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ABSTRACT 

Anthropogenic heat flux (Qf) originates from energy consumption in buildings, industrial 

plants, vehicle exhaust, and human metabolism. Qf is an important component of the urban 

Surface Energy Balance (SEB) system and a key to understanding many urban environmental 

issues. Climate change affects building energy consumption in many ways, and building energy 

consumption is the largest contributor to Qf in many cities. One of these contributions comprises 

changes in heating and cooling demands in buildings. The increase in annual energy use in cities 

results in more carbon emissions and constitutes a great challenge to urban sustainability because 

traditional fossil fuels remain major resources for the production of electricity for heating and 

cooling in buildings. The primary objectives of this dissertation are to 1) develop a high spatial 

and temporal Qf profile that can be readily incorporated into the urban energy balance models 

and be used to analyze Qf across multiple spatial and temporal scales; 2) develop a useful 

database that can allow a city government to foresee the different regional sensitivities to climate 

change in the city from building energy demand increases at different spatial and temporal 

scales; and 3) test the potential mitigation effects of green roofs and solar photovoltaic (PV) 

systems on buildings that are more vulnerable to climate change. Los Angeles County, 

California, USA, was chosen as the study area, because it was the most populous county in the 

USA and contained various microclimate conditions. 

To achieve the objectives of this study, a hybrid Qf modeling approach was developed 

that combined census inventory data and Geographic Information System (GIS) methods to 
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create a 365-day hourly Qf profile at 120-m spatial resolution for Los Angeles County. In a 

subsequent step, a GIS-based approach was used to combine climate change modeling, building 

energy simulation, and fine-scale (individual building) inventory data of building characteristics 

to quantify the effect of climate change on building energy demand at the sub-city scale. In the 

final step, the potential mitigation effects of PV-green roofs for building energy demand were 

assessed based on selected buildings that were predicted to have increased energy needs in the 

context of climate change. 

The results showed different magnitudes and diurnal patterns in Qf between workdays, 

with one peak in the morning and the other in the evening rush hours (dual-peak shape) and 

weekends/holidays. Additionally, Qf varied seasonally and among different land use types. 

Building energy consumption was identified as the dominant contributor to Qf in the downtown 

area of Los Angeles, which was found to have the largest mean Qf among all neighborhoods 

throughout the entire year. Most building types showed increased energy demands under both 

scenarios of climate change. Larger changes were observed at finer time scales. The energy 

demand for buildings increased from April to October, whereas it decreased from November to 

March. Areas with dense tall commercial buildings would see the largest increase in energy 

demand. All buildings with green roofs showed positive energy savings with regard to total 

energy and electricity. In addition, the energy saving ability of green roofs was affected by 

seasonal effect, building types and technologies, and irrigation saturation, which is the threshold 

of soil moisture that allows for irrigation. All three objectives of this dissertation were achieved, 

and the methodology allows city governments to foresee the sensitivity of building energy 

demands at different spatiotemporal scales and tailor needed strategies. 
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CHAPTER 1 

 

INTRODUCTION 

1.1 Research Background 

Although urban areas cover only approximately 2% of the total global land area, 55% 

(4.2 billion) of the world’s population lives in urban areas as of 2018. This proportion is 

expected to increase to 68% by 2050, which could add another 2.5 billion people to urban areas 

(United Nations Department of Economic and Social Affairs, 2018). North America is the most 

urbanized region worldwide, with 82% of its population living in urban areas as of 2018 (United 

Nations Department of Economic and Social Affairs, 2018). The unprecedented rate of 

urbanization could bring many unforeseen environmental problems. Increased energy demand is 

one of the most important issues to be considered. Urbanized areas account for 67–76% of global 

final energy consumption and 71–76% of fossil fuel-related greenhouse gas (GHG) emissions 

(Guneralp et al., 2017; Seto et al., 2014). Because the world’s urban population will continue to 

increase, energy demand in cities is predicted to increase over the next 20 years and likely 

beyond (International Energy Agency, 2009; Quah & Roth, 2012). Continued urbanization will 

impact urban climate, as the increasing anthropogenic heat flux (Qf) associated with growing 

energy consumption in cities can directly affect the urban boundary layer (UBL) and urban 

canopy layer (UCL) over different spatial and temporal scales (Oke, 1976; Oke, 2006). The UCL 

lies below the mean roof level and consists of many microclimates as a result of the 
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heterogeneous nature of the urban environment, while the UBL is the overlying layer of UCL, 

which has characteristics that are modified by the integration of the UCL effects into a regional 

or mesoscale climate (Roth, Oke, & Emery, 1989). Qf can originate from energy consumption in 

buildings, releases from industrial plants and vehicle exhaust, and human metabolism effects 

within cities. Qf is an important component of the urban Surface Energy Balance (SEB) system, 

which is a key to understanding urban environmental issues and can be quantified by the 

following equation (Oke, 1987):   

 

                                            𝑅𝑛 + 𝑄𝑓 = H + LE + G                                                                (1) 

 

where Rn is net radiation, Qf is anthropogenic heat flux, H is sensible heat, LE is latent heat, and 

G is ground heat. The sum of the net radiation and anthropogenic heat denotes the total available 

energy in urban environments, whereas the sum of sensible heat, latent heat, and ground heat is 

the dissipation of available energy through turbulent transport, evaporation, condensation, and 

advection (Nie, Sun, & Ni, 2014). 

For dense cities with high-energy demands, Qf can potentially be an important or even a 

dominant component of the SEB (Hamilton et al., 2009; Hu, Yang, Zhou, & Deng, 2012; Nie et 

al., 2014). In previous studies, a comparison between Qf and solar radiation indicated that Qf can 

be equal to, or even greater than, the incident solar radiation during winter (Hamilton et al., 

2009; Nie et al., 2014). Moreover, Qf was demonstrated to be a major contributor to urban heat 

island (UHI) formation (Fan & Sailor, 2005; Hu et al., 2012; Ohashi et al., 2003; Wong et al., 

2015). The notion of an UHI effect can be characterized by a large stretch of nonevaporating 
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impervious materials covering urban areas such as concrete, brick, and asphalt, with a 

consequent rise in sensible heat flux at the expense of latent heat flux (Oke, 1987). 

Building energy consumption is the largest contributor to Qf (Hamilton et al., 2009; Nie 

et al., 2014; Quah & Roth, 2012; Sailor & Lu, 2004; Zhou, Weng, Gurney, Shuai, & Hu, 2012) 

in many cities. Building energy consumption accounted for 41% of U.S. primary energy 

consumption in 2010, and approximately 50% of building energy consumption was for space 

heating and cooling (United States Department of Energy, 2012; Huang & Gurney, 2016). 

Climate change will affect the energy system in a number of ways, one of which is through 

changes in the demands for heating and cooling in buildings (Wang & Chen, 2014; Xu, Huang, 

Miller, Schlegel, & Shen, 2012; Zhou, Eom, & Clarke, 2013). Tropical, subtropical, and some 

mid-latitude cities can expect different levels of increase in annual building energy use because 

the increase in cooling energy consumption cannot be offset by the decrease in heating energy 

consumption that might result from climate warming. The increase in annual building energy 

usage in these cities will result in higher carbon emissions, as traditional fossil fuels are still the 

major electricity production resources that are used for heating and cooling in buildings. Since 

buildings account for major parts of a city’s energy consumption, it is vital to more seriously 

consider building sector energy in support of urban sustainability (Mastrucci, Baume, Stazi, & 

Leopold, 2014; Shi, Fonseca, & Schlueter, 2017), especially in the context of global warming. 

