and commercial building floor areas in the 7 weather zones in

Los Angeles County (Zheng & Weng, 2019).

Percentage of Residential Percentage of Commercial
Building Building

Burbank-Glendale 81.66% 18.34%

Van Nuys 85.51% 14.49%

Los Angeles Intl Airport | 69.18% 30.82%

Long Beach 80.27% 19.73%

Lancaster 91.10% 8.90%

Palmdale 84.52% 15.48%

Point Mugu 86.89% 13.11%

6.3 Spatial Variations of Energy Demand Change at the Neighborhood Scale

This section presents the spatial variation of changes in energy demand by 2050 due to
climate change at the neighborhood scale. Figure 6.5 presents the spatial variation of total energy
consumption changes (both RC and AD) in 2050 under the RCP8.5 and RCP6.0 scenarios. Large
within-county RC and AD variations can be seen under both scenarios. In general, the RC and
AD in the annual total energy variation followed the same pattern, represented by a larger
increase in the south part of the county and a smaller increase or even decrease in the north part.
This finding is because the current climate is warmer in the south, resulting in a low current
heating energy demand. Thus, there is a limitation to the heating energy consumption decrease
because the minimum heating energy demand cannot be less than zero, whereas there is no
limitation to the increase in the cooling energy demand. Because the climate would be warmer in
2050, the slight decrease in the heating energy demand in the south cannot be offset by the larger
cooling energy demand, leading to a larger increase in the total energy demand than in the north.
The increased energy demand was found to be more substantial under the RCP8.5 scenario than

under the RCP6.0 scenario. The number of neighborhoods with an annual total energy demand
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increasing by more than 4.5% was 188 under the RCP8.5 scenario and only 33 under the RCP6.0
scenario. A similar difference can be observed when using the AD as the metric. The number of
neighborhoods with an increase in the total energy demand exceeding 17 MJ/m? was 145 under
the RCP8.5 scenario and only 45 under the RCP6.0 scenario.

The increase in the cooling energy demand should be more severe than that of the total
energy demand (Figures 6.6a through d). The RC in the cooling energy demand ranged from
27% to 122% under the RCP8.5 scenario and 25% to 95% under the RCP6.0 scenario, much
larger than -1.8% to 7.9% and -1.8% to 6.7% for the total energy demand RCs, respectively.
Neighborhoods with a RC in the cooling energy demand of more than 100% were mostly located
in the Los Angeles International Airport weather zone because it had the highest percentage of
commercial buildings (Table 6.3). Commercial buildings were found to have a higher energy
demand increase than residential buildings, as discussed in the previous section. The dramatic
positive RC for commercial buildings could cause a huge challenge for the cooling energy
supply, while frequent power outrages could happen in the future if no changes are made to the
current electronic system configuration. The AD in the cooling energy demand under the RCP8.5
scenario did not follow the same trend as the AD in the total energy demand. The “hotspots”
(larger than 30 MJ/m?) in the cooling energy demand in response to climate change were found
in the Burbank-Glendale weather zone. The probable cause is a greater number of warmer
months in this zone than in other locations because it is located in a valley. Moreover, building
size and density played an important role in the energy demand AD. Neighborhoods with the
largest increase in energy consumption intensity were located in the major commercial zones
with high density of tall buildings. As shown in Figures 6.6¢ and f, the downtown area had the

highest increase of per building energy demand because it had the largest average building floor
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area (more than 3,000 m?) among all neighborhoods in the Los Angeles County.

B Decreased
I Lower than 3%

73 104.5%
% B 4.5 to 6% ¢
10 20 40 Kilometers ™ Higher than 6%
T O

(a) (b)

I Decreased
B Lower than 3% §
3 104.5%
BN 4510 6%
B Higher than 6%

I Decreased I Decreased
I [ower than 10 MJ/m2¥8&] B Lower than 10 MJ/m

11010 17 MI/m2 7110 to 17 MI/m2
B (7 to 25 MI/m2 ﬂ I 17 to 25 MJ/m2
B Higher than 25 MJ/m2 ™ I Higher than 25 MJ/m
0 10 20 40 Kilometers 0 40 Kilometers
T | T T Y
(c) (d)

Figure 6.5. The spatial variation of total energy consumption changes in 2050 due to climate
change in Los Angeles: (a) annual relative change (%) under the RCP8.5 scenario; (b) annual
relative change (%) under the RCP6.0 scenario; (¢) annual energy intensity absolute difference
(MJ/m?) under RCP8.5 scenario; (d) annual energy intensity absolute difference (MJ/m?) under
the RCP6.0 scenario. Note: this sixth version of neighborhood boundaries were defined by the
Los Angeles Times in June 2010, which represents the boundaries of communities and social

organizations within each city (Zheng & Weng, 2019).
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Figure 6.6. The spatial variation of cooling energy consumption changes by 2050 caused by
climate change in Los Angeles County at the neighborhood scale: (a) annual relative change (%)
under the RCP8.5 scenario; (b) annual relative change (%) under the RCP6.0 scenario; (c) annual
energy intensity absolute difference (MJ/m?) under the RCP8.5 scenario; (d) annual energy
intensity absolute difference (MJ/m?) under the RCP6.0 scenario; the spatial variation of the
absolute difference in cooling energy consumption per building in 2050 caused by climate
change in Los Angeles County at the neighborhood scale (MJ/m?): (¢) under the RCP8.5

scenario; (f) average floor area per building (m?) (Zheng & Weng, 2019).
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6.4 Discussion and Conclusions

This section discusses the major findings, implications, strengths and limitations of the
approach used in this study compared to previous published studies. The results of previous
studies suggest that buildings in warmer climate zones have larger annual total energy increases
than those in colder climate zones. The findings of this study agree with those of previous
findings, However, more importantly, this study discovered a large variation even within the
same climate zone, which was caused by building types and ages. In examining the changes in
energy demand at finer temporal scales (i.e., monthly and diurnal), the variation of energy
demand increases across different building types were larger, suggesting that simulations at high
spatial and temporal resolutions were indeed necessary. Although lighting and equipment usage
were not directly affected by climate change, they can increase the internal heat gain and raise
the indoor temperature, resulting in the need for more cooling energy consumption.

Unlike previous studies, which used representative buildings (Andri¢ et al. 2016; Berger
et al. 2014; Dirks et al. 2015; Huang and Gurney 2016) or assumed that each type of building
had the same floor area fraction to the total building stock (Wang and Chen, 2014), this approach
linked the building energy simulation and climate change model to fine-scale urban building
inventory data. Therefore, this approach allows analysts and policy makers to assess the
sensitivity of different regions in a city to climate change with regard to building energy demand
increases at different spatial and temporal scales. In addition, a complete database of each
building in Los Angeles County was built and can be combined with other data. Policy makers
can take the database as a reference to choose appropriate policies that target specific regions. At
the county scale, the results in this study suggest that the likely dramatic increase in the cooling

energy demand is the major driving force of total energy increases at all-time scales. Because



82
electricity is the main source for space cooling, the high cooling demand should exceed the
current electricity generate capacity. Moreover, due to electricity being the secondary energy
source, the rising cooling energy demand will also lead to the increased consumption of other
energy sources, such as traditional fossil fuels, which are widely used to generate electricity.
According to the California Energy Commission, only 29% of electricity was generated through
renewable energy sources in 2016, and the traditional energy sources remained the major
sources. As a result, more greenhouse gases have been emitted. This study found that the
increase in the energy demand was not distributed evenly throughout Los Angeles County at the
neighborhood scale. Regions with a high density of tall commercial buildings (downtown and
major commercial zones) exhibited the largest energy demand increase. Advanced building
technologies can help save large amounts of energy, as indicated by buildings built after 2004
being more energy efficient than those built before 2004 at the annual and monthly time scales.
However, 188,060 commercial buildings were built before 2004 in Los Angeles County, which
account for 97.84% of all existing commercial buildings. In contrast, only 4,152 (2.16%) existing
commercial buildings were built after 2004. Therefore, policy makers may consider the potential
of zero net energy buildings (Rey-Hernandez et al., 2018) throughout the county and give the
highest priority to regions most vulnerable to climate change. To achieve this goal, the high-
resolution database of building sustainability created in this study can be combined with the solar
potential rate for each region in Los Angeles County. At the individual building scale, two types
of restaurants were identified to have much higher energy demand increases than the other types
of buildings despite their locations and ages. Given that their peak energy demand increase was
during lunch and dinner times in summer, reducing the solar heat gain and the effectiveness of

cooling should be considered simultaneously for all restaurants. Strategies, such as installing
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solar panels, cool roofs, green roofs, cooling system update, and window retrofit, should be

considered.
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CHAPTER 7

MODELING THE PERFORMANCE OF GREEN ROOF SYSTEMS AND PHOTOVOLTAIC
PANELS FOR BUILDING ENERGY SAVINGS
7.1 Introduction
The potential mitigation effects of green roofs and PV-green roofs on buildings that are
more vulnerable to climate change in terms of increased energy demand are discussed in this
chapter, which comprises four sections. The methods were presented in detail in Section 4.4. In
Section 7.2, the performance of PV-green roof mitigation strategies on the potential building
energy use increase due to climate change is evaluated at different temporal (annual and
monthly) scales. Section 7.3 presents the result of sensitivity analysis of the green roof model to
key parameters. Major findings, strengths, and limitations of the methodology used in this study
compared to previously published works are discussed in Section 7.4.
7.2 Evaluation of Green Roofs and Photovoltaic Panels on building Energy Savings at Different
Temporal Scales
According to the results in Chapter 6, there are large within-county spatial variations in
the building energy demand increases under both climate change scenarios. However, the
increased energy demand was found to be more substantial under the RCP8.5 scenario.
Moreover, the increased cooling energy demand was found to be more severe than the total

energy demand. To assess the potential mitigation effects of PV-green roof systems, this study
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identified the neighborhoods that are expected to have the largest increase in the cooling energy
demand in buildings under the RCP8.5 scenario as study sites. In the following step, buildings
found to have greater energy increases were selected as the buildings for experiment.

Glendale and Koreatown were selected as the study sites because they exhibited the
largest positive AD and RC in the cooling energy demand among all neighborhoods (Figure 7.1),
respectively. Within the two study sites, the two types of restaurants (full-service and fast-food
restaurants) were found to be more susceptible to the large increases in the cooling energy
demand in both neighborhoods based on the measured AD or RC. Among the other building
types, outpatient buildings showed the highest AD in Glendale, while medium offices showed
the highest RC in Koreatown. Building composition was the primary factor that caused these two
neighborhoods to have large increases in the cooling energy demand. The two types of
restaurants made up 6.03% and 9.56% of commercial buildings in Glendale and Koreatown,
which was higher than that in the entire Los Angeles County (4.26%). Table 7.1 summarizes the
results for 13 selected vulnerable buildings in terms of the performance of PV-green roof
mitigation on potential building energy savings. This study intended to include one building per
prototype, although not all the prototypes were available in the study sites. For example, post-
2004 outpatient facilities and fast-food restaurants could not be found in Glendale.
7.2.1 Evaluation of Green Roofs and Photovoltaic Panels on Building Energy Savings at the
Annual Scale

The solar potential for each building roof was rated using the open-source roof solar
potential data from the Google Project Sunroof database, which provides the area available for
PV system installation. All 13 buildings passed the threshold of 1,405 hours of usable sunlight

per year and ranked as high solar potential roofs. Therefore, in this dissertation, both green roofs
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Figure 7.1. The location of the two study sites for evaluation of green roofs and photovoltaic
panels on building Energy Savings: Glendale and Koreatown, Los Angeles County, California,

USA.



Table 7.1

Selected buildings for performance evaluation of PV-green roof mitigation effects on potential

building energy savings.
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ID | Area (m?) | Number | Type Neighborhood | Age

of

Floors
1 1,057 1 Full-Service Restaurant | Glendale Before 1980
2 304 1 Fast-Food Restaurant Glendale 1980-2003
3 290 1 Full-Service Restaurant | Glendale 1980-2003
4 138 1 Fast-food Restaurant Glendale Before 1980
5 352 1 Fast-Food Restaurant Glendale After 2004
6 876 1 Outpatient Glendale 1980-2003
7 186 1 Outpatient Glendale Before 1980
8 219 1 Fast-Food Restaurant Koreatown Before 1980
9 353 1 Full-Service Restaurant | Koreatown Before 1980
10 467 1 Full-Service Restaurant | Koreatown 1980-2003
11 455 1 Fast-Food Restaurant Koreatown 1980-2003
12 587 3 Medium Office Koreatown Before 1980
13 828 3 Medium Office Koreatown 1980-2003

and PV systems were added to each tested building during the simulation. Table 7.2 presents the
available area for PV system installation and simulated annual electricity produced in gigajoules
(GJ) for each tested building in 2050.

Figure 7.2 presents the annual energy savings (MJ/m?) from green roofs on the tested
buildings compared to traditional roofs at two study sites under the RCP8.5 emission scenario.
All buildings with green roofs showed positive energy savings with regard to both the total
energy and electricity demand, although the extent of the savings differed according to building
type. The majority of the total energy savings arose from electricity savings. The two types of
restaurants showed a higher degree of electricity and natural gas savings than the other building
categories, suggesting that they would receive the most benefits in terms of energy savings after

the installation of green roofs. However, green roofs were predicted to save less energy for
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Table 7.2
Simulation of annual electricity produced by photovoltaic panels in 2050 for the tested buildings

under the RCP8.5 emission scenario.

ID Available Area for Photovoltaic | Simulated Annual Electricity Produced by the
System Installation (m?) Photovoltaic System in Gigajoules (GJ)

1 183 55.84

2 39 11.63

3 54 16.69

4 29 8.62

5 65 19

6 425 127.02

7 57 16.62

8 42 12.82

9 73 20.52

10 99 29.62

11 139 39.55

12 253 74.4

13 549 160.34

newly constructed restaurants. Green roofs exhibited the largest energy savings for pre-1980
restaurants, but for post-2004 restaurants showed the least savings. However, this contrast was
not obvious for medium offices and outpatient buildings. Figure 7.3 shows the percentage
breakdown of the individual components contributing to the annual electricity savings from
green roofs at the two study sites under the RCP8.5 emission scenario. Most electricity savings
were derived from cooling energy savings, followed by savings on fan energy, suggesting that
lower indoor temperatures can also save ventilation energy. Other savings (e.g., lighting,
equipment, pumps, humidification, and refrigeration) were trivial for most of the tested buildings
except for the two outpatient buildings and post-1980 medium office. One reason for this

difference is that the space heating energy was supplied by electricity, which also contributed to



89

100
m Total Energy m Electricity m Natural Gas

(o2} (o]
o o

Intensity Difference (MJ/m2)
S

20
0
Pre-1980 Full- Post-1980 Full- Pre-1980 Fast- Post-1980 Fast- Post- 2004 Fast-  Pre- 19 Post- 1
Service Service Food Food Food Outpatient Outpatient
-20 Restaurant Restaurant Restaurant Restaurant Restaurant
(a)
80

m Total Energy  mElectricity = Natural Gas

D
o

Intensity Difference (MJ/m?)
N Py
o o

0
Pre-1980 Full-  Post-1980 Full-  Pre-1980 Fast-  Post-1980 Fast- Pre-1980 Medium Post-1980
Service Service Food Restaurant Food Restaurant Office Medium Office
Restaurant Restaurant
(b)

Figure 7.2. Annual energy savings (MJ/m?) for green roofs on the tested buildings compared to

traditional roofs under the RCP8.5 emission scenario in 2050: (a) Glendale; (b) Koreatown.
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Figure 7.4. Percentage (%) of annual electricity savings from the integration of green roofs and

photovoltaic systems compared with traditional roofs under the RCP8.5 emission scenario in

2050: (a) Glendale; (b) Koreatown.

their electricity savings. Thus, it can be concluded that all benefits of electricity savings from

green roofs are from building HVAC systems. Figure 7.4 presents the annual electricity saving
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percentage due to the integration of green roofs and photovoltaic systems at the two study sites
under the RCP8.5 emission scenario. The annual electricity savings from the installation of PV-
green roofs ranged from 1.2% (pre-1980 outpatient building) to 6.92% (post-1980 fast-food
restaurant). Table 7.3 and Table 7.4 present the RC between 2050 and present (1991-2005) for
all tested buildings under the RCP8.5 emission scenario with regard to the annual total energy
and electricity demand, respectively. All restaurants with PV-green roofs were predicted to
consume less total energy in 2050 than at present (Table 7.3), even under the high-emission
scenario (RCP8.5), which indicates the robustness of PV-green roofs. The reduction in the
increased net building energy demand caused by climate change ranged from 8.2% (pre-1980
outpatient building) to 299.2% (pre-1980 full-service restaurant). Although PV-green roofs
cannot fully offset the increases in predicted electricity consumption in 2050 for the majority of
buildings, the extent of the increase is much lower than with traditional roofs (Table 7.4).

A life-cycle approach, as adopted in Bianchini and Hewage (2012), was performed to
analyze the social-economic benefits of installing PV-green roofs on all tested buildings. The
parameter settings also followed the settings in Bianchini and Hewage (2012), which are listed in
Table 7.5. The PV system installation cost for each building was found on the Google Project
Sunroof website. The return on investment (ROI) after 20 years was found to exceed 100% in 12
of the 13 tested buildings, and the payback periods for installing PV-green roofs on all tested
buildings ranged from 5.3 years (post-1980 medium office) to 14.2 years (post-1980 fast-food
restaurant) (Table 7.6), suggesting that these buildings could receive considerable social-
economic benefits. Compared to traditional roofs, which have a lifespan of only 20 years, the
expected lifespan of a green roof varies from 30 to 55 years (Bianchini & Hewage, 2012;

Chemisana & Lamnatou, 2014; Lamnatou & Chemisana, 2014, 2015). Therefore, the savings



Table 7.3

Relative change (%) in annual total energy demand between 2050 and present (1991-2005) in all
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tested buildings under RCP8.5 emission scenario.

Building Type Neighborhood | RC  (Traditional | RC (PV-green
Roof) (%) Roof) (%)
Pre-1980 Full-Service Restaurant Glendale 1.3% -2.6%
Post-1980 Full-Service Restaurant | Glendale 1.7% -0.2%
Pre-1980 Fast-Food Restaurant Glendale 1.6% -0.9%
Post-1980 Fast-Food Restaurant Glendale 1.1% -1.6%
Post-2004 Fast-Food Restaurant Glendale 1.0% -0.2%
Pre-1980 Outpatient Glendale 5.1% 4.7%
Post-1980 Outpatient Glendale 5.8% 4.7%
Pre-1980 Full-Service Restaurant Koreatown 1.0% -1.3%
Post-1980 Full-Service Restaurant | Koreatown 1.3% -0.9%
Pre-1980 Fast-Food Restaurant Koreatown 1.1% -0.8%
Post-1980 Fast-Food Restaurant Koreatown 0.6% -3.2%
Pre-1980 Medium Office Koreatown 9.5% 6.1%
Post-1980 Medium Office Koreatown 7.8% 1.5%

Table 7.4

Relative change (%) in annual electricity energy demand between 2050 and present (1991-2005)

in all tested buildings under the RCP8.5 emission scenario.

Building Type Neighborhood | RC  (Traditional | RC (PV-green
Roof) (%) Roof) (%)
Pre-1980 Full-Service Restaurant Glendale 9.9% 2.8%
Post-1980 Full-Service Restaurant | Glendale 9.5% 6.0%
Pre-1980 Fast-Food Restaurant Glendale 7.4% 3.3%
Post-1980 Fast-Food Restaurant Glendale 7.4% 2.7%
Post-2004 Fast-Food Restaurant Glendale 6.8% 3.5%
Pre-1980 Outpatient Glendale 5.8% 4.6%
Post-1980 Outpatient Glendale 6.3% 4.2%
Pre-1980 Full-Service Restaurant Koreatown 6.8% 2.7%
Post-1980 Full-Service Restaurant | Koreatown 6.6% 2.5%
Pre-1980 Fast-Food Restaurant Koreatown 4.5% 1.4%
Post-1980 Fast-Food Restaurant Koreatown 4.5% -2.7%
Pre-1980 Medium Office Koreatown 10.0% 6.5%
Post-1980 Medium Office Koreatown 7.9% 1.6%




Table 7.5
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Key parameters for the social-economic benefit analysis of installing green roofs (Bianchini &

Hewage, 2012).

Investment/benefits Value ($/m?) | Type Time frame
Initial Construction Cost | 146 Investment One time
Maintenance Cost 2 Investment Annual
Storm Water Retention 0.38 Benefit Annual
Avoid Infrastructure Cost | 39 Benefit One time
Longevity Benefit 160 Benefit After 20 years
Reduction of | 8 Benefit One time
Infrastructure
Improvement

Table 7.6

Return on investment (%) and payback periods (years) for installing green roofs and photovoltaic

systems on all tested buildings.

Building Type Neighborhood | Return on Investment | Payback
(ROI) after 20 years (%) | Period (Years)
Pre-1980 Full-Service Restaurant | Glendale 173.9% 8.5
Post-1980 Full-Service Restaurant | Glendale 109.2% 12.7
Pre-1980 Fast-Food Restaurant Glendale 126.8% 11.5
Post-1980 Fast-Food Restaurant Glendale 95.2% 14.2
Post-2004 Fast-Food Restaurant Glendale 162.8% 8.9
Pre-1980 QOutpatient Glendale 182.4% 9.0
Post-1980 Outpatient Glendale 101.3% 13.7
Pre-1980 Full-Service Restaurant | Koreatown 104.5% 14.1
Post-1980 Full-Service Restaurant | Koreatown 124.1% 11.9
Pre-1980 Fast-Food Restaurant Koreatown 126.8% 11.8
Post-1980 Fast-Food Restaurant Koreatown 128.3% 11.7
Pre-1980 Medium Office Koreatown 281.1% 5.9
Post-1980 Medium Office Koreatown 322.1% 5.3

from re-roofing 20 years after initial construction can be counted as a longevity benefit of green

roofs. In addition to the longevity benefit, installation of extensive green roofs could also

increase property prices by at least 2% (Bianchini & Hewage, 2012), which could contribute to
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the high ROl and reasonable payback period. In this study, the estimation of projected increase
in property prices was made based on the current prices of commercial buildings in Glendale and

Koreatown using the LoopNet website (https://www.loopnet.com/).

7.2.2 Evaluation of Green Roofs and Photovoltaic Panels on Building Energy Saving at the
Monthly Scale

Because larger increases in building energy demand were observed at finer time scales in
Chapter 6, this section further analyzed the performance of green roofs on energy savings at the
monthly scale. Because the outputs of energy generated by PV systems were only provided at the
annual scale, this section focused only on the performance of green roofs on electricity savings.
Figure 7.5 demonstrates the monthly electricity saving percentage from green roofs at the two
study sites under the RCP8.5 emission scenario compared with traditional roofs. All buildings
with green roofs showed positive electricity savings in all months except the post-2004 fast-food
restaurant from October to March, although the negative electricity savings are less than 1%.
Moreover, all buildings showed more electricity savings during the summer months than the
winter months except for the two outpatient buildings in Glendale. All restaurants showed higher
monthly electricity savings in the summer months regardless of location and building age, which
indicates that green roofs can provide more benefits to restaurants when temperatures are high at
the study sites. It was also observed that electricity savings were slightly higher for buildings in
Glendale than those in Koreatown. The reason for this difference is that Glendale is located in
the Burbank-Glendale weather zone, which has higher monthly temperatures than Koreatown,
which is located in the Los Angeles International Airport weather zone (Figure 4.3). In addition,
green roofs installed on older restaurants were found to save more electricity for most months,

because newly built restaurants, especially the post-2004 restaurants, were found to be less
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Figure 7.5. Percentage (%) of monthly electricity savings from green roofs compared with

traditional roofs under the RCP8.5 emission scenario in 2050: (a) Glendale; (b) Koreatown.
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sensitive to climate change as they were already equipped with advanced HVAC systems and
higher insulation levels.
7.3 Evaluation of the Green Roof Model Sensitivity
In this section, the model sensitivity to key input parameters related to green roofs is
evaluated. Because a detailed parametric test of all green roof parameters is beyond the scope of
this dissertation, only the three most important parameters (LA, soil depth, and irrigation),
which were identified from the previous literature (Sailor, 2008; Sailor et al., 2012), are
examined. The pre-1980 full-service restaurant in Glendale was selected, because it showed the
highest electricity saving potential at both time scales (annual and monthly). Table 7.7 shows the
matrix of seven different settings for LAI, soil depth, and irrigation saturation percentage. The
base model was defined as the model used in the previous section. Soil depth and LAI variations
were set to the minimum and maximum threshold values allowed by EnergyPlus. For roof
irrigation systems, the “smart schedule” was used, although the irrigation saturation percentages
were set differently. For the low-irrigation model, the irrigation saturation percentage was set to
5%, which means that irrigation would not be performed when the soil is considered to be
“moist” (higher than 5% saturation). For the high-irrigation model, the irrigation saturation
percentage was set to 95%. All other parameters were unchanged from Section 4.4.1.
Differences in monthly electricity savings for various green roof settings applied to the pre-1980
full-service restaurant under the RCP8.5 emission scenario in 2050 are presented in Figure 7.6.
The energy saving ability of the green roof was positively correlated with the three key
parameters, which agrees with the results of the literature (Sailor, 2008; Sailor et al., 2012). The
irrigation saturation percentage had the largest impact on electricity savings among the three key

parameters for most months, and this impact reached its maximum in summer (August). This
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result differs from what was found in Sailor (2008), who suggested that soil thickness had the
largest impact on energy use. The reason for this difference is that Glendale is a neighborhood in
the Los Angeles Basin that experiences very little precipitation throughout the year (except in
winter). Therefore, irrigation is essential for the plants used for green roofs on Glendale
buildings.
Table 7.7

Characteristics of different settings of green roofs simulated under the RCP8.5 emission scenario.

Simulation Model Leaf Area | Soil Depth (m) Irrigation Saturation
Index (LAI) Percentage (%)
Base Model 2 0.2 30%
Low LAI 1 0.2 30%
High LAI 5 0.2 30%
Thin Soil 2 0.1 30%
Thick Soil 2 0.7 30%
Low-Irrigation 2 0.2 5%
High-Irrigation 2 0.2 90%

7.4 Discussion and Conclusions

This section discusses the major findings, strengths, and limitations of the methodology
used in this chapter compared with previously published works. All buildings with green roofs
showed positive energy savings with regard to total energy and electricity, and the savings
caused by green roofs were positively correlated with three key parameters: LA, soil depth, and
irrigation saturation percentage. Moreover, the majority of the electricity saving benefits from
green roofs were found in the HVAC systems. In addition, the energy saving ability of green
roofs did exhibit seasonality. The above findings agree with the results of previous studies
(Gargari et al., 2016; Morakinyo et al., 2017; Semaan & Pearce, 2016; Sailor, 2008; Sailor et al.,

2012). However, this study further found that green roofs have different energy
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Figure 7.6. Differences (%) in monthly electricity savings for various green roof settings applied
to the selected full-service restaurant constructed before 1980 under the RCP8.5 emission

scenario in 2050 in Glendale, Los Angeles County, USA.

saving abilities on different types of buildings with different technologies, which has received
very little attention in previous studies. The two types of restaurants showed a higher degree of
electricity and natural gas savings than the other building types, and less energy savings for
newly constructed restaurants was also predicted.

The uncertainties in the green roof energy saving simulation mainly arose from the
limitations of the current green roof module in EnergyPlus. The latest version of the module does
not have the option for users to input the plant species that are widely used in green roofs. Using
the current settings in the green roof module would ignore the fact that the LAI for some species
may change slightly throughout the year, although this change would not significantly affect the
simulation result. Moreover, there is no indicator that shows the settings are applicable to the real

environment. For example, it was demonstrated that increased depth of soil layer can promote
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the energy saving ability of green roofs. However, an increase of soil thickness will also increase
the weight of the green roof, which may exceed the load bearing capacity of some building roofs.
Therefore, in this study followed the settings of Sailor (2008), which were based on validated
data from two monitored buildings with green roofs at Portland State University, Oregon, instead

of applied the optimal settings.



101

CHAPTER 8

CONCLUSIONS AND FUTURE DIRECTIONS
8.1 Introduction

This chapter summarizes the contributions of this dissertation, outlines the limitations of
the methodology, and discusses the directions for future research. Section 8.2 summarizes the
major findings and draws conclusions on the five hypotheses. Section 8.3 discusses the
limitations that may lead to uncertainties in the output, and proposes some plans for further
research based on these limitations.

8.2 Summary of Major Findings

This dissertation contains three interrelated studies in Los Angeles County: 1) high
spatial and temporal resolution Qs estimation; 2) modeling the effect of climate change on
building energy demand using a GIS-based high spatial and temporal resolution approach; and 3)
modeling the performance of PV-green roof systems on building energy savings. The first study
provided a hybrid approach to Qs modeling, as presented in Chapter 5, which combined the
inventory and GIS methods to create a 365-day hourly Qs profile at 120-m spatial resolution
based on data available to the public. A high spatial and temporal Qs profile that can be readily
incorporated into urban energy balance and UHI models was developed, providing valuable
information for government agencies, the energy sector, and the general public. The second

study proposed an integrated approach of modeling and GIS to assess the impact of climate
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change on building energy consumption for different types and ages of buildings in Los Angeles
County at both high spatial and temporal resolutions, as described in Chapter 6. The third study
discussed the potential mitigation effects of PV-green roofs on vulnerable buildings that are
susceptible to the largest increases in energy demand under the context of climate change, as
presented in Chapter 7.

Hypothesis 1 “Building energy demand is the major contributor to Qf, and building
energy demand can make the typical diurnal Qs profiles across all four seasons appear to have
different shapes due to changes in cooling and heating demands” was supported. The main
findings from the first study were that the magnitudes and temporal patterns of Qr in Los Angeles
County varied on workdays and nonworkdays by season and for different land use types.
Moreover, a large within-county difference in Qr was discovered among different regions. The
downtown Los Angeles area was found to have the largest mean Qs throughout the year.

Building energy consumption was identified as the dominant contributor to the overall Qs in the
downtown area. In addition, Qs on the selected extremely hot summer workday was substantially
higher than that of the average of all summer workdays from 8 am to 11 pm. The increase in
building energy consumption due to higher demands for space cooling to offset the extremely hot
weather was the dominant driver that caused the higher Qs.

Hypothesis 2 “The majority of building types show an obvious annual increase in energy
demand by 2050, and the variation in energy increases across different building types will be
even larger at finer temporal scales (i.e., monthly and diurnal)” was supported. The results of the
second study suggested that the majority of building types showed an apparent increase in energy
demand under both emission scenarios, and the energy demand increase was higher with the

high-emission scenario. In examining the change in energy demand at finer temporal scales (i.e.,
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monthly and diurnal), it was found that the energy increase differed considerably according to
the building type.

Hypothesis 3 “Areas with more commercial buildings are more vulnerable to climate
change because commercial buildings have higher energy consumption intensities than
residential buildings” was supported. Commercial buildings were found to have a higher energy
demand increase than residential buildings. Neighborhoods with larger than 100% RC in the
cooling energy demand were mostly located in the Los Angeles International Airport weather
zone, because it had the highest percentage of commercial buildings. Moreover, building size
and density played an important role in the energy demand AD. Neighborhoods with the largest
increase in energy consumption intensity were located in the major commercial zones with a
high density of tall commercial buildings.

Hypothesis 4 “The installation of PV-green roofs can reduce at least 20% of net building
energy demand increase caused by climate change for all chosen types of test buildings, and the
reduction extent will vary by building type” was partially supported. Reductions in the increased
net building energy demand caused by climate change varied by building type, which ranged
from 8.2% (pre-1980 outpatient building) to 299.2% (pre-1980 full-service restaurant). The
reduction in the net building energy demand was found to exceed 20% in 11 of the 13 tested
buildings.

Hypothesis 5 “Building types that are predicted to have the highest energy demand
increase caused by climate change receive the most benefits in terms of energy savings” was
supported. In Chapter 6, two types of restaurants (full-service and fast-food restaurants) were
predicted to have the highest summer energy demand increase due to climate change. In Chapter

7, restaurants were predicted to have 112.5% to 299.5% reductions in the increased net energy
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demand due to climate change, much higher than the other types of buildings examined in this
study. Moreover, all restaurants with PV-green roofs were predicted to consume less total energy
in 2050 than at present even under the high-emission scenario (RCP8.5), indicated that they
received the most benefits in terms of energy savings.

In addition to the hypothesis testing, this dissertation also included some other major
findings. When compared with previous studies (Ichinose et al., 1999; Nie et al., 2014; Quah &
Roth., 2012; Wong et al., 2015), which estimated Qs in cities or regions with higher population
densities (Tokyo, Hong Kong, and Singapore), traffic emissions were found to account for a
higher percentage of Qf in Los Angeles County, while human metabolism contributed less. This
finding suggests that in addition to climate conditions, social-economic factors of a city can also
affect the characteristics of Qs.

The results of the second study suggest that under the same climate conditions, the
different composition, technologies, size, and density of buildings can induce large spatial
variations in energy demand, even within the same city. How to control the cooling energy
consumption is vital for the sustainability of Los Angeles under climate change scenarios.
Advanced building technologies, including increased insulation and energy efficient equipment
and materials, can all contribute significantly to cooling energy savings while maintaining the
comfort level. Other strategies, such as transforming to renewable energy, should also be
considered.

All buildings with green roofs showed positive energy savings with regard to total energy
and electricity, and the majority of the benefits in terms of electricity savings from green roofs
were found in the HVAC systems. In addition, the energy saving ability of green roofs did

exhibit seasonality.
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All three studies showed the innovation of the proposed methodology, filled gaps in the
current literature, and indicated strong applicability. The first study developed a hybrid approach
that integrated the inventory and GIS modeling approaches. The GIS modeling approach can
create a time-dependent Qs profile at high spatial and temporal resolutions with high accuracy,
and the inventory approach can validate and calibrate the results estimated from the GIS
modeling approach. This integration allowed for assessing the discrepancies between simulated
and actual energy consumption. Compared to the approaches of previous studies that used state,
county, or census levels for calibrating the simulation results, the use of neighborhood-level
reference data enabled us to address local variations of energy consumption patterns by building.