1.2 Problem Statement 

Because Qf is significant for understanding the urban SEB, urban energy transfer, and its 

effect on urban climate, numerous studies have been conducted to estimate Qf in mid-latitude 

cities (Chapman, Watson, & McAlpine, 2016; Ferreira, de Oliveira, & Soares, 2010; Grimmond, 

1992; Hamilton et al., 2009; Ichinose, Shimodozono, & Hanaki, 1999; Lee, Song, Baik, & Park, 
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2009; Nie et al., 2014; Papachristos, 2015; Sailor & Lu, 2004; Smith, Lindley, & Levermore, 

2009; Zhou et al., 2012), subtropical cities (Chow et al., 2014; Park, Schade, Werner, Sailor, & 

Kim, 2016; Wong et al., 2015), tropical cities (Quah & Roth, 2012; Zhang, Weng, Lin, & Zhang, 

2015), and at the global scale (Allen, Lindberg, & Grimmond, 2011; Flanner, 2009; Makar et al., 

2006). The winter Qf profile is generally greater in magnitude than the corresponding summer 

profile in mid-latitude cities (Lee et al., 2009; Sailor & Lu, 2004). However, in subtropical or 

tropical cities, Qf in warmer months is equal to or larger than Qf in cooler months (Ichinose et al., 

1999; Quah & Roth, 2012; Wong et al., 2015). In addition to the climate effect, the population 

density also contributes to differences in Qf among cities (Ichinose et al., 1999; Wong et al., 

2015). The magnitude of Qf varies greatly not only between cities but also within cities, and is 

subject to per capita energy use, building density, and meteorological conditions (Chapman et 

al., 2016; Chow et al., 2014; Hamilton et al., 2009; Heiple & Sailor, 2008; Ichinose et al., 1999; 

Quah & Roth, 2012; Smith et al., 2009). 

The majority of previous studies used one of three approaches to estimate Qf: (1) the 

energy budget residual approach, (2) the inventory approach, and (3) the Geographic Information 

Systems (GIS) modeling approach. The energy balance residual approach estimates Qf through 

Equation (1) by measuring net radiation, sensible heat, latent heat, and ground heat using remote 

sensing meteorological data (Hu et al., 2012; Kato & Yamaguchi, 2005; Kato, Yamaguchi, Liu, 

& Sun, 2008; Wong et al., 2015; Xu, Wooster, & Grimmond, 2008; Yang, Chen, & Cui, 2014; 

Zhou et al., 2012), and long-term eddy covariance from a flux tower (Chow et al., 2014; Park et 

al., 2016). The inventory approach, which is also called top-down approach, estimates 

anthropogenic heat based on population density and energy consumption statistical data from 

buildings and vehicles (Grimmond, 1992; Ichinose et al., 1999; Kłysik, 1996; Pigeon, Legain, 
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Durand, & Masson, 2007; Sailor, Georgescu, Milne, & Hart, 2015; Sailor & Lu, 2004; Smith et 

al., 2009). The GIS modeling approach (Hamilton et al., 2009; Heiple & Sailor, 2008; Quah & 

Roth, 2012; Sailor, Brooks, Hart, & Heiple, 2007; Zhou et al., 2012) is also called the bottom-up 

approach. Unlike the inventory approach, the GIS approach uses energy consumption modeled at 

fine scales (e.g., individual buildings) to aggregate the information up to broader scales of 

interest (Quah & Roth, 2012). 

These three approaches have their respective advantages and disadvantages. The 

limitation of the inventory approach is that the estimation accuracy relies on data availability and 

quality. Moreover, it would be difficult to quantify Qf at fine scales due to spatial (usually county 

or statewide) and temporal (usually annual or monthly) resolution limitations on the data. The 

energy balance residual approach is more straightforward, but each component in the model can 

introduce uncertainties and propagate errors towards the final estimated result (Zhou et al., 

2012). The approach can also be limited by the spatial and temporal resolutions of remote 

sensing satellite images and meteorological data, as it is difficult to account for hourly variations 

in Qf emissions. The GIS-based spatial analysis approach is the only approach that can measure 

Qf at any temporal (e.g., annual, monthly, weekly, daily, and diurnal) or spatial resolution. In 

other words, the GIS-based approach is more reliable than the other two approaches as it can 

directly measure Qf from each of the contributing sources at fine spatial (individual building 

level) and temporal (daily and diurnal) scales. However, this approach is time consuming and 

requires large volumes of data. A common drawback in the existing studies is the absence of 

validation for the estimated Qf at fine scales. 

The difficulties in estimating Qf mainly originate from the uncertainties in building 

energy consumption, which is a major contributor to Qf because buildings in urban areas were 
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constructed during different periods and with different technologies, functions, schedules, and 

vacancy statuses. However, in developing urban sustainability strategies, policy makers need to 

consider more sustainable means of building energy supply and consumption. These means may 

include efforts to transfer building energy sources from traditional fossil fuels to renewable 

energy sources (Chemisana & Lamnatou, 2014; Feng, Zheng, Wang, Yu, & Su, 2015; Waibel, 

Evins, & Carmeliet, 2017), increasing the efficiency of energy transport (Sathaye et al., 2012; 

Sathaye et al., 2013), and advancing the energy-saving abilities of new and existing buildings 

(Dimond & Webb, 2017; Herrera-Gomez, Quevedo-Nolasco, & Pérez-Urrestarazu, 2017; Tang 

& Qu, 2016; Taylor, de Menezes, & McSharry, 2006). Decision making for urban building 

energy savings must not only consider current regional environmental and social-economic 

factors in specific cities but also project future changes, including climate change, which may 

impact or exacerbate the current urban environmental issues caused by greenhouse gases emitted 

by buildings. Previous researchers have used different approaches to study the impact of climate 

change on building energy demand (Andrić et al., 2016; Huang & Gurney, 2016; Sailor, 2001; 

Shen, 2017; Wang & Chen, 2014; Xu et al., 2012). This impact can be affected by many 

environmental and social-economic factors, such as current local climate conditions, city 

function, economic status, population density, and building thermal characteristics. The 

approaches that have been used in existing studies can be grouped into two categories: top-down 

and bottom-up strategies. The top-down strategy focuses on the broader spatial (global, national, 

and state levels) and temporal scales (annual), which compare the impacts of climate change on 

heating and cooling energy across different states and countries. On the other hand, the bottom-

up strategy focuses on fine spatial (district, neighborhood, and individual building) and temporal 

(hourly) scales (Andrić et al., 2016; Berger et al., 2014; Cellura, Guarino, Longo, & Tumminia, 



7 

2018; Dirks et al., 2015; Huang & Gurney, 2016; Li et al., 2018; Shen, 2017; Wan, Li, Pan, & 

Lam, 2012; Wang & Chen, 2014). This strategy typically simulates future energy demands for 

individual buildings based on detailed building or building prototype information and the 

projected future climate. Then, the simulated energy demands are compared with current energy 

demands to quantify the differences. 

The other important direction in urban sustainability research is to apply mitigation 

strategies such as urban greening and increasing renewable energy sources to ease environmental 

problems, especially the UHI caused by urbanization. Urban greening is one of the most 

effective strategies that can reduce UHIs by intercepting solar energy, providing shade to the 

surface and increasing latent heat exchange for the evapotranspiration process (Wang & Akbari, 

2016). Research on urban greening strategies mainly include tree planting (Mohajerani, Bakaric, 

& Jeffrey-Bailey, 2017; Wang, Akbari, & Chen, 2016; Wang & Akbari, 2016), façade greening 

(Li & Ratti, 2018; Moren & Korjenic, 2017), and roof greening (Morakinyo, Dahanayake, Ng, & 

Chow, 2017; Sailor, 2008; Shafique, Kim, & Rafiq, 2018; Susca, Gaffin, & Dell'osso, 2011). In 

high-density urban commercial areas, street trees provide limited contributions to UHI mitigation 

because their canopies cannot provide shade for buildings taller than the trees themselves. 

Moreover, there are ground surface area limitations for ground level tree planting (Morakinyo et 

al., 2017). Therefore, green roofs and rooftop solar photovoltaic (PV) systems research (Dimond 

& Webb, 2017; Lukač & Žalik, 2013; Schuffert, 2013; Zheng & Weng, 2014) have become 

popular. A green roof is a roof with suitable growing media and vegetation. Since green roofs 

and PV systems are both commonly accepted as sustainable roofing systems, a few studies 

(Chemisana & Lamnatou, 2014; Lamnatou & Chemisana, 2014, 2015; Moren & Korjenic, 2017; 

Scherba, Sailor, Rosenstiel, & Wamser, 2011; Schindler et al., 2018) have assessed the benefits 
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of PV-green roofs, which integrate green roofs with PV systems. However, the majority of these 

studies focus on life cycle analyses (Lamnatou & Chemisana, 2014) and the effect of green 

roofing on PV performance (Chemisana & Lamnatou, 2014; Lamnatou & Chemisana, 2015; 

Moren & Korjenic, 2017; Schindler et al., 2018). Scherba et al. (2011) is the only study that has 

attempted to assess the benefits of the PV-green roofs in urban sustainability by comparing these 

systems with other roofing technologies, such as dark roofs, cool roofs, green roofs, and PV 

roofs in terms of sensible heat reduction. Unfortunately, studies that focus on the mitigation 

effects of PV-green roofs on building energy demand caused by climate change do not yet exist. 

To develop a sustainable environment for a specific city under the context of climate 

change, policy makers must understand the characteristics of Qf as well as its major contributors, 

as these factors may exacerbate the UHI effect under a warmer climate in the future. Since Qf has 

large spatial and temporal variations, there is a need for high spatial and temporal resolution 

simulations. However, such simulations of Qf are subject to data availability from multiple 

sources and the robustness of time-dependent simulation models (Sailor, 2011) and are difficult 

to conduct using a single approach. Therefore, a hybrid approach that estimates each component 

of Qf with high spatial and temporal resolution in large urban areas is in high demand. 

Attention should be given to building energy consumption, as this factor is the major 

component of Qf and is also sensitive to climate change. Existing studies have either combined 

climate change modeling with broad-scale (annual and state level) inventory data of buildings 

and social-economic activities or used representative building prototypes to assess the effects of 

climate change in different climate zones. However, cities, especially megacities, are mixed with 

different types of buildings, which may be constructed during different periods and with different 

technologies, functions, and schedules. Therefore, for municipal governments, the sustainable 
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development goals are different even among neighborhoods. In developing “green and 

sustainable” communities, municipalities would need disaggregated data, which cover an entire 

city with high spatial and temporal resolutions to understand the current urban energy flows and 

potential changes in future energy demands at local scales. Only in this way can appropriate 

measures be chosen that are targeted to specific locations. Clearly, the approaches used in the 

existing studies cannot aid in achieving those sustainable development goals. In other words, an 

essential city government approach that assesses the impact of climate change on building 

energy demand at fine scales (sub-city level) is lacking. Moreover, in many cases, the mitigation 

potential of building energy consumption increases induced by climate change has been briefly 

discussed in existing publications (Cellura et al., 2018; Herrera-Gomez et al., 2017; Li et al., 

2018; Sathaye et al., 2012; Shafique et al., 2018). Little research has been conducted to test the 

performance of mitigation options, such as sustainable roofs (green roofs, PV roofs, or PV-

greens), based on the results of previous studies, which can be valuable in guiding policy makers. 

1.3 Research Objectives 

The GIS modeling technique has a strong ability to capture, manipulate, analyze, and 

manage large amounts of inventoried data with geographic attributes at high spatial and temporal 

resolutions. However, GIS modeling has not been applied fully in urban building energy use and 

sustainable urban energy management studies. The objective of this dissertation is to fill gaps in 

the current literature by proposing a novel hybrid Qf modeling approach, which combines 

inventory and GIS modeling methods to create a 365-day, hourly Qf profile at the sub-city scale. 

In the following section, a GIS-based approach that combines climate change modeling, building 

energy simulations, and fine-scale (individual building level) inventory data of building 

characteristics is detailed to quantify the effects of climate change on building energy demand. 
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Finally, the potential mitigation effects of PV-green roofs on increased building energy demand 

were assessed for selected buildings, as these buildings were found to have greater energy 

increases than others in the context of climate change. More specifically, the objectives of this 

dissertation are: 

1) To develop a high spatial and temporal resolution Qf profile that can be readily 

incorporated into urban energy balance and analyze Qf across multiple spatial and 

temporal scales; 

2) To develop an analytical method and useful database that can allow the city 

government to foresee the sensitivity of different city regions to climate change 

regarding building energy demand at different spatial and temporal scales; and 

3) To test the potential mitigation effects of green roofs and PV-green roofs on the 

buildings that are more vulnerable to climate change in terms of energy demand 

increase. Through this research, the development of a useful approach for the city 

government to work towards a sustainable city is expected by tailoring adaption and 

mitigation strategies for buildings in different districts. 

1.4 Research Questions 

In this dissertation, an attempt was made to answer the following research questions: 

1) What are the typical diurnal Qf profiles for all four seasons during workdays and 

weekends across different land use types, and what are the major contributors to Qf? 

2) What changes in annual building energy demand are predicted to occur by 2050, and 

do these trends remain the same when examined at finer temporal scales? 

3) Which city areas are more vulnerable to climate change and what are the driving 

forces? 
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4) To what extent do green roofs or PV-green roofs mitigate the building energy demand 

increase caused by climate change? What building types can receive the most benefit 

from energy savings? 

To answer the four research questions, five hypotheses are put forth:  

1) Building energy demand is the major contributor to Qf, and building energy demand 

can make the typical diurnal Qf profiles across all four seasons appear to have different 

shapes due to changes in cooling and heating demands;  

2) The majority of building types show an obvious annual increase in energy demand by 

2050, and the variation in energy increases across different building types will be even 

larger at finer temporal scales (i.e., monthly and diurnal);  

3) Areas with more commercial buildings are more vulnerable to climate change because 

commercial buildings have higher energy consumption intensities than residential 

buildings;  

4) The installation of PV-green roofs can reduce at least 20% of net building energy  

demand increase caused by climate change for all chosen types of test buildings, and the 

reduction extent will vary by building type; and  

5) Building types that are predicted to have the highest energy demand increase caused 

by climate change receive the most benefits in terms of energy savings. 