The second research project designed an innovative approach to study the climate change
effect on building energy consumption at fine spatial and temporal scales. By utilizing the unique
capability of GIS, which integrates different types of data and organizes them based on spatial
locations, the approach used in this study can capture the spatial and temporal variations of
building energy use in Los Angeles County. It can generate valuable datasets and information
suitable for policy makers, energy suppliers and consumers to consider adaptation and mitigation
strategies. The approach used in this study has strong applicability, because it is appropriate for
any area with the availability of a GIS-based building dataset and weather data at a high temporal
resolution.

In the existing literature, the mitigation potential of increased building energy
consumption caused by climate change have been briefly discussed, and no experiments have
been conducted to test the performance of mitigation options, such as sustainable roofs (green
roofs, PV roofs, or PV-green roofs). The third study filled this gap by estimating the mitigation

performance of PV-green roofs on buildings that are more vulnerable to climate change in terms
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of the increased energy demand. Factors that might affect the energy saving ability of PV-green
roofs, such as local climate conditions, seasonal effects, building types, and building
technologies, were examined, and the results provided valuable information to guide policy
makers.

Based on all the findings of this dissertation, the recommendations to Los Angeles
County can be summarized as follows. First, it is necessary to apply several strategies to avoid
the future energy consumption path towards the high-emission scenario (RCP8.5), such as
transferring more energy supply from fossil fuel sources to renewable sources, reducing the
transmission loss of electricity, and increasing the awareness of the general public to reducing
unnecessary cooling energy use. Second, because the majority of existing commercial buildings
in Los Angeles County were built before 2004, which were found to be more sensitive to climate
change in terms of the increased energy consumption potential, mitigation strategies will need to
be applied. Because the majority of the energy demand increase was predicted for electricity and
cooling energy, PV-green roofs are a viable mitigation option. This is especially for buildings
built before 2004. To optimize the performance of PV-green roofs, experiments will need to be
conducted at the individual building scale that take the local climate condition into consideration
when determining the key parameters for the experiment. For example, irrigation and species
selection can be essential, because Los Angeles County has very low precipitation in summer.
The three potential ways to reduce irrigation cost and water usage are to use drought-tolerant
plant species, to apply efficient irrigation techniques, and to store rainwater for irrigation
(Heusinger et al., 2018; Shafique et al., 2018). In addition to the roofs, the sides of buildings can

also be utilized for building energy mitigation, as the benefits of wall-mounted PV-green
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systems, solar thermal collectors, and hybrid solar windows have been studied in previous
studies (Moren & Kaorjenic, 2017; Ulavi, Hebrink, & Davidson, 2014).
8.3 Limitations and Future Directions

Although this dissertation fills multiple gaps in the existing literature, limitations remain.
First, data availability was still a major limitation in this dissertation and caused uncertainties in
each part. As discussed in Section 5.5, the uncertainties in the building energy consumption
came from occupancy behaviors and building prototypes, which can only represent the most
common building technologies and characteristics in the survey data in Los Angeles County.
Moreover, the traffic emission simulation would be more accurate, if seasonal variations of
emission factors from several types of vehicles could be included. During hot weather, vehicles
tend to consume more fuel to run air conditioners. Although the Qs simulation included the
majority of its components, some other components, such as greenhouses gases emitted from
pollution and solid waste process, were not included. The resolution of the weather data (TMY3)
was still relatively coarse, which is not sufficient to reflect the regional differences in the Los
Angeles County. More detailed information regarding residential buildings, such as building age
and materials, were not readily available. Additional uncertainty was caused by the fact that data
from multiple spatial scales were combined in this dissertation. For example, the actual building
energy consumption at the neighborhood scale was used for the validation. Although this is
much more accurate than that used in previous studies, which used coarser reference data at the
state and county level, the discrepancy between simulations and actual consumption within a
neighborhood cannot be addressed. Finally, the energy consumption data for individual buildings

were not available for this study because they are confidential.
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Future studies can achieve higher modeling accuracy if the issues of the aforementioned
data can be overcome. Under the context of the development of “Geospatial big data”, the spatial
and temporal scales of the data available to the public are expected to become finer in the future.
Moreover, interdisciplinary research will likely be conducted more frequently. Both of these
directions of development will increase the dimensions of input data. For example, Building
Information Modeling (BIM) data, which is an intelligent 3D model-based building dataset, are
under development in many cities. The 3D BIM data contain a greater level of detail for each
individual building than the 2D building shapefile used in this dissertation. Information such as
materials, structures, specific models of HVAC systems, and drainage systems will become
available. The integration of BIM and GIS will increase the accuracy of energy consumption
simulations and provide more options to customize PV-green roofs at the individual building
level. For example, this integration would allow decision makers and designers to run sensitivity
tests while considering different combinations of input parameters, such as local water
availability, irrigation investments, types of blinds, and facing directions of windows to
determine the best option. On the other hand, the simulation of individual building energy
consumption can be made much more accurate if multistage HVAC systems and survey results
of personal behaviors regarding the choice of heating and cooling temperatures in a study area
into are considered.

However, the larger amount and finer scales of the input data will also bring challenges to
computing, storage, and the integration of data from different sources and scales, which will
become a more important issue to be addressed. In this study, the time required for the building
energy simulation in Los Angeles County was approximately five and a half hours using Python.

However, in the future, the time required for data processing over large areas, such as the entire
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country, will likely increase dramatically due to the increased complexity of the input data.
Therefore, the development of geospatial technologies is crucial and will play an important role
in solving this problem by reducing the size of data and advancing the computing algorithms. In
conclusion, the higher level of data availability, interdisciplinary research, and advanced
geospatial technologies will promote the developments in high-resolution Qs and building energy

demand modeling studies.
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Anthropogenic heat flux (Qg), which originates through energy consumption from buildings, industrial
plants, vehicle exhausts, and human metabolism releases, is an important component in the urban
Surface Energy Balance (SEB) system, and is key to understanding of many urban environmental issues.
The present study provided a hybrid Qf modeling approach, which combined the inventory and GIS
approach to create a 365-day hourly Qs profile at 120 m spatial resolution in Los Angeles County, Cali-
fornia, USA. Qy was estimated by separate calculation of heat release from buildings, traffics, and human
metabolism, respectively. The results indicated that Qr showed different magnitudes and diurnal patterns
between workdays (dual-peak shape) and weekends/holidays, and also varied with seasons, and land use
types. Qf yielded the highest values in the summer workdays, with its maximum value of 7.76 w!mz. Qrin
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Building energy hot summer workdays was obviously higher than that in the average summer workdays, which caused
Traffic emission by higher demands for space cooling in buildings, and can reach 8.14 w/m? at maximum. Building energy
Urban areas consumption was identified as the dominant contributor to the Qrin Downtown Los Angeles, which was
Los Angeles found to have the largest mean Qy throughout the year among all neighborhoods. It can be concluded
that Qrin the downtown was more significant in workdays than that in non-workdays, and its maximum
value can reach 100 w/m?. It is suggested that our approach may have wider applicability for Qr esti-
mation in large areas compared with the existing studies, as all the data used were available to the
public. A high spatial and temporal Qr profile, which can readily be incorporated into urban energy
balance and Urban Heat Island (UHI) studies, provides valuable data and information for pertinent

government agencies and researchers.
© 2017 Elsevier Ltd. All rights reserved.
1. Introduction Yannopoulos et al, 2015) and urbanized areas will expand to

provide homes for 81% of the world's population, with the ma-

Although urbanized areas cover about 2% of the global land
area, they account for 67—76% of global final energy consumption
and 71-76% of fossil fuel-related CO; emissions (Guneralp et al.,
2017; Seto and Shakal, 2014). Energy demanding in cities is pre-
dicted to increase over the next 20 years and probably beyond
(International Energy Agency, 2009; Quah and Roth, 2012),
because of reduction of rural development (Valipour, 2016, 2017;
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jority of the population increase coming from developing coun-
tries (Weng, 2015). Continued urbanization will bring an impact to
urban climate, as the increasing anthropogenic heat flux (Qf)
associated with growing energy consumption in cities can directly
affect the urban boundary layer (UBL) and urban canopy layer
(UCL) over different spatial and temporal scales (Oke, 2006). The
Qr can originate through energy consumption from buildings, in-
dustrial plants, vehicle exhausts, and human metabolism releases
within cities. It is an important component in the urban Surface
Energy Balance (SEB) system, which is a key to understand urban
environmental issues and can be quantified by the following
equation (Oke, 1987):
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Rn+Q=H+IE+G (1)

where Rn is net radiation, Qy is anthropogenic heat, H is sensible
heat, LE is latent heat, and G is ground heat. The sum of net radi-
ation and anthropogenic heat denotes the total available energy in
urban environments, whereas the sum of sensible heat, latent heat,
and ground heat is the dissipation of available energy through
turbulent transport, condition, and advection (Nie et al., 2014).

For dense cities with high energy demands, Qf can potentially
be an important or even dominant component of the SEB
(Hamilton et al., 2009; Hu et al., 2012; Nie et al., 2014). Compar-
ison between Qr and solar radiation in previous studies indicated
that Q¢ can be equal to or even greater than the incident solar
radiation during winter days (Nie et al, 2014; Hamilton et al,
2009). Moreover, Qr was proved to be a major contributor to ur-
ban heat island (UHI) formation (Fan and Sailor, 2005; Hu et al.,
2012; Ohashi et al, 2003; Wong et al, 2015). The notion of an
UHI effect can be characterized by a large stretch of non-
evaporating impervious materials covering urban areas, with a
consequent rise in sensible heat flux at the expense of latent heat
flux (Oke, 1987).

Because of the significance of Qy in understanding the urban
surface energy balance, urban energy transfer, and its effect to
urban climate, numerous researches had been conducted to esti-
mate Qf in mid-latitude cities (Chapman et al, 2016; Ferreira and
Oliveira, 2011; Grimmond, 1992; Hamilton et al., 2009; Ichinose
et al, 1999; Nie et al, 2014; Sailor and Lu, 2004; Smith et al.,
2009; Zhou et al, 2012), subtropical cities (Chow et al, 2014;
Park et al, 2016; Wong et al., 2015), tropical cities (Quah and
Roth, 2012), and at global scale (Allen et al, 2011; Flanner,
2009). The winter Qy profile is generally greater in magnitude
than the corresponding summer profile in mid-latitude cities
(Sailor and Lu, 2004). However, in subtropical or tropical cities, Q¢
in the warmer months is found equal to or larger than Qr in the
cooler months (Ichinose et al, 1999; Quah and Roth, 2012; Wong
et al,, 2015). Besides the climate effect, the density of population
also contributes to the differences of Qr between cities (Ichinose
et al, 1999; Wong et al, 2015). The magnitude of Q varies
greatly not only between cities but also within cities, which
depended on per capita energy use, building density, and meteo-
rological conditions (Chapman et al., 2016; Chow et al., 2014;
Hamilton et al., 2009; I[chinose et al, 1999; Quah and Roth,
2012; Smith et al., 2009).

The majority of previous studies used three categories of ap-
proaches to estimate Qg (1) inventory approach, (2) energy budget
residual approach, and (3) GIS modeling approach. The inventory
approaches, which also called the top-down approach, estimate
the anthropogenic heat based on population density and energy
consumption statistics data from buildings and wvehicles
(Grimmond, 1992; Ichinose et al., 1999; Klysik, 1996; Pigeon et al.,
2007; Sailor and Lu, 2004; Sailor et al., 2015; Smith et al., 2009). It
requires data at large aggregate scales (e.g. annual), and down-
scales them into smaller scales of interest (e.g. hourly) (Quah and
Roth, 2012). Since the energy consumption data at large scales are
available, this approach has been applied to estimate Qr at cities
throughout the world, for example, in Vancouver, Canada
(Grimmond, 1992), Lodz, Poland (Klysik, 1996), Tokyo, Japan
(Ichinose et al,, 1999), Toulouse, France (Pigeon et al., 2007), and
Manchester, UK (Smith et al., 2009). One study that made a sig-
nificant impact was conducted by Sailor and Lu (2004), which
proposed a method to downscale data at coarser scales to indi-
vidual census tract to estimate season-specific diurnal profiles of
Qy for six major cities in the US.A. Sailor et al. (2015)applied this
method to develop a national database of seasonally and diurnally
varying Q¢ for 61 largest cities in 2015.

The energy balance residual approach estimates Q¢ through
Equartion (1) by measuring net radiation, sensible heat, latent
heat, and ground heat using remote sensing meteorological data
(Hu et al.,, 2012; Kato and Yamaguchi, 2005; Kato et al,, 2008;
Wong et al,, 2015; Xu et al., 2008; Yang et al., 2014; Zhou et al,,
2012), and long-term eddy covariance flux tower (Chow et al,,
2014; Park et al, 2016). Kato and Yamaguchi (2005) was the
first to separate Qf from natural heat radiation from sensible heat
flux, based on the energy balance model using Advanced Space-
borne Thermal Emission and Reflection Radiometer (ASTER) im-
agery and ground meteorological data. Xu et al. (2008) modeled
the urban sensible heat in the city of Shanghai, China, at multiple
spatial scales. Hu et al. (2012) used a continuous layer of mete-
orological data and ASTER image to estimate Qr and their sea-
sonal and spatial variations in Beijing, China. Wong et al. (2015)
developed a novel algorithm to model Qf for mixed pixels,
which decomposed image pixels of HJ-1B satellite imagery into
fractions of impervious-surfaces and vegetation.

The GIS modeling approaches (Hamilton et al., 2009; Quah and
Roth, 2012; Sailor et al., 2007; Zhou et al., 2012), which also called
the bottom-up approach. Unlike the inventory approach, it uses
energy consumption modeled at small scales (e.g. individual
buildings) to scale the information up to larger scales of interest
(Quah and Roth, 2012). Earlier studies (Kikegawa et al., 2003, 2006;
Masson, 2000; Ohashi et al., 2007) simply estimated Qf by inte-
grating building energy simulation results with urban canopy
meteorological model. Later on, rescarchers (Hamilton et al., 2009;
Sailor et al., 2007; Zhou et al,, 2012) started to integrated more
detailed building energy simulations for prototypical buildings
with GIS database containing attributes such as types, ages, and
sizes. Researches in recent years (Chapman et al., 2016; Ferreira and
Oliveira, 2011; Quah and Roth, 2012) added traffic emissions and
human metabolism into the Qy estimation.

The above three approaches have their respective advantages
and disadvantages. The limitation of inventory approach is the
estimation accuracy relies on the data availability and quality.
Moreover, it would be difficult to quantify Qr at fine scales due to
the limitation on spatial (usually County or Statewide) and
temporal (usually annual or monthly) resolution of data. The
energy balance residual approach is simpler and more straight-
forward, but each component in the model can introduce un-
certainties and propagates errors towards the final estimated
result (Zhou et al, 2012). The accumulation of errors in the
measurements of sensible heat, latent heat, and ground heat can
result in under- or over-estimation of Q¢ (Park et al., 2016). It can
also be limited by the spatial and temporal resolution of remote
sensing satellite images and meteorological data, as it is difficult
to account for hourly variations of Qf emission. The GIS approach
is the only approach that can measure Qy in any temporal (annual,
monthly, weekly, daily, and diurnal) and spatial resolution.
Moreover, it has been considered to be much reliable when
compared to the other two approaches since it measure Qf
directly from each of the contributing sources. But this approach
is time consuming and requires large volume of data, A common
drawback in the existing studies is the absence of validation for
the estimated Qf at a fine scale.

Since Qr has large spatial and temporal variations, there is a
need for high spatial and temporal resolution simulations.
However, such simulations of Qf are subject to the availability of
data from multiple sources and robustness of time-dependent
simulation models, and are difficult to be conducted by using a
single approach (Sailor, 2011). Although the majority of previous
studies were restricted to a single approach, there were a few
studies in recent years combined multiple approaches to estimate
Qf(Chow et al., 2014; Nie et al., 2014; Park et al., 2016; Zhou et al.,
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2012). Zhou et al. (2012) examined the similarity of spatial pat-
terns of Qr estimated by the energy balanced residual approach
and the GIS modeling approach. However, the GIS modeling
approach only included building energy consumption modeling
and ignored the emission from traffic, human metabolism, and
industrial plants. Other studies (Chow et al., 2014; Nie et al,,
2014; Park et al, 2016) were restricted to small study areas at
local spatial scale. The data reguired by energy balanced residual
approach by Chow et al. (2014) and Park et al. (2016) were
measured by a long-term eddy covariance flux tower built near
the study area, which is not available in every part of the city. The
inventory approach adopted by Nie et al. (2014) was based on an
on-campus survey, which might also be unfeasible for larger
spatial scales due to the unavailability of such data. In addition,
the differences of workday and weekend were all ignored due to
lack of high temporal Qf simulation. From the discussion above, it
can be concluded that there still remain some gaps in the current
literature for Qr estimation with high spatial and temporal reso-
lutions in large areas even with hybrid approaches were applied.
This study intends to fill this gap by proposing a novel hybrid Qs
modeling approach, which combines the inventory and GIS
approach to create a 365 day hourly Qf profile at 120 meter
resolution in Los Angeles County, California, USA, based on data
that available to the public. Since this approach can provide more
detail information of Qf in a larger area of spatial varieties for
both workdays and weekends, it would be valuable for city
government agencies, energy sector, and the general public. The
specific objectives are: 1) to develop a high spatial and temporal
Qs profile that can readily be incorporated into urban energy
balance and UHI modeling; and 2) to analyze Qr across multiple
spatial and temporal scales. We attempt to answer the following
research questions: 1) what are the typical diurnal Qs profiles in
four seasons during workdays and weekends across different
land use types; 2) whether extremely hot days in the summer can
lead to notable increase in Qf when compared to averaged sum-
mer days; and 3) why some areas have obvious higher Qs than
others and what are the major contributors?