1.5 Structure of the Dissertation 

This dissertation comprises eight chapters. In Chapter one, an introduction of the research 

background, problem statement, research objectives, and research questions are presented. In 

Chapter two, previous efforts related to the proposed study are reviewed, including Qf modeling, 

simulations of climate change impacts on building energy demand, and relevant studies on green 
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roofs and PV-green roofs. A brief description of the study area and dataset used are provided in 

Chapter three. In Chapter four, the methodology of the study is described, including research 

design, data acquisition, and data processing. The results of the Qf profile estimation at high 

spatial and temporal resolutions are presented in Chapter five. In Chapter six, the results of 

modeling climate change effects on building energy demand are described. The results of 

Chapter 5 and Chapter 6 have been published (Zheng & Weng, 2018; Zheng & Weng, 2019) and 

are available in Appendix A and B. The potential mitigation effects of green roofs and PV-green 

roofs on buildings that are more vulnerable to climate change in terms of energy demand 

increase are analyzed in Chapter seven. This work will be submitted to Energy and Buildings for 

publication. Finally, in Chapter eight, the major findings of this dissertation and future work are 

discussed. 
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CHAPTER 2 

 

LITERATURE REVIEW 

2.1 Introduction 

In this chapter, the existing publications related to the proposed study are reviewed. More 

specifically, the literature covering the following topics was discussed: 1) the methods used to 

estimate Qf; 2) energy demand changes for different building types in different climate zones 

caused by climate change, and the methods applied to model this effect; and 3) studies evaluating 

the role of green roofs and PV-green roofs to reduce building surface temperature, sensible heat, 

and building energy consumption. 

2.2 Anthropogenic Heat Discharge Estimation in Urban Areas 

Based on the SEB theory, UHI is mainly caused by the combination of energy 

consumption, vegetation decreases, and impervious surface area increases (Kato & Yamaguchi, 

2005; Zhou et al., 2012). Quantifying Qf and its spatial pattern is important for improving the 

understanding of human impacts on the urban environment, which is a key issue in global 

climate change (Zhou et al., 2012). In this section, three major categories of approaches used in 

previous studies are discussed to estimate Qf: (1) the energy budget residual approach, (2) the 

inventory approach, and (3) the GIS modeling approach. 

2.2.1 Anthropogenic Heat Flux Estimation Using the Energy Budget Residual Approach 
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The energy budget residual approach was designed based on the energy balance equation 

developed by Oke (1987), which estimates Qf as the residual term of sensible heat flux, latent 

heat flux, ground heat flux, and net radiation. The majority of studies (Hu et al., 2012; Kato & 

Yamaguchi, 2005; Kato et al., 2008; Wong et al., 2015; Xu et al., 2008; Yang et al., 2014; Zhou 

et al., 2012) have used a combination of remote sensing and meteorological data. Kato and 

Yamaguchi (2005) were the first to separate Qf from natural heat radiation in sensible heat flux, 

based on the energy balance model using Advanced Spaceborne Thermal Emission and 

Reflection Radiometer (ASTER) imagery and ground meteorological data. Xu et al. (2008) used 

the Operative Modular Imaging Spectrometer (OMIS) along with a survey map and 

meteorological data to model urban sensible heat in Shanghai, China, at multiple spatial scales. 

The researchers considered Qf to be the increased sensible and latent heat value forms. Hu et al. 

(2012) were the first to apply a continuous layer of meteorological data along with remote 

sensing data (two ASTER images) in the estimation of Qf and its seasonal and spatial variations 

in Beijing, China. Wong et al. (2015) developed a novel algorithm to model Qf for mixed pixels, 

which decomposed image pixels of HJ-1B satellite imagery into fractions of impervious surfaces 

and vegetation. Some other studies (Chow et al., 2014; Park et al., 2016) used data from long-

term eddy covariance flux towers, which are the stations built near an urban center that utilize 

micrometeorological techniques to measure the fluxes over the surface, to estimate daily local 

Qf. 

Although the energy balance residual approach is simpler and more convenient, this 

approach contains notable limitations and drawbacks. First, the model can introduce 

uncertainties and propagate errors towards the final estimated result (Zhou et al., 2012) due to 

algorithm complexity, inconsistencies in spatial and temporal resolutions between remote 



15 

sensing and meteorological data, and difficulty in obtaining surface morphometric input data. 

The accumulation of errors in the measurements of sensible heat, latent heat, and ground heat 

can result in under- or over-estimation of Qf (Park et al., 2016). Moreover, this approach can be 

limited by the spatial and temporal resolutions of remote sensing satellite images and 

meteorological data, as it is difficult to account for hourly variations in Qf emissions. Although 

studies that use data from long-term eddy covariance flux towers have obtained hourly 

estimations of Qf, the locations of long-term eddy covariance flux towers can be a disadvantage, 

as the towers are not available in most parts of a studied city. 

2.2.2 Anthropogenic Heat Flux Estimation Using the Inventory Approach 

The inventory approach, which is also called the top-down approach, estimates 

anthropogenic heat based on population density and energy consumption statistics data from 

buildings and vehicles (Grimmond, 1992; Ichinose et al., 1999; Kłysik, 1996; Pigeon et al., 2007; 

Sailor et al., 2015; Sailor & Lu, 2004; Smith et al., 2009). The inventory approach requires data 

at broad aggregate scales (e.g., annual) and downscales these data into finer scales of interest 

(e.g., hourly) (Quah & Roth, 2012). Since energy consumption data are available at broad scales, 

this approach has been applied to estimate Qf in cities throughout the world, for example, in 

Vancouver, Canada (Grimmond, 1992), Lodz, Poland (Kłysik, 1996), Tokyo, Japan (Ichinose et 

al., 1999), Toulouse, France (Pigeon et al., 2007), and Manchester, Unite Kingdom (Smith et al., 

2009). The limitation of an inventory approach is that estimation accuracy relies on data 

availability and quality. As mentioned in the Introduction, due to the limitations in the spatial 

(usually county or statewide) and temporal (usually annual or monthly) resolution of inventory 

data, it is difficult to quantify Qf at fine spatial (within-city level) and temporal (daily or hourly) 

scales. 
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2.2.3 Anthropogenic Heat Flux Estimation Using the GIS Modeling Approach 

In contrast to the inventory approach, the GIS modeling approach (Hamilton et al., 2009; 

Heiple & Sailor, 2008; Quah & Roth, 2012; Sailor et al., 2007; Zhou et al., 2012) uses energy 

consumption modeled at fine spatial scales (e.g., individual buildings) to aggregate the 

information to broader scales of interest (Quah & Roth, 2012). Earlier studies (Kikegawa, 

Genchi, Kondo, & Hanaki, 2006; Kikegawa, Genchi, Yoshikado, & Kondo, 2003; Masson, 2000; 

Ohashi et al., 2007) simply estimated Qf by integrating building energy simulation results with 

an urban canopy meteorological model. Recent studies (Hamilton et al., 2009; Heiple & Sailor, 

2008; Sailor et al., 2007; Zhou et al., 2012) have integrated more detailed building energy 

simulations for prototypical buildings with GIS database containing attributes such as building 

types, ages, and sizes. Other studies (Chapman et al., 2016; Ferreira et al., 2010; Lee et al., 2009; 

Quah & Roth, 2012) have added traffic emissions and human metabolism to Qf estimations. 

The GIS approach is considered more reliable than the other two approaches, since this 

approach measures Qf directly from each of the contributing sources, such as building energy 

consumption, traffic emission, industrial emission, and human metabolism. The GIS approach 

has the advantage of measuring Qf at any temporal (annual, monthly, weekly, daily, and diurnal) 

or spatial resolution because any unrelated information can be related, such as hourly 

meteorological data and individual building information by using location as the key index 

variable. In the existing studies, a common drawback of this approach is the absence of 

validation data. For example, Zhou et al. (2012) simulated building energy consumption at the 

individual building level in the city of Indianapolis but used commercial and residential building 

energy consumption survey data for the entire Census Division to validate their simulation 
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results. Using validation data at broader scales, such as national, central census division, or at the 

state level provides limited aid in improving the accuracy of within-city simulations. 