2. Study area and data

The Los Angeles County, California, USA, was chosen as the study
area. As of the 2010 U.S. Census, the county has a population of
9,818,605 (State & County QuickFacts, 2014), making it the most
populous county in the nation. Los Angeles has a Subtropical-
Mediterranean climate (Koppen climate classification), which is a
type of dry subtropical climate, with dry and hot summers and
moist winters. Los Angeles County is also subject to microclimates
due to its topography, with a large variation in temperature be-
tween areas closed to each other. For example, during the summer
the average temperature at the Santa Monica Coast is below 27° C,

Major datasets used in this study area are listed in Table 1. In
order to simulate the 365 day hourly building energy consumption,
datasets included Los Angeles Countywide building outlines,
building prototypes, Los Angeles County Parcel shapefiles, and
Typical Meteorological Year records. Building outlines provided
information of building height, building area, type, and year of
construction. They were captured from stereo imagery as part of
the LAR-IAC2 Project (2008 acquisition) and updated as part of the
LARIAC4 (2014) imagery acquisition. The Los Angeles County parcel
data, on the other hand, contained information on land use types,
which were collected from Los Angeles County Enterprise GIS
website. Building prototypes and Typical Meteorological Year were
obtained from US Department of Energy (DOE) and National Solar
Radiation Data Base, respectively. The Census Transportation
Planning Products (CTPP) shapefiles were used for hourly human
metabolism estimation. Annual Average Daily Traffic (AADT) data
and County road shapefiles were acquired to estimate the hourly
traffic emissions. Finally, the annual county energy consumption
data was downloaded from the website of LA Energy Atlas, which
recorded historical energy consumption data from different sectors
(commercial, residential, and industrial) by year, and were used for
validation and calibration.

3. Methodology

The sources of Qf can be divided into three major categories of
waste heat (Sailor and Lu, 2004):

Q=0+ Qy+Qn (2)

where Qy, Qy, and Qy, represent heat fluxes emitted by buildings,
transportation, and human metabolism, respectively. In this paper,
Qum was determined by the inventory approach, while Qy, and Qy
were simulated by using a combined GIS modeling and inventory
approach.

3.1. Human metabolism simulation

Human metabolism (Qp, is the heat released by human bodies
during their daily activities, which varies with population density,
activity phase, and time of the day. This study offered a diurnal
time-dependent population density based method to simulate the
human metabolism in Los Angeles County. The Census Trans-
portation Planning Products (CTPP) shapefiles created by US
Census Bureau, which contained information of total population,
number of workers in working place, time of arrival at work place,
school enrollment population, and employment status, were used
to simulate hourly population density. In working days, popula-
tion density can be estimated by using the following equation:

but at the inland areas can above 32° C. PD = (WPl + WP2 + UE+S)[A 3)
Table 1
Datasets used in this study and their sources,
Data Source

Census Transportation Planning Products (CTPP) Shapefiles
Los Angeles Countywide Building Outline Dataset

Building Prototypes

Los Angeles County Parcel shapefiles

Typical Meteorological Year (TMY3) weather data

Annual Average Daily Traffic (AADT) data

Los Angeles County Road Shapefiles

Annual County Energy Consumption Statistics

LS. Census Website

Los Angeles County Data Portal

US Department of Energy (DOE)

Los Angeles County Enterprise GIS

National Solar Radiation Data Base

California Department of Transportation Website
LL5. Census Website

LA Energy Atlas
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Table 2
Schedule of working population during working day.

Time arriving work place/time leaving home Time return to home from work

5:00-5:59 am 3:00—3:59 p.m.
6:00-6:59 am. 4:00-4:59 p.m.
T:00—7:59 am. 5:00—5:59 p.m.
8:00-8:59 am. 6:00—-6:59 p.m.
9:00-9:59 am. 7:00—7:59 p.m.
10:00-10:59 a.m. 8:00-8:59 p.m,
11:00-11:59 am. 9:00—-9:59 a.m.

where WP1 is working population in the work place; WP2 is the
population of people work at home; UE is unemployment popu-
lation; S is student population; A is the area of census tract.

In the next step, a diurnal human metabolism simulation
model was created from the time-dependent population distri-
bution within each hour, which was based on data of 1) working/
student population arriving workplacefschool and 2) working/
student population leaving home at each time interval. Table 2
presents the schedule of typical working population would likely
to be at. The schedule was designed based on several assumptions:
1) the average daily working hour was 8 h; 2) there was a 1-hour
lunch break; 3) average time needed for daily commute wasl
hour. Therefore, the time between people leaves their home to
work and back home from work was set to 10 h. The commuter
flow for each census tract was estimated based on the following
two cases:

Case 1: |If population at working place (working
hours) > residential population, it meant there were more workers
and students from other census tracts coming into this census tract
than going out. Thus, the time dependent population can be
calculated as:

S5am—11am: Pop(t)
=PP2 + Z? 5(PP1 — PP2) x AR(t) /AR(total)
(4)
12 pm — 2 pm: Pop(t) = PP1 (5)
3pm - 8pm: Pop(t)=PP1— Z: I5(P'P'l — PP2)
* AR(t — 10)/AR(total) (6)
9pm—4am: Pop(t) = PP2 (7)

where PP1is population at working day during working hours; PP2
is total population (residential) in each census tract; AR(t) is pop-
ulation of workers and students arrive at work place during time
interval “t”, and AR(total) is total population of workers and stu-
dents arrive at work place in entire day.

Case 2: If population at working day during working
hours< residential population, workers and students from other
place to this census tract were less than workers and student going
to other census tract during working hours, so time dependent
population at each census tract can be calculated as:

5am — 11 am: Pop(t) = PP2 — ZT_S(PPZ — PP1)
x L(t)/L{total) (8)

12pm — 2 pm: Pop(t) = PP1 (9)

3pm - 8pm: Pop(t)=PP1+Y ., (PP2 PP1)
% L(t — 10)/L(total) (10)
9pm —4am: Pop(t)=PP2 (11)

where L(t) is population of workers and students leaving home
during time interval “t” and L{total) is total population of workers
and students leaving home.

In the final step, human metabolism was calculated as:

Qn=PD x Mt (12)

where PD is population density per square meter, Mt is amount of
energy released per person as a function of day (W). In this study,
175 W was set for Mt to represent the daytime metabolic rates in
the urban area, according to Sailor and Lu (2004). Table 3 lists the
energy released per person as a function of hour of the day (W).

3.2, Building energy consumption simulation

Qp was simulated as the sum of energy consumption from in-
dustrial plants, commercial, and residential buildings. Although
there is a time lag between energy consumption and heat emission
into the atmosphere, detailed information on the ventilation sys-
tems and fabric of buildings for the estimation of the time delay is
not generally available (Smith et al., 2009). Moreover, it is also
difficult to determine how many percentage of consumed energy
was rejected as waste heat because it depended on varying insu-
lation levels and heat exchange rates in different buildings (Sailor
and Lu, 2004). Therefore, this study assumed that all energy
consumed within buildings was fully and instantaneously emitted
into the environment as waste heat.

Building energy consumption includes space heating, cooling,
lighting, ventilation, and equipment use. The amount of energy
consumption for individual building can be varied, which depends
on its physical parameters, prototype, operation schedule, occupant
behaviors, and regional climate conditions. For example, space
heating and cooling accounted for about 50% of the building energy
consumption (LS. Department of Energy, 2011), but it can be much
higher during extreme weather conditions. Therefore, there is a
need for high resolution simulation of building energy consump-
tion, especially for large areas like Los Angeles County, which has
microclimates and heterogeneous land covers. In this case, the
bottom-up GIS modeling approach is more suitable than the top-
down inventory approach, which based on the simulation of indi-
vidual building by considering its attributes.

EnergyPlus, a well-known building energy simulation tool,
developed by the U.S. Department of Energy (DOE), was used to
simulate 365-day building energy consumption with hourly inter-
val in this study. This software has been extensively tested and
validated for the ANSI/ASHRAE standards and widely used by en-
gineers and scientists to model building energy consumption
(Huang and Gurney, 2016). Local climate datasets and building

Table 3
Energy released per person as function of hour of the day (W).

Time Period Time dependent energy release per hour
12—4:59 am. T5W

5-7:59am. 125 W

& am.—7:59 p.m. 175 W

& pm.—11:59 p.m. 125w




128

1278 Y. Zheng, Q. Weng [ Journal of Environmental Management 206 (2018) 12741286

prototypes (Table 1) were two required data sources as the input. Its
simulation models allowed the customization of occupancy be-
haviors by providing setting for attributes like daylighting
schedule, balanced point temperature, HVAC operation hours, and
the number of equipment, which directly determined the energy
demand of buildings. The output included hourly site energy con-
sumption by end-use and fuel type for a building prototype under a
given weather condition.

321 Local climate datasets and building prototypes

The hourly weather data files (Table 1) used in EnergyPlus was
retrieved from the third (and the latest) Typical Meteorological Year
(TMY3) collection. Each TMY3 files included hourly weather data
(temperature, solar radiation, precipitation, relative humidity, etc.)
in one year duration for a specific location, which is developed
based on 19912005 weather data or 19762005 weather data, if
the later existed (Huang and Gurney, 2016). Since Los Angeles
County covered a large area, the climate can be different due to
urban island effect and the influences from different topographic
and land uses. Hourly TMY3 data from 7 weather locations that
distributed throughout the entire County were used to simulate the
hourly building energy consumption.

Sixteen commercial building prototypes, developed by U.S. DOE,
were used for simulation. The DOE created these building pro-
totypes based on Commercial Buildings Energy Consumption Sur-
vey (CBECS) data by the U.S. Energy Information Administration
(EIA), which provided information on building characteristics,
including thermal properties, operation schedules, and three
different age categories (pre-1980, post-1980, and new-2004). The
age categories reflected differences in the technologies of building
insulation, envelope, heating, ventilation, and cooling (HVAC) sys-
tems, lighting, and equipment for each type of building, which led
to different abilities in energy saving under the same out-door
environment. Buildings with newer technology had more energy-
efficient equipment, better insulation to mitigate the impact of
non-optimal outside temperature, smaller energy intensity of
lighting, and more energy-efficient HVAC system (Deru et al., 2011;
Huang and Gurney, 2016).

Two prototypes of residential buildings, i.e., multi-families
low-rise apartment buildings and single-family detached hous-
es, were developed by DOE in 2009 based on building codes
specified in the International Energy Conservation Code (IECC)
and Residential Energy Consumption Survey (RECS). Each of these
prototypes was modified to represent three types of heating
systems (electric resistance, gas furnace, and heat pump),
resulting in six residential sub-prototypes residential houses
(Huang and Gurney, 2016).

Industry plants, which were ignored by many of the existing
studies, were considered as a type of building. However it cannot be
simulated using EnergyPlus because it was not included in the
building prototypes. Therefore, we used inventory approach to
disaggregate the industrial energy consumption data at coarse
scale to finer scale. The details were discussed in the following
sections.

322, Schedules of building and occupant behavior

This study designed separate profiles for workdays and week-
ends/holidays in order to obtain an accurate 365-day building
energy use simulation, which usually ignored by previous studies.
The differences in operation hours and occupancy status between
workdays and weekends/holidays can result in a difference of
energy use to certain extent. The DOE generated building pro-
totypes contained specific operation hours for each type of
building in workdays, weekends, and public holidays in Los
Angeles area based on the CBECS survey. Office buildings, school

buildings, outpatient service buildings were set as closed during
the weekend and public holidays, while buildings like quick ser-
vice restaurants, hospitals, and hotels were set as opening 7 days a
week, 24 h a day.

Residential buildings did not have routine operation hours as
commercial buildings, and their energy consumption status totally
depended on the occupancy behaviors. Therefore, during the
workdays, a population distribution based modeling method was
used. The hourly profile of population work at home, unemployed
population, and time leaving/returning home that used to calcu-
late human metabolism was applied to determine whether or not
a residential house was occupied. The occupancy number in res-
idential house in each census distract can be calculated by divide
the time-dependent population by the number of residential
house. If population number lower than house number, it can be
assumed that some houses were vacant during that particular
time period, and the energy consumption for vacant houses was
then set to zero. For occupied houses, lighting load was deter-
mined by time of the sun set, and time of the sun rise, which was
based on the assumption that lights turned on during sunset in
the evening, and turn off during the sleep time, which set to
12pm; and lights turned on again before sunrise in the moming,.
On weekends and public holidays, all residential buildings were
set as occupied at all times.

For commercial and residential buildings, heating and cooling
energy consumption was simulated depending on the compari-
son between indoor temperature and the balanced point tem-
perature at which no cooling or heating was required. If indoor
temperature was higher than the set up temperature, it can be
assumed that the cooling system was working to maintain the set
up temperature; if indoor temperature was lower than the
comfort temperature, the heating system assumed to be turn on.
The balanced point temperature was usually assumed to be
18.3 °C (65 °F) in previous studies (Wang and Chen, 2014). In this
study, we assigned 20 °C as the temperature that set up by the
occupants in thermostats, which was close to the balanced point
temperature.

The energy use in the industrial sector did not have a large
difference from that in the commercial and residential buildings
due to its relatively insensitivity to variations in weather and a
much more uniform diurnal and seasonal distribution (Sailor,
2011). It is fairly common that energy consumption of industrial
sector was assumed uniformly distributed among the 8760 h of the
year (Sailor and Lu, 2004; Sailor, 2011).

3.2.3. Initial annual building energy consumption simulation and
calibration

We categorized the 365-day building energy consumption
simulation into 8 different “seasonal and day type” profiles: (1)
spring workdays; (2) spring weekends/holidays; (3) summer
workdays; (4) summer weekendsfholidays; (5) fall workdays; (6)
fall weeckends/holidays: (7) winter workdays; and (8) winter
weekends/holidays. The annual building energy consumption from
commercial and residential sectors was calculated based on the
aggregation of energy consumed in each particular hour, day, and
season. First, the hourly building Energy Use Intensity (EUL),
defined as the hourly energy use per square meter, was simulated
using the EnergyPlus. For commercial buildings, there were 2688
different values of EUls, which resulted from the combination of 8
“seasonal and day type” profiles, 7 weather zones, 16 building
prototypes, and 3 age groups. Residential buildings exhibited 366
different values of EUIs, which resulted from the combination of 8
“seasonal and day type" profiles, 7 weather zones, and 6
prototypes.

The energy consumption for an individual building (BE) i within
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a particular hour j can be calculated by the following equation:
BEnour(i, j) = EUlij % Apuitding(iy * FNpuilding(i) (13)

where 'Abuildins(i] is the footprint area of building i, FNbuilding‘[i) is the
floor number, which was estimated based on building height. The
daily energy consumption of building i for day j was calculated as
follows:
24
BEday(is) = D_ BEhour(ij a4)
=1

The building energy consumption within a season k was
calculated as follows:

n 2
BEseason(k) = D BEworkday(ijk) + 2 _ BEnon workday(ij ) (15)
=1 j=1

where BEyor ijik) and BEngp ijkjare the EUI at a particular
hour i within the day j during the season k in workday and non-
workdays (weekends and holidays), respectively; t1 and t2 are
the number of workdays and non-workdays within season k,
respectively. The annual building energy consumption for sector |
was calculated as:

4
BEanan{!] = Z BEsensm(k} (16)
k=1

Although the GIS modeling approach can simulate building
energy consumption at much finer spatial (individual building
level) and temporal scales (hourly) when compared to the in-
ventory approach, there were still discrepancies between simula-
tion results and the actual energy consumption, which can be
caused by uncertainties between the simulation and the truth.
Therefore, annual energy consumption data from California Energy
Commission (CEC) (http://ecdms.energy.ca.gov/elecbycounty.aspx)
and LA Energy Atlas (http:/fwww.energyatlas.ucla.edu/) were used
as reference to calibrate the simulation model. The Energy Atlas
provides detailed historical annual energy consumption data from
all building energy sectors, including commercial, residential and
industrial sector at a finer scale of city neighborhood level.
Compared to previous studies that used the county, state, or census
division level energy consumption data to calibrate the simulation,
the use of neighborhood level reference data allowed us to address
the regional variation of energy consumption patterns in each
building sector.

The annual energy consumption of commercial buildings and
residential buildings in each neighborhood were calculated and
compared to the reference energy consumption data. In the next
step, the EUI of each type of commercial and residential building
was calibrated by using the ratio between simulated results and the
reference energy consumption data. The energy consumption data
for industrial sector in some neighborhoods were masked out,
because of many industrial consumers did not share their data to
the public. Therefore, we used the percentage of countywide con-
sumption to obtain the total volume of industrial energy con-
sumption in those neighborhoods, and applied the metrics of
median consumption per square meter and the total floor areas of
industrial plants in each neighborhood to curve the EUI of indus-
trial plant in each neighborhood.

3.24. Final building energy consumption simulation
After the calibration of EUI for each type of building, we adopted
a gridded algorithm (Smith et al., 2009; Zhou et al, 2012) to

quantify building energy consumption in LA County in 8760 indi-
vidual hour throughout the year. A 120-m resolution grid was
created in the shapefile format and its spatial extent was matched
with the Landsat imagery. The grid layer was overlaid with building
footprint layer and each grid cell contains 0, 1, or multiple fractions
of buildings. Building energy consumption in a grid cell can be
estimated using the following equation:

S EUIG) x AG) x FN()
BEgiagp = 5 (17)

where EUI(j), A(j), FN(j)are the hourly energy intensity index, floor
areas, and floor numbers of building prototype j, respectively. The
algorithm summed up hourly energy consumption from all the
building prototypes in the given grid cell and divided by the grid
area A2, which equals to 14400 square meters.

3.3, Traffic emission simulation

Hourly traffic emission within a particular day were simulated
based on normalized annual average daily traffic (AADT) data
which adjusted by seasonal scaling factor, weekday scaling factor,
and diurnal scaling factor. The 2010 AADT data, which calculated by
dividing 365 from the total volume of traffic of a road for a calendar
year, were collected as point shapefiles from California Traffic
Census Program in 808 traffic count stations. They were distributed
throughout major roads in the study area. The 120-m grid, AADT
traffic counts, and road shapefiles were overlaid together. The
hourly traffic count values from AADT were directly assigned to the
major road segments if they were located within the same grid cell
with AADT points. For grid cells not containing the AADT points, the
average values of traffic volume for all the points in the same
neighborhood were assigned. The traffic volume in the minor roads
was calculated by multiplying the traffic volume in major roads
with 0.1.

We also created profiles for 8 different types of days as we did
for building energy simulation. The temporal traffic variations for
each day type were calculated through applying the seasonal
scaling factors and the diurnal variation factors for the hourly traffic
volume calculated by AADT traffic counts. The seasonal scaling
factors and the diurnal variation factors were calculated using the
metric of hourly vehicle miles traveled (VMT), which was available
in Caltrans Performance Measurement System (PeMS) Database
established by California Department of Transportation (DOT). The
PeMS database contains historical hourly VMT data in each indi-
vidual day from 1993 to the present. We used the VMT data from
the year of 2010 to construct the diurnal vehicle volume profiles for
8 different types of days. The hourly vehicle volume factor was
simulated by averaging all the VMT values from the same time
during the days that in the same category.

The traffic emission in each grid square was calculated using the
formula similar as Smith et al, (2009), which is:

Qrr = 32(Nmai(t) x Lyi) x EF/A; (18)

where Qgy is the vehicle emission in W/m2, Ny is the normalized
traffic count number for vehicle type m on road x in grid square i, t
is the hour of the day, Ly is the length of all the roads x within the
grid square i, EF,, is the fuel consumption emission factor (J m™'),
which can be calculated as and Ai is the area of grid square (for each
grid, the area Ai can be calculated as 120 x 120 = 14400 m?). The
fuel consumption emission factor (W/m) was calculated using the
equation by Sailor and Lu (2004):
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EFy = NHC % ppey/FE(m ") (19)

where NHC is mean net heat of vehicle gasoline and diesel com-
bustion (J kg ), which is 45.85 k] g ! for petrol and 46 K] g ! for
diesel (Smith et al, 2009); pge is the mean density of gasoline
(0.75 kg I"") and diesel (0.832 kg 1”') (U.S. Energy Information
Administration, 2014; Chow et al., 2014); FE is mean fuel effi-
ciency of all vehicles (7.5 km 1! in 2010) (U.S. Department of
Transportation, 2011; Chow et al., 2014). Based on annually gaso-
line and diesel sold data from California State Board of Equalization
(http://www.boe.ca.gov/sptaxprog/spftrpts.htm), the ratio be-
tween number of gasoline vehicles and diesel vehicles in Los
Angeles County was set to 5.25:1, and mean fuel consumption
emission factor (EV) was estimated to be 4668 | m™".

4. Results
4.1. Temporal variations of anthropogenic heat flux

The diurnal variation of mean hourly Qr and its components in
spring workday, spring non-workday, summer workday, summer
non-workday, fall workday, fall non-workday, winter workday, and
winter non-workday in Los Angeles County are presented in Fig. 1.
In general, Qp and Q, contributed similar proportions to Qg but
differently in time, and Qy, contributed the least proportion to Qf
despite workdays or non-workdays. In all profiles, the workday
diurnal profiles of Qfexhibited a dual-peak shape with the morning
and evening peak, while the non-workday diurnal profiles of Q¢
exhibited parabola shapes with only the peak in the evening hours.
Because the traffic emissions reached their peak values not only in
the evening rush hours but also in the morning rush hours in
workdays. Peak values in the workdays were higher than thatin the
non-workdays, because many buildings were not in operation
hours during non-workdays. The lowest values of Qf were found at
4AMin workdays and 5AM in non-workdays.

Fig. 1 also shows the comparison of diurnal variation of Qf
among different seasons in (i) workdays and (j) non-workdays. The
diurnal variations of Q exhibited similar shapes but small differ-
ences in magnitude. Qr profiles in the summer possessed higher
values during the noon and evening time in workdays and non-
workdays than that of other seasons. The reason is that building
energy consumption was the highest during the summer noon and
evening hours (Fig. 1c and d) due to extra energy consumed for
cooling. It can also be observed that Q¢ values in the winter
mornings in workdays and non-workdays were higher than in
other seasons. This was caused by higher amount of building en-
ergy consumption (Fig. 1h and i) as extra energy were consumed for
heating to offset the larger difference between indoor and outdoor
temperatures in winter morning. It can also explain why winter was
the only season that detected the highest workday Qf value in the
morning peak, instead of the evening peak.

The diurnal variations of Qf in different land use types from &
types of days are shown in Fig. 1k through Fig. 1r. It can be found
that Qf in commercial areas (COM) were higher than that in resi-
dential (RES) and industrial (IND) areas from 8:00 h to 21:00 h,
which coincided with the fact that during the daytime population
flowed into the commercial areas. Compared to Q¢ in COM which
displayed a parabolic shape with the peak value in 17:00 h, Qfin RES
exhibited a dual-peak shape in workdays with one peak in the

morning and the other in the evening. That was because during the
working hours between morning and evening, many residential
houses were not occupied. Qrin IND discovered the lowest variation
in different times, regardless of workdays and non-workdays.

4.2, Anthropogenic heat fluxes in extremely hot summer days

Qf appeared to have the highest values in the summer workdays
in Los Angeles County, with its maximum value reaching 7.76 w/m?
(Fig. 1g). Since traffic emission and human metabolism did not have
obvious seasonal variations, the most significant driver of the
increased energy use in summer came from the building sector,
which required higher amount of cooling energy consumption. We
performed an analysis by a comparison between Qr in an extremely
hot summer workday and that in the averaged summer workday to
examine if there was an obvious increase in building energy de-
mand in the extremely hot day and to what extent the energy use
was increased.

We selected August 25th, 2015 as the extremely hot summer
workday for the comparison, as its daily high temperature reached
37 °C (98.6 °F) at 13:00 h. Temperature in that day also maintained
over 30 °C for 10 h from 10:00 h to 19:00 h. Fig. 2a presents the
comparison result between Qr in the extremely hot summer
workday (Aug. 25, 2005) and the average summer workdays, It can
be found that Qyin the extremely hot summer workday was obvi-
ously higher than that in the average summer workdays from
8:00 h to 23:00 h, with its maximum value reach 814 w/m2
Further, the percentage breakdown of all components contributing
to Qf from 8:00 h to 23:00 h is illustrated in Fig. 2b. The building
related energy use and traffic emissions were two dominant com-
ponents of anthropogenic heat in both average summer workdays
and the extremely hot workday. The building energy consumption
contributed slightly higher percentages of Qf (50.34%) in the
extremely hot summer workday than that in average summer
workdays (49.27%). It can also be discovered that for most of the
time during the day (9:00 h to 21:00 h) the increase of building
energy consumption due to the extremely hot weather was the
dominant driver to cause a higher Qs in the extremely hot summer
workday.

Fig. 2c shows that time series of ratio between anthropogenic
heat fluxes (blue solid), building emissions (red dash), traffic
emissions (green dash) in the extremely hot summer workday and
the average summer workdays. If heat fluxes in the extremely hot
summer workday were larger than those in the averaged summer
workdays, the ratio was larger than 1. Higher ratio indicated more
extra heat fluxes were produced in the extremely hot summer day.
It can be found that the major contributor of higher anthropogenic
heat fluxes in the extremely hot summer day varied with time
periods in a day. According to Fig. 2c, building emission was the
major contributor for majority of the day (from 9:00 h to 18:00 h
and from 20:00 h to 21:00 h), as its ratio was significantly higher
than that of the traffic emission and anthropogenic heat fluxes
during these time periods. The building ratio raised gradually from
8:00 h to 11:00 h, as the temperature difference between the
extremely hot summer day and average summer workdays
increased. This ratio remained high from 12:00 h to 16:00 h
because the temperature difference reached its maximum during
the daytime, and air condition systems consumed more energy to
offset the larger indoorfoutdoor temperature difference in the

Fig. 1. Diurnal variation of Qy, Q. Q.. and Q,,in Los Angeles, U5.A., based on the average value of from all (a) spring workdays, (b) spring non-workdays, (c) summer workdays, (d)

SUMMET oM (&) fall (f) fall non-

and (j) non rkd.

kdays, (g) winter

and (h) winter non-workdays; comparison of diurnal variation of Qy in different seasons in (i)
in Los Angeles, U.S.A; diurnal variation of Qf in commercial (COM), residential (RES), and industrial (IND) areas in Los Angeles, 1LSA., based on the

average value from all (k) spring workdays, (1) spring non-workdays, (m)
workdays, and (r) winter non-workdays,

(m) non hdays, (o) fall workdays, (p) fall non-workdays, (q) winter
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extremely hot summer day. During the daytime (8:00 h to 18:00 h),
traffic emission contributed less to the higher Qf in the extremely
hot summer day as the traffic ratio was overall lower than the
building ratio. However, at nighttime the traffic ratio increased
dramatically while building ratio remained high, which combined
to lead to the larger Qs increment in the extremely hot summer
workday. The reason that there was a significant larger traffic vol-
ume in the particular day we selected as the example of an
extremely hot summer workday must be further studied to deter-
mine. Possible factors included traffic congestion or nighttime
activities.

4.3. Anthropogenic heat fluxes in the urban core area

Although the daily maximum value of Qr estimated in Los
Angeles County during the extremely hot summer workday did not
exceed over the average summer workday by 10 w/m?, there was a
large within-county variation in Qf among different regions. Fig. 3
presents the spatial distribution of Qf estimated at 5pm during
the summer workdays in Los Angeles County, when Qf exhibited
the highest value compared to other time periods (Fig. 2). It can be
observed that Qy was spatially unevenly distributed, with high
values (larger than 100 w/m?) being located in some clusters, such
as the Downtown area, Korean Town, Beverly Hills, Hollywood,
West Los Angeles, Long Beach, and Santa Monica, which were
characterized as commercial and industrial zones. Moreover, high
Qr values can be found in major freeways, which was caused by
heavy traffic emissions during the evening rush hours. The mod-
erate Qr values (20—100 w/m?) were detected in residential zones
with high density of houses and population, while low Qf values
(less than 20 w/m?) were located in cities with small population
(Palmdale and Lancaster), low density residential zones, and minor
roads. The downtown area was found to have the largest mean Qf
throughout the year, compared to other neighborhoods, because
there were more densely distributed tall commercial buildings.
Fig. 3 (b) shows the spatial distribution of Q¢ in the downtown at
17:00 h during summer workdays. Spatial variation of Qg values can
be discovered as low values located in the southeast part of the
downtown; and the values increased dramatically towards north-
west. The reason was the most majority of tall commercial build-
ings were located in northwest part of the downtown. While the
low commercial buildings, historical office buildings, apartment
complexes, and warehouses were located in the southeast part,
contributing to a relatively lower Qr value. Some cells with high Q
values in this region were located in the freeway.

Fig. 4a toFig. 4h presents the diurnal variation of mean hourly Q¢
in spring workday, spring non-workday, summer workday, sum-
mer non-workday, fall workday, fall non-workday, winter workday,
and winter non-workday in the downtown area of Los Angeles. The
times series of diurnal variations of Qr exhibited a parabola shapes
with the maximum value appears in the afternoon, except for Qr in
the winter workdays, which displayed a dual-peak shape. It can be
concluded that Qy in the downtown was more significant in work-
days than that in non-workdays, and its maximum value can reach
100 w/m? (16:00 h in summer workdays). The patterns of diurnal
variation were quite consistent among different types of days,
which promoted us to conduct a polynomial fitting. All resultant
models appeared to generate a good fit with R? ranging from 0.8 to
049.

Fig. 4 shows a comparison of diurnal variation of Qr in the
Downtown Los Angeles among different seasons in (i) workdays
and (j) non-workdays. It can be found that during 9:00 h to 17:00 h,
Qrin summer workdays was higher than in other workdays (Fig. 4i),
while during 5:00 h to 9:00 h, Qf in winter weekends was the
highest. Building energy consumption was the most important

(a) weeees Qf in average summer workday
a9 = = Qfin extremely hot summer workday
£s o7
B z -_,...,_.4---"““'
= P
=5 .
] J
ot 4 7
o 3 i
g2 ™o
=1
0 T T T T T T T

Time (h)
(b) Human Traffic Building
) g 100 213 1.97
&0 8 ]
s ¥ 48.60 47.69
z =
] 7 0
SE5 w0
227
sE 4 4927 50.34
]
-« E o e [
g Average summer Extremely hot
day summer day
(C) === Building emission ratio
1.4 === Traffic emission ratio

— Anthropogenic heat ratio
/
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Time (h)

Fig. 2. Comparison L Qrin an Iy hot kday (Aug. 25, 2005)
and the average summer workdays (a); percentage breakdown of the individual
components contributing to Qs for average summer workdays and the extremely hot
summer day from 8:00 h to 23:00 h (August 25, 2005) (b); time series of ratio between
anthropogenic heat fluxes, buildi issi traffic in the Jy hot
sumimer workday and the average summer workdays (c).

factor that contributed to Qf (Fig. 5). Fig. 6 shows that building
energy consumption and traffic emission from 9:00 h to 17:00 h
during workdays and 5:00 h to 9:00 h during non-workdays.
Building energy consumption can be identified as the dominant
factor that contributed to the higher Qg values in summer workdays
and winter non-workdays, as the traffic emissions from different
seasons during these time periods were similar.

5. Discussion

This section discussed the significance of the proposed work
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Fig. 3. Spatial distribution of Qr in (a) Los Angeles County and (b) Downtown Los
Angeles.

and a comparison between it and previously published work
based on the results and the applicability of the methodology.
From the existing studies, it can be found that the difference in Qr
profile in cities of different climates is obvious. For example,
Chicago, San Francisco, and Philadelphia had the largest winter-
time anthropogenic heating with values ranging 70 to 75 w/m?

(averaged over the entire city), but during the summer they had
peak values of anthropogenic heating in the range 30—60 w/m?
(Sailor and Lu, 2004). The city of Seoul, South Korea, detected the
largest heat emission in winter, ranging from about 35 - 75 w/m?,
while in summer from 5 to 10 w/m?. However, in subtropical or
tropical cities, Qf in the warmer months is found equal to or
larger than Qf in the cooler months. Quah and Roth (2012) sug-
gested that Q in tropical city like Singapore can be substantially
higher in summer and remain high throughout the year owing to
strong demands for air-conditioning. For Los Angeles, which has a
Subtropical-Mediterranean climate (Koppen climate classifica-
tion), no significant difference can be found when compared the
summer Qf profile with that of the winter in Sailor and Lu (2004)
because of the relatively mild weather compared to the tropical
or mid-latitude cities. Compared to the existing studies, the
advantage of our approach is the design of separate profiles for
workdays and weekends. In this way, a higher value of Qf in the
winter mornings and the summer evenings in workdays can be
identified. These contrasts will be less significant if workday and
weekend Qf profiles were not separated from each other.

In addition, a large within-county difference in Qf was
discovered among different regions and land use types, which
agree with the results from many previous studies (Chapman
et al,, 2016; Chow et al., 2014; Hamilton et al, 2009; Ichinose
et al,, 1999; Quah and Roth, 2012; Smith et al., 2009). The Down-
town Los Angeles was found to have the largest mean Qf
throughout the year, among all the neighborhoods. Building en-
ergy consumption was identified as the dominant contributor to
the overall Qs in the downtown area. When compared with pre-
vious studies (Ichinose et al., 1999; Nie et al., 2014; Quah and Roth,
2012; Wong et al,, 2015) which estimated Q¢ in the cities or regions
with higher population density (Tokyo, Hong Kong, Singapore),
traffic emissions was found to account for a higher percentage of
Qf in Los Angeles County, while human metabolism contributed
less.