2.2.4 Anthropogenic Heat Flux Estimation Using the Hybrid Approach 

Because the above three approaches have their respective advantages and disadvantages, 

the integration of multiple approaches is needed. Although the majority of previous studies were 

restricted to a single approach, a few studies in recent years combined multiple approaches to 

estimate Qf (Chow et al., 2014; Nie et al., 2014; Park et al., 2016; Zhou et al., 2012). Zhou et al. 

(2012) examined the similarities of Qf spatial patterns estimated by the energy balance residual 

approach and the GIS modeling approach. However, the GIS modeling approach only included 

building energy consumption modeling and ignored emissions from traffic, human metabolism, 

and industrial plants. These studies (Chow et al., 2014; Nie et al., 2014; Park et al., 2016) were 

also restricted to small study areas at the local spatial scale. The data required by the energy 

balanced residual approach (Chow et al., 2014; Park et al., 2016) were measured by a long-term 

eddy covariance flux tower built near the study area, which is not available in every city or every 

part of the city. The inventory approach adopted by Nie et al. (2014) was based on an on-campus 

survey, which may be infeasible at broader spatial scales due to the unavailability of such data. 

In addition, the differences between workdays and weekends were ignored due to lack of high 

temporal Qf simulation. Therefore, despite combined approaches, the greatest challenge in the 

estimation of Qf that remains unsolved is the availability and quality of data from multiple 

sources and the robustness of time-dependent simulation models. 

2.3 Estimating the Effect of Climate Change on Building Energy Demand in Urban Areas 

Building energy consumption is a major component of Qf and UHI. Previous studies have 

applied different approaches to study the impact of climate change on building energy demand. 
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Approaches used in the existing studies can be grouped into two categories: top-down and 

bottom-up strategies. 

2.3.1 Top-down Strategy of Building Energy Demand Modeling 

The top-down strategy focuses on broad spatial (global, national, and state levels) and 

temporal scales (annual), which compare the impact of climate change on heating and cooling 

energy across different states and countries. There are two types of widely used approaches in 

the top-down strategy: observation based regression/prediction (Sailor, 2001; Sathaye et al., 

2012; Sathaye et al., 2013; Xu et al., 2012) and global/regional energy modeling (McFarland et 

al., 2015; Scott et al., 2015; Zhou et al., 2014; Zhou & Gurney, 2010; Zhu, Pan, Huang, & Xu, 

2016). The observation-based approach uses the historical relationship of energy consumption 

and climate data to predict future energy consumption under a changing climate. Although this 

approach makes predictions based on the reference data, the output resolution is determined by 

the historical input data resolution, and the estimation accuracy depends on the quality of the 

selected regression model (Huang & Gurney, 2016). Moreover, this approach ignores the effect 

of changing building technologies, which may play an important role in energy consumption. 

The global/regional energy modeling approach uses a numerical model to estimate national/state-

level building energy consumption by combining building technologies, policy, economy, 

population growth, and climate. The impact of global warming on building energy consumption 

is based on simulations of different Intergovernmental Panel on Climate Change (IPCC) 

scenarios. For example, Zhou et al. (2014) presented a detailed building energy model with U.S. 

state-level representation, nested in an integrated assessment framework of the Global Change 

Assessment Model (GCAM). This study revealed the spatial heterogeneity of the global warming 
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impact on heating and cooling energy and fuel uses in the building sector across all 50 states of 

the United States. 

2.3.2 Bottom-up Strategy of Building Energy Demand Modeling 

The bottom-up strategy focuses on fine spatial (district, neighborhood, and individual 

building) and temporal (hourly) scales (Andrić et al., 2016; Berger et al., 2014; Cellura et al., 

2018; Dirks et al., 2015; Ghedamsi et al., 2016; Huang & Gurney, 2016; Li et al., 2018; Shen, 

2017; Wan et al., 2012; Wang & Chen, 2014). This strategy typically simulates future energy 

demands for individual buildings based on detailed information of the building or building 

prototype and the projected future climate. Then, the simulated energy demands are compared 

with the current energy demands to quantify the differences. Berger et al. (2014) calculated and 

compared heating and cooling demands from nine selected office buildings under current and 

future conditions in Vienna, Australia. This study discovered distinct differences in the energy 

performance of buildings from different periods of construction that adopted various building 

technologies. Andrić et al. (2016) compared the energy simulation results from a district of 

buildings in Lisbon, Portugal, from 2010 and 2050 and discovered that heat demand density 

could decrease by 22.3–52.4% by 2050. Huang and Gurney (2016) used the building prototypes 

developed by the U.S. Department of Energy (DOE), which included 18 types and three age 

groups, and weather data from different climate zones to assess the variations in climate change 

impact on different spatial and temporal scales. Their results suggested that the impact variation 

within climate zones can be larger than the variation between climate zones and that the potential 

bias may be substantial when estimating climate-zone scale changes with a small number of 

representative buildings. Shen (2017) downscaled the future climate data into hourly scales using 
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a “morphing” method to predict the future energy use of residential buildings in the United 

States. 

Although the bottom-up strategy can quantify the impact of climate change on building 

energy demands at the scale of individual building, a common drawback in this approach is that 

only a few buildings were assessed. The conclusions drawn cannot represent the entire building 

stocks in the study area.  

2.4 Studies on the Roles of Green Roofs in Building Energy Consumption Reduction in Urban 

Areas 

Since ground trees can provide only limited cooling in high-density cities, especially for 

buildings taller than tree canopies, green roofs have become popular as a potential alternative 

means for re-establishing the connection between nature and a city (Alcazar, Olivieri, & Neila, 

2016), enhancement of the aesthetic appearance of buildings (Catalano, Marcenò, Laudicina, & 

Guarino, 2016) and improvement of environmental quality (Morakinyo et al., 2017). Modern 

green roofs generally consist of a number of layers, including vegetation, growth substrate, filter 

fabric, drainage elements, root barriers, insulation, and water proofing membranes, which are 

dependent upon location and city requirements (Hashemi, Mahmud, & Ashraf, 2015; Lamera, 

Becciu, Rulli, & Rosso, 2014; Morakinyo et al., 2017; Vijayaraghavan, 2016). These layers can 

enhance the insulation capacity of a conventional roof by controlling heat transfer into buildings 

(Tam, Wang, & Le, 2016). Because solar radiation is often the main heat source in buildings, 

roof vegetation can absorb solar heat and evaporate water through evapotranspiration, which 

creates a cooling effect in the surrounding environment. Green roofs can be classified into 

intensive and extensive based on the thickness of the substrate layer and the vegetation species 

planted. Extensive green roofs have thinner substrate layers (up to 15 cm) and limited types of 
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grasses planted on top (Heusinger, Sailor, & Weber, 2018). The intensive green roofs, which are 

also called roof gardens, have thicker substrate layers and are planted with taller vegetation, such 

as shrubs and small trees (Heusinger et al., 2018). 

Existing studies have examined the performance of green roofs in building indoor 

temperature reduction and energy consumption savings by considering various factors, including 

climate (Morakinyo et al., 2017; Susca et al., 2011; Sailor, Elley, & Gibson, 2012; Semaan & 

Pearce, 2016; Yang et al., 2018), green roof types (Morakinyo et al., 2017; Silva, Gomes, & 

Silva, 2016), spatial coverage (Morakinyo et al., 2017), maintenance status (Heusinger et al., 

2018; Yang et al., 2018), building density (Morakinyo et al., 2017), and building height (Herrera-

Gomez et al., 2017). The majority of existing studies simulated the performance of green roofs 

using an energy balance model of vegetated rooftops integrated in EnergyPlus software, which 

was developed by Sailor (2008). This energy balance model was initially designed and has been 

updated based on validated data collected from monitored green roofs in Florida and Oregon. 

Morakinyo et al. (2017) presented a parametric study on the effects of four green roof 

types (full-extensive, semi-extensive, full-intensive, and semi-intensive) on outdoor/indoor 

temperature and cooling demand under four different climates (hot-dry, hot-humid, warm-humid, 

and temperate) and three urban densities. Their results suggested that during the daytime, the 

cooling effect of green roofs was more apparent in the full-intensive type under all climate 

conditions. However, the extensive green roof types were demonstrated to have better UHI 

mitigation potential due to less solar heat absorption during the daytime. Moreover, the cooling 

effect was also found to follow the order of hot-dry (Cairo), hot-humid (Hong Kong), warm-

humid (Tokyo), and temperate (Paris) from strongest to weakest, which can be explained by the 

interplay between solar intensity, air temperature, and relative humidity. Morakinyo et al. (2017) 
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also suggested that spatial coverage and building density had less effect than climate conditions 

and green roof types in cooling performance. Herrera-Gomez et al. (2017) conducted a case 

study in Seville, Spain, to discuss green roofs as a supplement to existing urban green spaces to 

buffer the negative effect of increased maximum temperatures due to climate change. They 

verified the inverse relationship between Land Surface Temperature (LST) and the abundance of 

vegetation, expressed by the Normalized Difference Vegetation Index (NDVI), and predicted 

that at least 207 ha of green roof surface (11.3% of the existing roofs) should be added. The 

researchers also suggested that green roofs can be even more efficient when the height of the 

building is less than 10 meters, and that the installation of green roofs on taller buildings could 

have its own benefits, such as providing a cooling effect above the street canopy. Heusinger et al. 

(2018) discovered that maintenance, such as irrigation, played a vital role in the performance of 

green roofs. Their results suggested that green roofs reduced urban excess heat by 15–75% when 

using different irrigation methods in comparison to traditional roofs. However, green roofs only 

reduced the urban excess heat by 3% when irrigation was not performed. Moren and Korjenic 

(2017) suggested that plants in the wall-mounted PV-green systems can grow behind PV systems 

mounted on the façade and promote the performance of the PV systems by reducing their 

operating temperatures. They further stated that at PV-green system could achieve better 

performance if it was installed on the south side of a building. 

Many existing studies (Sailor et al., 2012; Silva et al., 2016; Susca et al., 2011; Yang et 

al., 2018) compared green roofs with cool roofs in terms of their cooling abilities; cool roofs are 

roofs made of a highly reflective type of paint to reflect more sunlight and absorb less heat 

(United States Department of Energy, 2018). Yang et al. (2018) examined the UHI mitigation 

potential of green roofs in a tropical climate (Singapore). Their results showed that during peak 
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hours (9 am to 5 pm), cool roofs reduced heat gain by approximately 0.14 kwh/m2 (8%) and 

green roofs mitigated considerably less at approximately 0.008 kwh/m2 (0.4%). For the whole of 

a summer design day, cool and green roofs can reduce heat gain by 15.53% (37%) and 13.14 

(31%) kwh/m2, respectively. However, Susca et al. (2011) suggested the opposite results, as they 

concluded that green roofs saved more building energy than cool roofs at all four testing sites in 

New York City. Despite the performance in temperature cooling and energy saving, green roofs 

can provide multiple ecosystem benefits to air quality, biodiversity, retention performance, and 

microclimate in contrast to single benefit of cool roofs (Heusinger et al., 2018). 

In recent years, a few studies (Chemisana & Lamnatou, 2014; Lamnatou & Chemisana, 

2014, 2015; Moren & Korjenic, 2017; Scherba et al., 2011; Schindler et al., 2018) have 

suggested the integration of green roofs with a solar PV system. Scherba et al. (2011) modeled 

the impact of PV-green roofs on sensible heat reduction in cities located in six climate zones. 

Their results indicated that the replacement of a traditional black membrane roof with a PV-

green roof would reduce the total sensible flux by 50%. Chemisana and Lamnatou (2014) stated 

that vegetation provided a cooling effect to the PV systems, which can lead to an increase in 

output, and this cooling effect varies by plant species. Lamnatou and Chemisana (2014) 

suggested that PV systems can also bring benefits to roof vegetation by protecting the vegetation 

from exposure to too much sunlight during the summer. Schindler et al. (2018) indicated that the 

presence of vegetation did not provide any benefit to PV electricity production. However, they 

stated that the lack of irrigation for vegetation could be the reason because little 

evapotranspiration occurred. 

Although many studies have estimated the cooling effect of green roofs, few studies have 

evaluated their performance under the context of climate change, especially when integrated with 
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PV systems. Scherba et al. (2011) are the only researchers thus far who have attempted to assess 

the benefits of PV-green roofs in sensible heat reduction by comparing it with other roofing 

technologies. However, they did not quantify the potential mitigation effect of green roofs on 

building energy demand caused by climate change. 

2.5 Summary 

Previous attempts related to the research topics in this study were reviewed in this 

chapter. The greatest remaining challenges in the estimation of Qf are data availability and 

quality from multiple sources, and the robustness of time-dependent simulation models. 

Therefore, a hybrid approach that estimates each component of Qf with high spatial and temporal 

resolutions in large urban areas is urgently needed. In developing green and sustainable 

communities, municipal governments need disaggregated data, which covers the entire city in 

high spatial and temporal resolutions, to understand current urban energy flows and the potential 

change in future energy demands at local scales as a result of climate change. Clearly, the 

approaches discussed in the existing literature cannot aid in achieving these goals. In other 

words, an approach essential to municipal governments that assesses the impact of climate 

change on building energy demand at fine scales (sub-city level) is lacking. In addition, the 

potential mitigation effects of green roofs and PV-green roofs on building energy demand in the 

context of climate change have not been fully evaluated. The intent of this dissertation is to fill 

these research gaps by developing an integrated approach of GIS, modeling, and climate change 

simulation, which has great potential for applications in urban use planning and sustainable 

urban energy management. 
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CHAPTER 3 

 

STUDY AREA AND DATA 

3.1 Study Area 

The study area, Los Angeles County, is located in California, USA (Figure 3.1). The 

county has a population of 9,818,605 according to the 2010 U.S. Census (United States Census 

Bureau, 2017), making this county the most populous in the nation. Los Angeles County 

occupies three climate zones according to the Koppen climate classification. The coastal area has 

a “warm summer Mediterranean” (Csb) climate with dry and warm summers and moist winters. 

The inland area, on the other hand, has a “hot summer Mediterranean” (Csa) climate with hotter 

summers than the coastal area. The northern part of Los Angeles County has a “cold semiarid” 

(Bsk) climate, which has warm to hot summers and cold winters. The microclimate, which is 

caused by the topography, makes the county unique, because there are large temperature 

variations among nearby areas. For example, during the summer, the average temperature along 

the Santa Monica coast is less than 27 °C (80.6 °F), but inland areas are greater than 32 °C 

(89.6 °F). 