The proposed approach has a higher degree of applicability for
Qrestimation in the large areas compared with previous studies, as
all the data used were available to the public. Because compared to
the existing studies in recent years (Chow et al., 2014; Nie et al,,
2014; Park et al., 2016), which relied on data that were only avail-
able for local regions, this research was not restricted to small study
areas as all data used were available for the entire Los Angeles
County. Due to this reason, it can be readily applied to similar
studies in different study areas with different climates. Compared
to the city of Los Angeles, we may observe a larger contrast of Qf
among different seasons in mid-latitude cities with colder winter
and tropical cities with hotter summer, because buildings typically
consume more energy during the extreme weather conditions,
which was proved in this study. Qf in the mid-latitude cities should
have its peak value during winter mornings when the offset be-
tween the indoor and outdoor temperature reaches its maximum
value, especially in workdays, because more buildings would be in
operation than in weekends. On the other hand, cities with similar
climate as Los Angeles may not have the similar Q profile, because
other contributors, such as social-economic factors, traffic emission
and human metabolism, and building thermal envelope all impact
the characteristics of Qr. Moreover, it is the first anthropogenic heat
study that designed to separate profiles for workdays and week-
ends/holidays in different seasons in order to obtain an accurate
365-day building energy use simulation, which explored its appli-
cation on cross-examination of Qf by using GIS-based modeling
approach and the energy balance residual approach from a series of
time with fine scales.
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6. Conclusions

This study provided a hybrid approach to Qf modeling, which
combined the inventory and GIS methods to create a 365-day
hourly Qs profile at 120-m spatial resolution in Los Angeles
County, California, USA, based on data available to the public. A
high spatial and temporal Qs profile that can be readily incor-
porated into urban energy balance and UHI models has been
developed, which provided valuable information for city gov-
ernment agencies, energy sector, and the general public. The
main findings from this study are the magnitudes and temporal
patterns of Qy in Los Angeles County which varied in workdays
and non-workdays, seasons, and land use types. Moreover, Qs in

and (h) winter non-workdays; comparison of diurnal variation of Qg in the Downtown Los Angeles among

the extremely hot summer workday was found obviously higher
than that in the average summer workdays from 8:00 h to
23:00 h. The increase of building energy consumption due to
higher demands for space cooling to offset the extremely hot
weather was the dominant driver that caused the higher Qyin the
extremely hot summer workday. In addition, a large within-
county difference in Qf was discovered among different regions.
The Downtown Los Angeles was found to have the largest mean
Qr throughout the year, among all the neighborhoods. Building
energy consumption was identified as the dominant contributor
to the overall Qs in the downtown area. When compared with
previous studies (Ichinose et al., 1999; Nie et al., 2014; Quah and
Roth, 2012; Wong et al., 2015) which estimated Qr in the cities or
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regions with higher population density (Tokyo, Hong Kong,
Singapore), traffic emissions was found to account for a higher
percentage of Qf in Los Angeles County, while human metabolism
contributed less.

The major innovation of this study is that it developed a hybrid
approach which integrated the inventory and GIS modeling ap-
proaches. The GIS modeling approach can create a time-dependent
Q¢ profile in high spatial-temporal resolutions with a higher accu-
racy, and the inventory approach can validate and calibrate the
results estimated from the GIS modeling approach. This integration
allowed for assessing the discrepancies between simulated energy
use and the actual energy consumption. Compared to previous
studies that used county, state, or census levels for calibrating the
simulation result, the use of neighborhood level reference data
enabled to address the regional variation of energy consumption
patterns by building.

Qverall, this study proposed an approach to estimate Qy at high
spatial- and temporal-resolution for a large metropolitan area of
diverse geographic settings. However, the data availability is still a
major limitation in this study. First of all building energy con-
sumption simulation would be more accurate if cooling and heating
system for each building can become available in residential
building polygon or county assessor parcel. The traffic emission
simulation would be more meaningful if seasonal variation of
emission factor from several types of vehicles can be included, as
during cold or hot seasons, vehicles tended to consume more fuels
when air condition systems were working.

ﬁ
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Climate change affects the demands for heating and cooling in buildings. This study proposed a GIS-
based approach to combine climate modeling, building energy simulation, and inventory of building
characteristics to quantify climate change’s effect on building energy demand in Los Angeles, California.
The impact was assessed by comparing building energy demands under current and future climate
conditions through two metrics: relative change (RC) and absolute difference (AD), in annual, monthly,
and diurnal scales under A1F1 and A2 emission scenarios. A spatial analysis was performed to assess
neighborhoods vulnerable to climate change. Results suggest that most building types showed an

Ke ras: . : . -

Bgl‘;?m apparent increase of energy demands under both scenarios. The increase of cooling energy demand
Energy demand resulted in great changes in RC and AD. Larger changes were observed at finer time scales. The energy
Climate change demand for buildings increased from April to October, but decreased from November to March. The

largest positive AD of total energy for all building types occurred in August, ranging 1.8—30.9 M]/sqm, but
the characteristics of diurnal AD varied with building types. Areas with dense tall commercial buildings
would foresee the largest increase in energy demand. Our approach can foresee the sensitivity of

High resolution modeling
Urban sustainability
Los Angeles

building energy demands at different spatio-temporal scales.

@ 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Energy consumption in commercial and residential buildings
accounts for 41% of U.S, primary energy consumption in 2010, and
about 50% of the building energy consumption is for space heating
and cooling [1,2]. Climate change will affect the energy system in a
number of ways, one of which is through changes in demands for
heating and cooling in buildings [3-5]. Tropical, sub-tropical, and
some mid-latitude cities will expect different levels of increase in
annual building energy usage, as the increase of cooling energy
consumption cannot be offset by the decrease of heating energy
consumption. The increase of annual energy usage in these cities
will cause more carbon emissions, as coal and natural gas are still
the major resources to produce electricity that used for cooling in
buildings. Since buildings account for the major parts of a city's
energy consumption, it is vital to assess this sector fully to develop
measures and methods towards urban sustainability [6,7],

* Corresponding author.
E-mail address: qweng@indstate.edu (Q, Weng).

hitps://doi.org/10.1016/Lenergy.2019.04.052
0360-5442 /& 2019 Elsevier Ltd. All rights reserved.

especially under the context of global warming.

In developing urban sustainability strategies, policy-makers
need to consider a more sustainable way of building energy sup-
ply and consumption. These may include the efforts to transfer
building energy sources from traditional fossil fuels to renewable
energy sources [8—10], increasing the efficiency of energy transport
([11,43], and advancing the energy saving ability in new and
existing buildings | 12 14]. For example, some studies analyzed the
potential to enhance the solar energy utilization by design photo-
voltaic (PV) roofs [9], combine PV panel with green roofs [8], and
analysis 3D solar potential for individual building. Other studies
discussed the way to mitigate the increasing energy demand under
climate change. Sathaye et al. [11] studied the climate change im-
pacts on California’s energy infrastructure and transmission line
carrying capacity. Herrera-Gomez et al. [ 13], conducted a case study
in Mediterranean climate to discuss the role of green roofs in
climate change mitigation. Tang and Qu [14] addresses the similar
research question, but in cold climates. Dimond and Webb [12]
compared the green roof with solar panel system for sustainable
roof selection and suggested the decision should be made by fitting
the type and scale of project goals. The Previous researchers have
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applied different approaches to study the impact of climate change
on building energy demand, given that this impact can be affected
by many environmental and social-economic factors, such as cur-
rent local climate conditions, function of the city, economic status,
population density, and building thermal characteristics. Ap-
proaches used in the existing studies can be grouped into two
categories: the top-down and bottom-up strategies. The top down
strategy focuses on the broader spatial (global, national, and state
levels) and temporal scales (annual), which compare the climate
change’s impact on heating and cooling energy across different
states and countries. There are two types of widely used ap-
proaches in the top-down strategy: observation-based regression/
prediction [15,43,4,11]; and globalfregional energy modeling
[16—18]. The observation-based approach uses the historical rela-
tionship of energy consumption and climate data to predict future
energy consumption under a changing climate. Although this
approach makes prediction based on the reference data, resolution
of the output is determined by the resolution of input historical
data and the accuracy of the estimation depends on the quality of
the selected regression model [1]. Moreover, this approach ignores
the effect of the changing building technologies, which may play an
important role in energy consumption change. The global/regional
energy modeling uses a numerical model to estimate the nation/
state level building energy consumption by combining building
technologies, policy, economy, population growth, and climate. The
impact of global warming on building energy consumption is based
on simulation of different IPCC scenarios. For example, Zhou et al.
[17] presented a detailed building energy model with U.S. state-
level representation, nested in an integrated assessment frame-
work of the Global Change Assessment Model (GCAM). They
revealed the spatially heterogeneity of global warming' impact on
heating and cooling energy and fuels uses in building sector across
50 states in the United States.

The bottom-up strategy, on the other hand, focuses on finer
spatial (district, neighborhood, and individual building) and tem-
poral (hourly) scales [1,3,19—26]. This strategy typically simulates
the future energy demands for individual buildings based on the
detailed information in building or building prototype and the
projected future climate. The simulated energy demands are then
compared with the current energy demands to quantify the dif-
ferences. Vidrih and Medved [25] simulated the indoor climate and
energy consumption for heating and cooling of four buildings with
different cooling techniques to quantify the effect of climate change
on energy demands of buildings. They concluded that it is crucial to
include free-cooling techniques in the planning process of the
buildings, as they are more efficient in easing the overheating
problem and reduce the cooling energy demand. Berger et al. [20]
calculated and compared heating and cooling demands from nine
selected office buildings under current and future conditions in
Vienna, Australia. They discovered distinct differences in energy
performance of buildings from different periods of construction,
which adopted various building technologies. Andri et al. [19]
compared the energy simulation results from a district of buildings
in Lisbon, Portugal, from 2010 to 2050, and discovered heat de-
mand density could decrease in the range of 22.3—52.4% in 2050.
Huang and Gurney [1] used the building prototypes developed by
U.S. Department of Energy (DOE), which included 18 types and 3
age groups, and the weather data from different climate zones to
assess the variations of climate change’s impact on different spatial
and temporal scales. Their results suggested that the variation of
impact within climate zones can be larger than the variation be-
tween climate zones, and that the potential bias may be substantial
when estimating climate-zone scale changes with a small number
of representative buildings. Shen [24] downscaled the future
climate data into hourly scale using a “morphing” method to

predict future energy use for residential buildings in the United
States.

In order to develop a sustainable city under the context of
climate change, policy makers may need information at different
spatial scales. Existing studies either combined climate change
modeling with the broad scales (annual and state level) inventory
data of buildings and social-economic activities or used represen-
tative building prototypes to assess the climate change’s effect in
different climate zones. However, cities, especially megacities, are
mixed with different types of buildings, which were constructed in
different periods of time, and with different technologies, func-
tions, and schedules. Therefore, to the city government the sus-
tainable development goals can be different even among
neighborhoods. In developing “green and sustainable” commu-
nities, they would need disaggregated data to understand the
current and future energy demands at local scales and choose
appropriate measures that are targeted to specific locations. Clearly,
the approaches in the existing studies cannot help them to achieve
these goals. In other words, an approach essential to the city gov-
ernment which assesses the impact of climate change on building
energy demand at fine scales (sub-city level) are lacking.

The GIS modeling technique has strong ability to capture,
manipulate, analyze, and manage large amount of inventory data
with geographic attributes at a high spatial and temporal resolu-
tion. This study proposed a GIS-based approach to combine climate
change modeling, building energy simulation, and fine-scale (in-
dividual building level) inventory data of building characteristics to
quantify the climate change's effect on building energy demand,
which is the projected need of energy services, at the sub-city scale
in Los Angeles, California, United States. Specific research questions
to be addressed in this research are: 1) What changes in annual
building energy demand of buildings would occur by 2050 by our
prediction? 2) Do the trends of change remain the same when they
are examined at the finer spatial and temporal scales? And 3)
Which areas in the city are more vulnerable to climate change and
what are the driving forces? It is expected through this research a
useful approach can be developed for the city government to work
towards a sustainable city through tailoring adaption and mitiga-
tion strategies for buildings in different districts.

2. Methodology
2.1. Study area

This study selected Los Angeles County, California, USA, as the
study area. The county has an estimated population of 10,163,507 in
July 2017 according to the U.S. Census, making it the most populous
county in the nation. Los Angeles County occupies three climate
zones according to the Koppen climate classification. The coastal
area has “Warm Summer Mediterranean” (Csb) climate with dry
and warm summers and moist winters. Its inland area, on the other
hand, has the “Hot Summer Mediterranean” (Csa) climate with
hotter summer compared to the coastal area. Its northern part has
the “Cold Semi-Arid” (Bsk) climate, which has warm to hot sum-
mers and cold winters. The micro-climate, caused by topography,
makes the county special as there is a large variation in tempera-
ture between nearby areas.

The 2010 inventory data provided by Los Angeles Energy Atlas
shows that the building sector emitted the largest amount of
greenhouse gases, which accounted for 39.2% of the annual total
greenhouse gases emission (Table 1). Therefore, coping with the
energy consumption in buildings under the context of climate
change is important for developing sustainable urban environment
in the Los Angeles County.
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Table 1

G h gas (GHG) in Los Angeles County by sector.
Sector Emissions (MT C02e) Percent of Inventory
Building Energy 38,900,762 392%
On-Road Transportation 33,226317 335%
Stationary Sources 19,516,169 19.7%
Solid Waste 4,327,123 4.4%
‘Water Conveyance 1,117,283 1.1%
Ports 1,059,131 11%
Off-Road Transportation 515,044 0.5%
‘Wastewater Treatment 443,832 0.4%
Agriculture 26,105 0.0%
Los Angeles Worlds Airport 2760 0.0%
Total 99,134,526

Source: hitp:ffwww.energyatlas.uclaedufstrategies/

2.2, Simulation model

EnergyPlus, a well-known building energy simulation tool
developed by the LS. Department of Energy (DOE), was used to
simulate building energy consumption. It has been tested and
validated for the ANSIJASHRAE standards, and is widely used by
engineers and scientists to model building energy consumption
[27]. It requires hourly weather data and building characteristics
associated with specific building prototypes to derive hourly en-
ergy simulations.

In order to test the climate change's impact on building energy
demand, this study simulated the building energy consumption for
all buildings using both the current and the future hourly weather
data. The current hourly weather data used in EnergyPlus was
retrieved from the third (and the latest) Typical Meteorological Year
(TMY3) collection. Each TMY3 file contained 8760 hourly record of
climate for the specific location, which was developed based on the
1991-2005 weather data. Los Angeles County consisted of seven
weather zones in the TMY3 dataset (Fig. 1), including: Burbank-
Glendale, Los Angeles International airport, Long Beach, Van
Nuys, Lancaster, Palmdale, and Point Mugu. Each of them contained
different hourly weather data collected from 1991 to 2005. Fig. 2
shows the current average monthly temperature (° C) in seven
TMY3 locations in Los Angeles County. Long Beach, Los Angeles
International Airport, and Point Mugu weather zones had a

relatively smaller range of monthly temperature as they are located
in the coastal areas and have the “Warm Summer Mediterranean”
(Csb) climate. Lancaster and Palmdale weather zones had the
highest temperature during summer months but lowest tempera-
ture during the winter months due to their “Cold Semi-Arid”
climate, The Burbank-Glendale and Van Nuys weather zones, with
the “Hot Summer Mediterranean” (Csa) climate, had similar tem-
perature during the wintertime as the coastal areas but higher
temperature during the summer months.

The future hourly weather data was projected by using the
HadCM3. Among all the future weather data construction models,
the HadCM3 has a relatively smaller grid spacing, which means the
simulation resolution is higher than other models and results in
higher precision [24]. This model coupled the atmospheric model
HadAMS3, with a horizontal resolution of 2.5° latitude by 3.75°
longitude, and oceanic model HadOM3 with horizontal resolution
of 1.25° by 1.25°. It provides monthly change in dry-bulb temper-
ature, diurnal temperature variation, relative humidity, wind speed,
and solar radiation, which have a major impact on the building
heating and cooling load.

There are various carbon dioxide emission scenarios projected
by IPCC http://www.ipcc-data.org/sres/hadcm3_download.html,
which are associated with the likely happened global development
directions by the year of 2100, including technologies, climate and
energy policies, and social-economic developments. Among all
these scenarios, three of them are widely used by the current
literature: Al (high emission), A2 (medium emission), and B1 (low
emission). The Al scenario describes a future world of very rapid
economic growth, global population that peaks in mid-century and
then declines, and the rapid introduction of new and more efficient
technologies. The A1l scenario family can be further developed into
three groups that describe alternative directions of technological
change in the energy system, and is distinguished by their tech-
nological emphasis: fossil intensive (A1F1), non-fossil energy
sources (A1T), and a balance across all sources (A1B). The A2
(medium emission) scenario family describes a very heterogeneous
world. Fertility patterns across regions converge very slowly, which
results in continuously increasing global population. Economic
development is primarily regionally oriented and per capita eco-
nomic growth and technological change are more fragmented and

S R AN P S O T T |
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Fig. 1. TMY3 weather zones in Los Angeles County.
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Fig. 2. Current monthly temperature (*C) in seven TMY3 locations in Los Angeles County.

slower than in other scenarios. The Bl (low emission) scenario
family describes a convergent world with the same global popu-
lation that peaks in mid-century and declines thereafter, as in A1,
but with rapid changes in economic structures toward a service and
information economy, with reductions in material intensity, and
the introduction of clean and resource-efficient technologies.

This study chose A1F1 (high emission) and A2 {medium emis-
sion) for simulation. The reason is A2 scenario fits the current en-
ergy policies and emphasized the regional differences, which is
suitable for the County/City level examination. The A1F1 scenario,
on the other hand, represented the worst case and it can be used for
the hazard assessment purpose. The low emission scenario (B1)
was not chosen because it is assuming the world develops equally
with the evenly distribution population, rapid economic structure
change, and adoption of clean resource-efficient technologies,
which is over optimistic according to the current trend and unlikely
to happen in the near future. In order to create the hourly data for
the year of 2050, Climate Change World Weather File Generator
(CCWorldWeatherGen) tool developed by Sustainable Energy
Research Group (University of Southampton) was used. This tool
used hourly historical weather data (TMY2 and TMY3) as a primary
input and applied the HadCM3 model to construct the future hourly
data. This tool has been widely adopted by a large number of re-
searches [19,24,28,29,44 30]; in recent years. Since the HadCM3
model only provides monthly weather variation data, which is
insufficient for hourly energy simulation, the CCWorldWeatherGen
tool applies a morphing method to down-scale the monthly
weather data to hourly weather data. The algorithm to calculate
future hourly weather data uses the following equation:

X =Xo+ Axm + am(X, ~ (Xg)m)

where x0 is hourly weather data from the existing historical data
(TMY2 or TMY3),4xm the predicted monthly mean change ob-
tained from HadCM3, am is the stretching factor calculated based
on the changes of monthly mean value of a specific variable from
future weather files relative to the existing reference weather file,
and (x0)m is the monthly mean of current weather data. Since the
CCWorldWeatherGen tool can only simulate the future weather

data under A2 carbon emission scenario, a pattern scaling method,
which developed by the Finnish Environment Institute [31], was
adopted to calculate the future weather data under A1F1 carbon
emission scenario. This pattern scaling method can provide the
magnitude for the future temperature changes under different IPCC
scenarios based on a series of factors, which also varies with loca-
tions in the world. The idea in this technique is that the
geographical pattern of the response is assumed independent of
the forcing, while the amplitude of the response at each location is
linearly proportional to the global mean change in the weather data
[31]. For example, after the temperature response to forcing sce-
nario A2 has been calculated by HadCM3 model, the response to
scenario A1F1 can be calculated as follows:

ATair1s = (Ararr /ATaz)ATaz g

Where ( ATa1r1//ATaz) is the ratio between global mean change
in air temperature under A1F1 and A2 scenarios. ATazy is the
monthly regional change of air temperature under A2 scenario,
which calculated by HadCM3 model. After the monthly weather
data change under A1F1 scenario was calculated, the morphing
method was applied again to down-scale them into hourly weather
data. Fig. 3 presents the result of annual average hourly air tem-
perature in 2050 in Los Angeles County under A1F1 and A2 sce-
narios. The values of average temperature were expected to rise by
2.7°C and 2°C at the mid-century compared to that of current
temperature (1991-2005) under the A1F1 and A2 scenarios,
respectively.

2.3. Building prototypes

Sixteen commercial building prototypes, developed by US. DOE,
were used for the simulation. The DOE created these building
prototypes based on Commercial Buildings Energy Consumption
Survey (CBECS) data by the U.S. Energy Information Administration
(EIA), and provided information on building characteristics and
three age categories: pre-1980, post-1980, and new-2004. The age
categories reflected differences in the technologies of building
insulation, envelope, heating, ventilation, and cooling (HVAC)



142

Y. Zheng, Q, Weng | Energy 176 (2019) 641655 645
z —a— Current
a
&
E —e—A2 2050
5
&
o AlF1 2050
=
E
< 34 5678 910111213141516171819202122 23

Hour

Fig. 3. Current and future hourly temperature (° C) in Los Angeles County in 2050 under A1F1 and A2 scenarios.

systems, lighting, and equipment for each type of building, which
led to different abilities in energy consumption under the same
outdoor environment. Buildings with newer technologies had more
energy efficient equipment, better insulation to mitigate the impact
of non-optimal outside temperature, smaller energy intensity of
lighting, and more energy-efficient HVAC system [1,32,33] Two
prototypes of residential buildings, ie., multi-family low-rise
apartment buildings and single-family detached houses, were
developed by DOE in 2009 based on building codes specified in the
International Energy Conservation Code (IECC) and Residential
Energy Consumption Survey (RECS). The Hourly Building Energy
Use Intensity (EUI), which is the energy used per unit floor area —
was simulated using the EnergyPlus taken building prototypes and
TMY3 hourly local climate data in Los Angeles County as inputs.

In order to simulate the 365 day hourly energy use for individual
building in Los Angeles County, a building energy modeling method
was used. First, datasets included Los Angeles Countywide building
outlines and Los Angeles County Parcel shapefiles were acquired.
Building outlines were captured from stereo imagery as part of the
LARIAC4 (2014) imagery acquisition. They provided information on
building height, area, types, and year of construction. The Los
Angeles County parcel data contained information on land use
types, which were collected from Los Angeles County Enterprise
GIS website. Second, the building shapefile and Los Angeles County
parcel data were overlaid to define the typology for each building,
which determined by matching with the closet prototype in CBECS
or RECS based on building types, land use types, and ages.

The energy consumption for buildings were estimated based on
a modeling method adopted in Zheng and Weng [33]; which
combined building floor area and the number of floors in each
building from GIS-based building outlines, building prototype
extracted from Los Angeles County Assessor's parcel data, and en-
ergy use intensity for each building prototype simulated in Ener-
gyPlus. The energy consumption for an individual building (BE) i
within a particular hour h can be calculated by the following
equation:

BEnour(i, ny = EUli p % Apuitaing(iy * FNbuitding iy

where Apgilding(i) is the footprint area of building i, FNpyildingi) is the
floor number, which was estimated based on building height. The
daily energy consumption of building i for day d was calculated as
follows:

24
BEgayiid) = ¥ _ BEnour(in)
b=

The building energy consumption within a season s was calcu-
lated as follows:

4 2
BE, = Z BE\work {hds) + ZBEmm workday(h,d s)
d=1 d=1

where BEyorkday(ids) and BE, kday(ids) are the EUI at a particular
hour h within the day d during the season s in workday and non-
workdays (weekends and holidays), respectively; t1 and t2 are
the number of workdays and non-workdays within season s,
respectively. The annual building energy consumption for sector a
was calculated as:

a
BEunmaJ(a} = ZBEsenson(s)
k=1

Energy use at the broader spatial scales can also be estimated at
a given time period (hourly, daily, seasonally, and annually) by
aggregating the energy use from individual building within the
boundaries of neighborhood, city, and county GIS shapefile layers.
In this study, we assumed that the building stock structure in Los
Angeles County remained unchanged throughout the simulation
period. In this study, we assumed that the building stock structure
in Los Angeles County remained unchanged throughout the simu-
lation period.

2.4, Calibration to reference data

Although the simulated building energy consumption contained
the hourly energy usage for individual building, discrepancies
existed between the simulated results and the actual energy con-
sumption. The discrepancies between the EnergyPlus model output
and the actual energy consumption can be caused by many factors.
First, the simulation model used in EnergyPlus cannot account for
all the factors that determined actual building energy consumption,
such as the occupancy status and behaviors, Second, the simulated
results only represented the end-use energy consumption, which
ignored the energy loss during transport and production. Finally,
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the building prototypes were developed based on the most com-
mon building technologies/characteristics in the survey data in Los
Angeles County, which may not represent all the buildings in re-
ality. Therefore, the calibration was necessary and the method used
by Zheng and Weng [33]; was adopted in this research to calibrate
the simulated current building energy consumption. The refer-
enced data were obtained from California Energy Commission [34]
(http://ecdms.energy.ca.gov/elecbycounty.aspx) and LA Energy
Atlas [35] (htip://www.energyatlas.uclaeduf). The Energy Atlas
provided detailed historical annual energy consumption data from
all building energy sectors, including commercial, residential and
industrial sector at the neighborhood level. The simulated energy
consumption from all buildings within each neighborhood and
each sector were aggregated to compare with the corresponding
sector in each neighborhood in the referenced data. Compared to
the existing study that calibrated building energy consumption at a
coarser scale, such as census division [1], the neighborhood level
reference data in our study allowed us to address the regional
variation of energy consumption patterns in both commercial and
residential sectors, which was essential for the purpose of a local-
scale study. Moreover, it can overcome the limitation on the
spatial resolution, which was caused by the spatial resolution of
weather data (TMY3 data). Fig. 4 presents the calibrated annual
building energy consumption intensity for 16 types of commercial
buildings in Los Angeles County, which was the simulation result
based on the historical TMY3 data (1991-2005). The two types of
restaurants (full service and quick service) consumed the largest
amount of energy per square meter in the entire year. The ratio
between the before- and after-calibrated building energy con-
sumption results was computed to calibrate the simulated future
building energy consumption under the two emission scenarios
(A1F1 and A2). After the calibration, potential bias and uncertainty
in the simulated results can be corrected at the scale of neighbor-
hood while the differences among individual sectors and buildings
within the neighborhood at a given time period can still be re-
flected, which is essential for city government to work towards a
sustainable city through tailoring adaption and mitigation strate-
gies at the regional level.

3. Results

The impact of climate change on buildings can be influenced by
multiple factors. The analysis of each factor was given for seven
TMY weather zones, three building technologies, eighteen building
prototypes, and two IPCC carbon dioxide emission scenarios. This
section analyzes the climate impact in three different temporal
scales (annual, monthly, and hourly) and assesses changes in the
spatial pattern of the building energy demand across the entire Los
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Angeles County using the metric of Relative Change (RC) and Ab-
solute Difference (AD). The RC can be calculated by the following
formula:

RC = (Ef — Ep)/Ep*100%

It shows the difference in energy consumption between the
calibrated current energy consumption (Ep) and projected future
energy consumption (Ef). The AD represents the difference in en-
ergy consumption intensity, which can be calculated as follows:

AD = (Ef — Ep)/FA

where FA is the building floor area, which is the product of building
floor number and area.

3.1. Impact of climate change on building energy demand at
different temporal scales

3.1.1. Variation at annual scale

Variation across building types, ages, and weather zones at
annual scale was first analyzed. Tables 2 and 3 show the annual
average building energy demand, as measured by RC and AD, be-
tween 2050 and the present time (1991-2005) in Los Angeles
County for the commercial and residential buildings. The majority
of building types showed an apparent increase in energy demand
under both emission scenarios, and the energy demand increase
was higher with the high emission scenario. There existed a large
variation regarding to energy consumption change across different
types of buildings. For example, AD value ranged from —28.7 M]/
sgm {warehouse) to 682 MJ/sgm (Outpatient), and the RC value
ranged from —11.8% (warehouse) to 7.9% (medium office) under the
A1F1 scenario. Due to the higher energy consumption intensity
under current climate, the majority of commercial buildings
showed higher AD than two types of residential houses. Besides of
the Outpatient buildings, all types of hotel, office, and school
buildings presented higher AD than the rest of building categories,
because of the increases in their annual cooling energy consump-
tions are much larger than the decreases in their heating energy
consumptions. Although the two types of residential houses
showed less AD increases in total energy, their RC increases were

Table 2

Relative change (%) and absolute difference (MJ/Sqm) in average annual building
energy demand between 2050 and the present time (1991—2005) in Los Angeles
County under ATF1 emission scenario.

Building Type Total Cooling Heating
A RC AD AD
Commercial
Full Restaurant 1.3 017 166.8 169.2
Hospital 14 1.0% 44.6 —38
Large Hotel 51.5 35% 741 —306
Large Office 24.4 4.8% 29.5 —128
Mid-rise Apartment 3045 4.5% 49.8 2515
Medium Office 469 79% 55 123
Outpatient G8.2 4.0% 102.9 -363
Primary School 315 483 51.5 246
Quick Restaurant 183 0.3% 151 —1429
Secondary School 367 6.2% 68 —389
Small Hotel 40.7 525 45.8 -9.2
small Office 31 497 43.3 138
Stand-alone Retail 6.8 1.0% 54.6 —47.5
Strip Mall 4.1 04% 57.7 —532
Supermarket 181 0.9% 34.7 114.1
‘Warehouse —287 -11.8% 59 —341
Residential: Multiple Family 7.2 41% 10.9 —58
Residential: Single Family 28 2.3% 104 -95
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Table 3

Relative change (%) and absolute difference (M]{Sqm) in average annual building
energy demand between 2050 and the present time (1991—2005) in Los Angeles
County under A2 emission scenario.

Building Type Total Cooling Heating
AC RC AC AC
Commercial
Full Restaurant —204 —0.4% 119.7 —1374
Hospital 86 0.5% 312 —293
Large Hotel 344 22% 534 —249
Large Office 16.7 ERES 216 —10.5
Mid-rise Apartment 20,75 308 36.05 193
Medium Office 329 5.5% 409 -93
Outpatient 531 3% 758 —253
Primary School 204 3% 375 —20
Quick Restaurant 6.9 0.0% 1076 1164
Secondary School 217 3.7% 488 —-31.6
Small Hotel 285 3.5% 33 —74
Small Office 207 34% 314 1.2
Stand-alone Retail —0.1 0.1% 40.7 —385
Strip Mall —25 —0.2% 428 —43.1
Supermarket —24.1 —1.1% 25 —903
‘Warehouse 239 9.8% 4.2 274
Residential: Multiple Family 48 2.7% 83 —49
Residential: Single Family 1.3 1.1% 78 —1.7
soling » AJ_Bmisvion_Cooling
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high. This high RC increase indicated that the residential houses
were also sensitive to climate change.

Because of global warming, the cooling energy intensity for all
types of buildings would increase under both emission scenarios,
while the energy intensity for heating in all types of buildings
would decrease. The change in the cooling and heating energy
demand in the future showed even greater extent than the total
energy demand change. The RC for cooling energy increase ranged
from 59 MJ/sqm (warehouse) to 166.8 M]/sqm (full service
restaurant) under the A1F1 scenario. However, the dramatic
changes in cooling and heating energy demand can easily be
ignored due to the smaller changes in total energy demand, if no
further analysis was performed. For example, under A1F1 scenario,
the full-service restaurant category showed much larger AD than
the hospital category in both cooling and heating energy intensity,
but the increase of cooling would nearly be offset by the decrease of
heating which made its total energy AD even smaller than that of
the hospital. The two types of restaurants showed the largest AD in
cooling and heating energy intensity among all types of buildings,
which might be attributed to their large exposure to the outdoor
environment and air intake in addition to the need for regulating
the waste heat from cooking. According to our results, non-
restaurant buildings had mechanical ventilation rates ranging
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Fig. 5. Change in annual energy intensity under the two emission scenarios across different TMY3 weather zones in Los Angeles County: (a) annual energy intensity in heating and
in cooling; (b) annual energy intensity consumed by buildings. Differences in total annual energy consumption intensity (c) and space cooling (d) (MJfm?) for commercial buildings

between 2050s and the 19912005 time period under A1F1 emission scenario.
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from 0.66 air changes per hour (ACH) (warehouse) to 5.51 ACH
(outpatient). In comparison, the two types of restaurants had
significantly higher annual average mechanical ventilation rates,
which are 8.01 ACH for full-service restaurants and 9.06 ACH for
quick-service restaurants, to remove the exhaust gases caused by
high-intensity cooking. The warmer climate increased more
ventilation energy consumption in restaurants than others in
summer months. On the other hand, restaurants would experience
a larger decline in heating energy demand under warmer climate
because the internal heat gain through high-intensity cooking can
compensate part of space heating energy in winter months.
Therefore, restaurants would expect to be more sensitive to climate
change. Hospitals showed the small change in cooling energy
because they possessed large building internal load, such as interior
equipment and lighting, which can remain constant regardless of
outdoor climate change. Moreover, the strict ventilation re-
quirements for healthcare buildings can also weaken the impact of
outside temperature change [1].

Fig. 5 (a) and (b) shows the mean value of changes in energy
intensity over buildings under high (A1F1) and medium (A2)
emission scenarios for cooling and heating by 2050, as compared to
the present time across all TMY weather zones in Los Angeles
County. Due to the warmer climate in the future, the cooling energy
demand within all zones would increase, while the heating energy
demand would decrease. However, the extent of change varied
across different weather zones. In Lancaster, Palmdale and Point
Mugu, the amount of increased annual cooling energy can almost
be offset by the decrease of heating energy, so no obvious change
can be observed in the annual total building energy demand. But in
Burbank-Glendale, Long Beach, Los Angeles International Airport,
and Van Nuys, the increase of cooling energies would be much
larger than the decrease in heating energy, so there would be
dramatic increase in the annual total building energy demand in
these weather zones.