The 2010 inventory data provided by the Energy Atlas show that the building sector 

emitted the largest amount of greenhouse gases, which accounted for 39.2% of the annual total 

greenhouse gas emissions (Table 3.1). Therefore, managing building energy consumption under 
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the climate change context is important for developing a sustainable urban environment in Los 

Angeles County. 

 

Figure 3.1. The location of the study area, Los Angeles County, California, USA. 

3.2 Datasets 

The major datasets used in this study area are listed in Table 3.2. To simulate 365-day 

hourly building energy consumption, datasets included Los Angeles countywide building 

outlines, building prototypes, Los Angeles County parcel shapefiles, and typical meteorological 

year (TMY) records. Building outlines provided information on building height, building area, 

type, and year of construction. The outlines were captured from stereo imagery as part of the 

LAR-IAC2 Project (2008 acquisition) and updated as part of the LAR-IAC4 (2014) imagery  
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Table 3.1 

Greenhouse gas (GHG) emissions in Los Angeles County by sector (Energy Atlas, 2017; Zheng 

& Weng, 2019). 

Sector Emissions (MT CO2e) Percent of Inventory 

Building Energy 38,900,762 39.2% 

On-Road Transportation 33,226,317 33.5% 

Stationary Sources 19,516,169 19.7% 

Solid Waste 4,327,123 4.4% 

Water Conveyance 1,117,283 1.1% 

Ports 1,059,131 1.1% 

Off-Road Transportation  515,044 0.5% 

Wastewater Treatment  443,832 0.4% 

Agriculture  26,105 0.0% 

Los Angeles World Airport  2,760 0.0% 

Total 99,134,526   

 

acquisition. On the other hand, the Los Angeles County parcel data contain information on land 

use types, which were collected from the Los Angeles County Enterprise GIS website. This sixth 

version of neighborhood boundaries was defined by the Los Angeles Times 

(http://boundaries.latimes.com/set/la-county-neighborhoods-v6/) in June 2010, which expanded 

beyond the city to cover all of Los Angeles County and represents the boundary of communities 

and social organizations within each city; these data were downloaded from the Los Angeles 

County Enterprise GIS website. Building prototypes and typical meteorological year records 

were obtained from the U.S. DOE and National Solar Radiation Data Base (NSRDB), 

respectively. The TMY data was a collation of hourly weather data, which was selected from a 

database containing data from multiple years, for a specific location in a one-year period. The 

data included seasonal and diurnal variations and represented the typical climatic conditions for a 

location. Census Transportation Planning Product (CTPP) shapefiles were used for hourly human 

metabolism estimation. Annual average daily traffic (AADT) data and county road shapefiles 



28 

were acquired to estimate hourly traffic emissions. The annual county energy consumption data 

were downloaded from the Energy Atlas website, which recorded historical energy consumption 

data from different sectors (commercial, residential, and industrial) by year and were used for 

validation and calibration. Finally, open-source solar potential data for all houses in the United 

States were published by Google on their Project Sunroof website 

(https://www.google.com/get/sunroof#p=0). This data explorer estimates the technical potential 

of solar power for a single house or region chosen by the user, which was used to analyze the 

performance of PV-green roofs in the study area. 

Diverse spatial scales were found in the data obtained from different sources (Table 3.2). 

For example, AADT data were collected at a broader scale than the road shapefiles, which can 

bring challenges to the traffic emission modeling because the heterogeneity at the fine scale 

(road shapefiles) cannot be reflected at the broad scale (AADT). This dissertation applied 

different solutions to bridge the gap between broad- and fine-scale datasets in different parts to 

avoid biases in the modeling results. A downscaling method was used to adjust the AADT data, 

which were initially at the 1:25,000 scale, and to assign the estimated traffic volumes to all road 

segments at the 1:12,000 scale. TMY data was not downscaled in the building energy demand 

simulation because no literature has suggested that temperature, which is the most important 

factor that affecting building energy consumption (Huang & Gurney, 2016; Sailor & Lu, 2004), 

varies at the individual building (1:5,000) or neighborhood (1:24,000) scale. Therefore, the same 

meteorological data were used for different buildings, if they were located within the same TMY 

weather zone. The specific workflows for scale integration in the building energy consumption 

simulation and traffic emission modeling are presented in detail in Sections 4.2.2 and 4.2.3, 

respectively. 

https://www.google.com/get/sunroof#p=0
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Table 3.2 

Datasets used in this study and data sources (Zheng & Weng, 2018). 

Data Source Scale 

Census Transportation Planning 

Product (CTPP) shapefiles 

U.S. Census website Approx. 1:12,000 

Los Angeles countywide 

building outline dataset 

Los Angeles County Data 

Portal 

Approx. 1:5,000 

Building prototypes U.S. Department of Energy 

(DOE) 

No Spatial Scale 

Los Angeles County parcel 

shapefiles 

Los Angeles County Enterprise 

GIS 

Approx. 1:5,000 

Los Angeles County 

neighborhood shapefiles 

Los Angeles County Enterprise 

GIS 

Approx. 1:24,000 

Typical meteorological year 

(TMY3) weather data 

National Solar Radiation 

Database 

1:250,000 

Annual average daily traffic 

(AADT) data 

California Department of 

Transportation website 

1:25,000 

Los Angeles County road 

shapefiles 

U.S. Census website 1:12,000 

Annual county energy 

consumption statistics 

Energy Atlas No Spatial Scale 

Solar potential data Google Project Sunroof 

website 

Approx. 1:12,000 
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CHAPTER 4 

 

METHODOLOGY 

4.1 Introduction 

In this chapter, the research methodology developed to fulfill the three objectives in this 

dissertation are described. This chapter includes three major parts: 1) the inventory and GIS 

approach are combined to create a 365-day hourly Qf profile at a 120-m spatial resolution for Los 

Angeles County; 2) a GIS approach is developed to combine climate change modeling, building 

energy simulation, and fine-scale (individual buildings) inventory data of building characteristics 

to quantify the effects of climate change on building energy demand at the sub-city scale; and 3) 

the potential mitigation effects of PV-green roofs in building energy demand are evaluated for 

selected buildings, which have shown more energy increases than other buildings under a climate 

change context. The following sections detail the specific methods used for each part. The 

methodology described in Section 4.2 and 4.3 have been published (Zheng & Weng, 2018; 

Zheng & Weng, 2019). 

4.2 Anthropogenic Heat Discharge Estimation 

The Qf sources can be divided into three major categories of wasted heat (Sailor & Lu, 

2004):  

 

                                                 Qf = Qb + Qv + Qm                                                                                     (2) 
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where Qb, Qv, and Qm represent heat fluxes emitted by buildings, transportation, and human 

metabolism, respectively. Figure 4.1 shows a flowchart for the proposed methods. Qm was 

determined by the inventory approach at the 1:12,000 scale, while Qb and Qv were simulated by 

using a combined GIS modeling and inventory approach at the 1:5,000 and 1:12,000 scales, 

respectively. This dissertation calculated the Qf as the sum of Qb, Qv, and Qm. A gridded 

algorithm (Heiple & Sailor, 2008; Smith et al. 2009; Zhou et al., 2012) was adopted to quantify 

the Qf and each of its components. A 120-m resolution grid was created in the shapefile format, 

and the spatial extent was matched with Landsat imagery. Therefore, the original modeling 

results of Qb, Qv, and Qm were overlaid with the grid layer before they were summed. 