The effect of building technologies on its energy performance
was further analyzed. Fig. 5 further presented the differences in
total annual energy consumption intensity (c), in space cooling (d)
for commercial buildings between the year 2050 and the
1991-2005 time period under A1F1 emission scenario, which were
built in three periods of time: post-2004 (new-2004), 1980 to 2004
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(post-1980), and before 1980 (pre-1980). Although no substantial
difference can be discovered between the pre-1980 and post-1980
buildings regarding to the energy consumption caused by global
warming, it can be observed that the post-2004 buildings exhibited
the smallest increase of annual total energy for the majority of
building types. As Fig. 5 (d) showed, the post-2004 buildings had
the smallest increase in space cooling energy demand for all types
of buildings. It can be concluded that the newly constructed
buildings in Los Angeles County would be less sensitive to the
warmer outdoor temperature in the future. They could have the
ability to maintain a comfortable indoor environment more effi-
ciently due to their better insulation and advanced energy-saving
building technologies [32], such as the installation of air condi-
tioning systems with higher coefficient of performance {COP) to
decrease the demand on energy consumption, especially electricity
demand in hot summer days.

3.1.2. Variation at monthly scale

Since the impact of global warming on building energy demand
may have larger variations at smaller geographical scales, this study
further analyzed the impact at monthly and diurnal scales. The
ATF1 scenario was assessed at smaller time scales as we want to
test the vulnerability of buildings under extreme hot weathers.
Although the majority of buildings had positive annual AD values,
all of them had both positive and negative monthly AD values
throughout the year. Moreover, all buildings showed increased
cooling energy and decreased heating energy in all months (Fig. 6b
and c). The largest positive AD of total energy for all buildings
occurred in August (Fig. 6a), when the increase of cooling reached
its peak and there was little heating demand. From April to October,
the total energy demand increased because the increase of cooling
energy exceeded the decreased of heating energy; and from
November to March, the total energy demand declined because the
increase of heating demand cannot be offset by the decrease of
cooling demand. The residential buildings showed less AD changes
than the commercial buildings, regardless of months and energy
types. The total energy AD varied from —1.09 MJ/sqm (January) to
202 Mfsqm (August) for multiple-family apartments, which
showed slightly larger variation than single-family houses. The
commercial buildings not only showed larger monthly AD values,
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Fig. 7. Energy consumption intensity differences (M]/m®) by month for commercial buildings between 2050s and the 19912005 time period under A1F1 emission scenario. (a)

Total energy consumption, (b) space cooling.
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but also a greater variation among different building types. In
January, the AD of total energy ranged from —25.8 M|/sqm (full
service restaurant) to 2.9 MJ/sqm (outpatient buildings), and the
increase of heating energy use was the major driver. In August, as
the increase of cooling energy reached its peak value in the year, the
AD of total energy ranged from 1.8 M]/sqm (warehouse) to 30.9 M|f
sqm (full service restaurant).

Fig. 6d showed the AD value of monthly energy intensity under
the ATF1 emission scenarios across different TMY3 weather zones.
The Burbank-Glendale weather zone presented the largest increase
of total energy intensity AD from April to October among all
weather zones. Because the Burbank-Glendale weather zone had
the largest cooling energy increase (Fig. 6e), which caused by its
basin topography, there would likely be a larger temperature in-
crease than other weather zones. The Lancaster and Palmdale
weather zones detected the largest decrease of AD for total energy
from October to March because they had the largest heating energy
AD decrease. It could be caused by their cold semi-arid steppe
climate, which had the colder and windier winter than other
weather zones. These weather zones did not have larger increase of
AD for cooling. Because their average temperature in summer un-
der the current climate is already much higher than the comfort
temperature {18.3°C) (Fig. 2), they already have high cooling de-
mand. Fig. 7 presented the total (a), space cooling (b), and space
heating (c) monthly energy consumption intensity differences (M]/
sqm) between the year 2050 and the 19912005 time-period un-
der A1F1 emission scenario for commercial buildings constructed
in different times. The post-2004 buildings exhibited the smallest
increase of cooling energy and decrease of heating energy in all
months, which contributed to the least change in total energy
throughout the year.

3.1.3. Variation at hourly scale

It was discovered that the largest total energy increase occurred
in the summer months, especially in August. This section presented
a more detailed analysis of hourly AD change across different
building types, weather zones, and ages in August. The diurnal time
series profiles were created to explain the hourly energy con-
sumption change. For each specific time period, the average value
of the energy consumption during the same hour in 31 days in
August was used. Since there is usually little heating energy de-
mand in August, the analysis here was based on total and cooling
energy only. Fig. & (a) and (b) showed the average hourly building
total and cooling energy intensity AD between 2050 and
19912005 time period under the A1F1 emission scenario across
building types. Although all buildings increased total and cooling
energy throughout the day, it can be observed that all commercial
buildings showed a larger AD increase and a greater variation. The
restaurants showed a considerably larger AD increase in total en-
ergy than others, with the maximum AD value of 67.5 K] /sqm (quick
service restaurant at 12pm), while the warehouses showed the
smallest AD increase in total energy (only 5.31 KJ/sqm daily peak
increase). Unlike the monthly AD changes in which all buildings
had the same trend of changes in colder or warmer months, the
characteristics of diurnal AD varied with types of buildings. All
commercial buildings showed a larger increase of AD at daytime
than at nighttime, but the time of peak AD increase in some
buildings was different. The majority of commercial buildings
showed highest AD increase from 9am to 5pm, but the hotel and
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Fig. 9. Relationship between the increase of hourly cooling energy intensity difference
and the increase of hourly total energy intensity difference for the restaurants in
August.

residential buildings showed more increase of AD in early morning
and at nighttime. It can be concluded that more human activities
brought about larger increase of energy. The restaurants observed
two peaks of AD increase during the daytime, corresponding to
lunch and dinner time. Fig. 9 presented the relationship between
the increase of hourly cooling energy AD and the increase of hourly
total energy AD for the restaurants in August. The high positive
correlation indicated that the cooling was the main driver for the
total energy increase. Although the most increase of outdoor
temperature may not correspond well with the maximum daily
increase during lunch and dinner time, cooking and human
metabolism produced more internal heat gain during these two
periods and thus contributed to the higher cooling demand.

Fig. 8 (c) and 8 (d) showed the diurnal variation of AD in total
and cooling energy intensity under the A1F1 emission scenarios
across the TMY3 weather zones in Los Angeles. The variation of
diurnal cooling energy was much smoother than that of the total
energy, as the total energy demand was affected by additional
factors in addition to the diurnal temperature variation. It can be
observed that the diurnal variation of total and cooling energy AD
in the Los Angeles International Airport was much closer to that of
the commercial buildings. This was surprising because the Los
Angeles International Airport weather zone possessed the highest
percentage of commercial building floor area (30.82%) (Table 4).
The diurnal variation patterns of total and cooling energy AD in
Lancaster weather zone appeared similar to that of the residential
buildings because it had the highest percentage of residential
building floor area (91.10%). Fig. 8 (e) and (f) presented the total and
space cooling diurnal energy consumption AD (KJ/sqm) between
2050s and the 1991-2005 time period in August for three age
groups of commercial buildings under A1F1 emission scenario. The
post-2004 buildings again displayed a higher level of energy effi-
ciency for all time periods throughout the day.

3.2, Spatial variations of energy demand change at neighborhood
scale

This section presented the spatial variation of energy demand
change in 2050 due to climate change at the neighborhood scale.
Fiz. 10 presents the spatial variation of total and cooling energy

Fig. 8. Diurnal change in absolute difference of average

energy i

2050 and 19912005 time period under the A1F1 emission scenario across building types

in Los Angeles in August: (a) total energy, and (b) cooling energy; change in energy intensity under the A1F1 emission scenario across different TMY3 weather zones in Los Angeles
in August: (c) diumnal total energy intensity change and (d) diurnal cooling energy intensity change; the diurnal energy consumption intensity differences (KJfm®) for commercial
buildings between 2050s and the 19912005 time period under A1F1 emission scenario across different building ages in August: (e) total energy; and () space cooling.
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Table 4
The y ge of residential and ial buildings floor areas in 7 weather zones in Los Angeles County.
Percentage of Residential Building Percentage of Commercial Building

Burbank_Glendale 81.66% 18.34%
Van Nuys 8551% 14.49%
Los Angeles Intl Airport 69.18% 30.82%
Long Beach 80.27% 19.73%
Lancaster 91.10% 8.90%
Palmdale 84.52% 15.48%
Point Mugu 86.89% 13.01%

consumption changes (both RC and AD) in 2050 under A1F1 and A2
scenarios. Large within-county variations of RC and AD can be seen
under both scenarios. In general, the RC and AD for annual total
energy variation followed the same pattern as the larger increase in
the south part of county and smaller increase or even decrease in
the north part can be observed. This is due to the fact that current
climate is warmer in the south and the current heating energy
demand is low there. In other words, there is a limitation on
heating energy consumption decrease, because the minimum us-
age of heating energy could not be less than zero, but there is no
limitation on the cooling energy demand increase. As the climate
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would be warmer by 2050, the little decrease of heating energy
demand in the south cannot be offset by its larger cooling energy
demand, leading to a larger increase in total energy demand than in
the north. An increase in energy demand was founded to be more
substantial under the A1F1 scenario compared to A2 scenario. The
number of neighborhoods with larger than 4.5% increase in annual
total energy demand was 188 under A1F1 scenario but only 33
under the A2 scenario. The similar difference can be observed when
using AD as the measure metric. The number of neighborhoods
with larger than 17 MJ/sqm that increased in annual total energy
demand was 145 but only 45 under the A2 scenario.
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Fig. 10. The spatial variation of total energy consumption changes in 2050 due to climate change in Los Angeles: annual relative change under A1F1 scenario (a), annual relative
change under A2 scenario (b), annual energy intensity absolute difference under ATF1 scenario (A1F1) (c), annual energy intensity absolute difference under A2 scenario (d). This

sixth version of ne\ghbortmd boundary was defined by the Los Angeles Times in June 2010, which the t dary of ¢

Note: iti d bx y.

and social networks within each city.



150

Y. Zheng, Q, Weng / Energy 176 (2019) 641655

[ tews thaa 1o w/m2

0 10 - 20wy

| Less than 10 W/u2

5 10 - 20w “

B> »we B> owee
o owe I o - 0w Mil
-.,,,,.,_,,..,,., 0 510 20 Miles B e e 10 v 0510 20

[ Lows thas 5000 W) /e

) so00 - 10000 wirez
I o000 - se000 wiee O
B o0 - w5000 w/ee

I e e w000 W/ 0 510 20 Mhes

(e)

B e than 150 w2
B 150 250 w2
[ 250 1000 2
B 1000 3000 w2

0510 20 Miles
wore than 3000 2
s « FrHHHHH

)

653

Fig. 11. The spatial variation of cooling energy consumption changes by 2050 caused by climate change in Los Angeles County at the neighborhood scale: (a) annual relative change
under A1F1 scenario, (b) annual relative change under A2 scenario, (¢) annual energy intensity absolute difference under A1F1 scenario, and (d) annual energy intensity absolute

difference under A2
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difference of cooling energy consumption per building in 2050 caused by climate change in Los Angeles County at

the neighborhood scale: (€) under A1F1 scenario; and (f) average floor area per building.
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The increase of cooling energy demand would be more severe
than that of the total energy demand (Fig. 11a through d). The RC of
cooling energy demand ranged from 27% to 122% under the A1F1
scenario and 25%—95% under the A2 scenario, compared to - 1.8% to
7.9% and —1.8% to 6.7% in total energy demand RC, respectively.
Neighborhoods with larger than 100% RC of cooling energy demand
were mostly located in the Los Angeles International Airport
weather zone because it had the highest percentage of commercial
buildings (Table 4). Commercial buildings were found to have a
higher energy demand increase than in residential buildings, as has
been discussed in the previous section. The dramatic increase in RC
for commercial buildings could cause a huge challenge for cooling
energy supply, while frequent power outrage could happen in the
future if no change would be made to the current configuration of
electronic system. The AD of cooling energy demand under A1F1
scenario did not follow the same trend as the AD for total energy
demand. The “hotspots” (larger than 30 MJ/sqm) in cooling energy
demand increase are located in the Glendale/Burbank weather
zone. The probable cause is there would be more warmer-months
than other locations since it is located in the valley and basin.
Moreover, building size and density played an important role in the
AD of energy demand. Neighborhoods with the largest increase in
energy consumption intensity were located in the major commer-
cial zones with high density of tall buildings. As Fig. 11e and f
showed, the downtown had the highest increase of per building
energy demand because it has the largest average building floor
arcas (more than 3000 sgm) among all neighborhoods in the Los
Angeles County.

4. Discussion

This section discussed the major findings, implications, and the
strengths and limitations of our approach compared to the previous
published works. The results of previous studies suggested that
buildings in warmer climate zones would have larger annual total
energy increase compared to those in colder climate zones. The
findings of our study matched with those previous findings, but
more importantly, discovered a large variation even within the
same climate zone, which was caused by building types and ages. In
examining the change of energy demand at smaller temporal scales
(i.e., monthly and diurnal), it can be found that the variation of
energy increase across different building types were even larger,
suggesting that the simulations on high spatial and temporal res-
olutions were indeed necessary. The diurnal variation of building
energy AD for different types of buildings followed the diurnal
population flows, which indicated that the human activities can
further exacerbate the impact of climate change on building energy
demand. Although lighting and equipment uses were not directly
affected by climate change, they can increase the internal heat gain
and raise the indoor temperature, so as to cause more cooling en-
ergy consumption.

Unlike the previous studies which used representative buildings
[1,19,20,22,25] or assumed that each type of buildings would have
the same floor area fraction to the total building stock [3], our
approach linked the building energy simulation and climate change
model to the fine scale urban building inventory data. Therefore,
our approach would allow analysts and policy makers to assess the
sensitivity of different regions in the city to climate change with
regard to building energy demand increase at different spatial and
temporal scales. In addition, a complete database of each building
in Los Angeles County was built and ready to be combined with
other data. Policy makers can take the database as the reference to
choose appropriate policies that targeted specific regions. At the
county scale, our results suggested that the likely dramatic increase
of cooling energy demand would be the major driving force to

cause the total energy increase at all time scales. Since electricity
was the source for space cooling, the high cooling demand would
exceed the current electricity generate capacity. Moreover, due to
electricity is the secondary energy source, the raising cooling en-
ergy demand will also lead to the increased consumption of other
energy sources, such as coal and natural gas, which widely used to
generate the electricity. According to California Energy Commis-
sion, only 29% of electricity was generated through renewable en-
ergy sources, and the traditional energy sources were still the major
source in 2017. As a result, more greenhouse gases were emitted.
Several strategies may help to avoid the future energy consumption
path to move towards the high carbon emission scenario (A1F1),
including speeding up the process of transforming fossil fuel into a
type of renewable energy, reducing the transmission loss of elec-
tricity, and increasing the awareness of general public to reduce
unnecessary cooling energy use. This study found that the amount
of energy demand increase was not distributed evenly throughout
the Los Angeles County at the neighborhood scale. Regions with
high density of tall commercial buildings (Downtown and major
commercial zones) would foresee the largest energy demand in-
crease. Advanced building technologies can help to save large
amount of energy, as the buildings built after 2004 were proved to
be more energy efficient compared to those built before 2004 at
annual, monthly, and hourly time scales. However, there are
188,060 existing commercial buildings in Los Angeles County were
built before 2004, which account for 97.84% of total existing com-
mercial buildings. In contrast, only 4152 (2.,16%) existing commer-
cial buildings were built after 2004. In this case, policy makers may
consider the potential of zero net energy building [28] throughout
the county, and give the highest priority to regions that were most
vulnerable to the climate change. In order to achieve this goal, the
high-resolution database of building sustainability created in this
study can be combined with the solar potential rate for each region
in Los Angeles County. At the individual building scale, two types of
restaurants were identified to have much higher energy demand
increase than other types of buildings despite their locations and
ages. Given that their peak energy demand increase was during the
lunch and dinner time in summer, reduction of solar heat gain and
the effectiveness of cooling should be considered simultaneously
for all restaurants. Strategies, such as installing solar panels, cool
roofs, green roofs, cooling system update, and window retrofit, can
all help.

5. Conclusions

This study proposed an integrated approach of modeling and
GIS to assess the impact of climate change on building energy
consumption for different types and ages of buildings in Los
Angeles County at both high spatial and temporal resolutions. The
results suggested that under the same climate conditions, the
different composition, technologies, size, and density of buildings
can still cause large spatial variations on energy demand, even
within the same city. How to control the cooling energy con-
sumption is vital for sustainability of Los Angeles under the climate
change context. Advanced building technologies, including
increased level of insulation, energy efficient equipment, and ma-
terials, can all contribute significantly on the saving of cooling en-
ergy and while maintain the comfort level. Other strategies, such as
transforming to renewable energy and increased levels of insu-
lation, should also be considered.

This research designed an innovative approach to study the
climate change effect on building energy consumption at fine
spatial and temporal scales. By utilized the unigque capability of GIS,
which integrates different types of data and organizes them based
on spatial locations, our approach can capture the spatial and
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