4.2.1 Human Metabolism Simulation 

Human metabolism (Qm) is the heat released by human bodies during daily activities, 

which varies with population density, activity phase, and time of day. This study offered a 

diurnal time-dependent population density-based method to simulate human metabolism in Los 

Angeles County. The CTPP shapefiles created by the U.S. Census Bureau, which contained 

information on the total population, number of workers in a work place, time of arrival at a work 

place, school enrollment population, and employment status, were used to simulate hourly 

population density. For working days, population density can be estimated by using the 

following equation: 

 

PD = (WP1 + WP2 + UE + S) / A                                          (3) 

 

where WP1 is the working population of a workplace; WP2 is the population of people working 

at home; UE is the unemployment population; S is the student population; and A is the census  
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Figure 4.1. Flowchart of time-dependent hourly Qf estimation. 

 

tract area. In the subsequent step, a diurnal human metabolism simulation model was created 

from the time-dependent population distribution within each hour, which was based on data of 1) 
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working/student population arriving at workplace/school and 2) working/student population 

leaving home at each time interval. Table 4.1 presents the time schedule of where the typical 

working population would be during the day. The schedule was designed based on several 

assumptions: 1) the average daily working hours was 8 hours; 2) a 1-hour lunch break was 

incorporated; and 3) the average time needed for each daily commute was 1 hour. Therefore, the 

time between people leaving their home to work and arriving back home from work was set to 

10 hours. The commuter flow for each census tract was estimated based on the following two 

cases: 

Case 1: If the population at a work place was (working hours) > residential population, 

more workers and students from other census tracts were coming into this census tract than going 

out. Thus, the time-dependent population can be calculated as follows: 

 

5 am – 11 am:    Pop (t) = PP2 + ∑n
t=5 (PP1 – PP2) X AR(t)/AR(total)               (4) 

12 pm – 2 pm:   Pop(t) = PP1                                                                               (5) 

3 pm – 8 pm:    Pop(t) = PP1 - ∑n
t=15 (PP1 – PP2) X AR(t-10)/AR(total)            (6) 

9 pm – 4 am:    Pop(t) = PP2                                                                                 (7) 

 

where PP1 is the population at working day during working hours; PP2 is the total population 

(residential) in each census tract; AR(t) is the population of workers and students arriving at 

work places during time interval “t”, and AR(total) is the total population of workers and 

students arriving at work places during an entire day. 

Case 2: If the population at working day during working hours was < residential 

population, workers and students from places other than this census tract were less than workers 
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and students going to other census tracts during working hours. Then, the time-dependent 

population at each census tract can be calculated as follows: 

 

5 am – 11 am:    Pop (t) = PP2 - ∑n
t=5 (PP2 – PP1) X L(t)/L(total)                      (8) 

12 pm – 2 pm:   Pop(t) = PP1                                                                               (9) 

3 pm – 8 pm:    Pop(t) = PP1 + ∑n
t=15 (PP2 – PP1) X L(t-10)/L(total)               (10) 

9 pm – 4 am:    Pop(t) = PP2                                                                                (11) 

 

where L(t) is the population of workers and students leaving home during time interval “t”, and 

L(total) is the total population of workers and students leaving home. 

Table 4.1 

Schedule of working population during the working day (Zheng & Weng, 2018). 

Arrival time at work place/time leaving 

home 

Return time to home from work  

5:00 – 5:59 am 3:00 – 3:59 pm 

6:00 – 6:59 am 4:00 – 4:59 pm 

7:00 – 7:59 am  5:00 – 5:59 pm 

8:00 – 8:59 am 6:00 – 6:59 pm 

9:00 – 9:59 am 7:00 – 7:59 pm 

10:00 – 10:59 am 8:00 – 8:59 pm  

11:00 – 11:59 am 9:00 – 9:59 am 

 

In the final step, human metabolism was calculated as follows:  

                                       Qm = PD X Mt                                                              (12) 

where PD is the population density per square meter and Mt is the amount of energy released per 

person as a function of day in watts (W). In this study, 175 W was set for Mt to represent the 

daytime metabolic rates in the urban area, according to Sailor and Lu (2004). Table 4.2 lists the 

energy released per person as a function of hour of day (W). Since the initial Qm layer was at the 
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same scale as the census tract (1:12,000), it was overlaid with the 120-m grid for Qf modeling at 

the final step. Since the area of one census tract in Los Angeles County was larger than a 120-m 

grid, the spatial relation between these two was used to determine the Qm value for each grid. If a 

grid was completely within a census tract, the Qm value of that census tract was assigned to this 

grid. If a grid intersected with two or more census tracts, the average value of Qm from all 

intersected tracts was assigned to this grid. 

Table 4.2 

Energy released per person as a function of hour of day (W) (Zheng & Weng, 2018). 

Time Period Time-dependent energy release per hour 

12:00 am – 4:59 am 75 W 

5:00 am – 7:59 am 125 W 

8:00 am – 7:59 pm 175 W 

8:00 pm – 11:59 pm 125 W 

 

4.2.2 Building Energy Consumption Simulation 

Qb was simulated as the energy consumption sum from industrial plants and commercial 

and residential buildings. Although there is a time lag between the energy consumption and heat 

emission into the atmosphere, detailed information on the ventilation systems and fabric of 

buildings for the time delay estimation is not generally available (Smith et al., 2009). Moreover, 

it is difficult to determine the percentage of consumed energy that was rejected as wasted heat 

because this percentage was dependent on varying insulation levels and heat exchange rates in 

different buildings (Sailor & Lu, 2004). Therefore, it was assumed in this study that all energy 

consumed within the buildings was fully and instantaneously emitted into the environment as 

wasted heat. 

Building energy consumption includes space heating, cooling, lighting, ventilation, and 

equipment use. The amount of energy consumption for individual buildings can vary, which 
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depends on the physical parameters, prototype, operation schedule, occupant behaviors, and 

regional climate conditions. For example, space heating and cooling accounted for 

approximately 50% of building energy consumption (United States Department of Energy, 

2012), but this percentage can be much higher during extreme weather conditions. Therefore, 

there is a need for high-resolution simulations of building energy consumption, especially for 

large areas such as Los Angeles County, which has microclimates and heterogeneous land cover. 

In this case, the bottom-up GIS modeling approach is more suitable than the top-down inventory 

approach, which is based on simulations of individual buildings by considering their attributes. 

EnergyPlus, a well-known building energy simulation tool developed by the U.S. DOE 

was used to simulate 365-day building energy consumption at hourly intervals in this study. This 

software has been extensively tested and validated for the American Society of Heating, 

Refrigerating and Air-Conditioning Engineers (ASHRAE) standards and widely used by 

engineers and scientists to model building energy consumption (Huang & Gurney, 2016). Local 

climate datasets and building prototypes (Table 3.2) were the two required input data sources. 

The simulation models allowed for the customization of occupancy behaviors by providing 

settings for attributes such as daylight schedule, balanced-point temperature, heating, ventilation, 

and cooling (HVAC) operation hours, and the amount of equipment, which directly determined 

the energy demand of buildings. The output included hourly site energy consumption by end-use 

and fuel type for a building prototype under a given weather condition. 

4.2.2.1 Local Climate Datasets and Building Prototypes 

The hourly weather data files (Table 3.2) used in EnergyPlus were retrieved from the 

third (and latest) TMY3 collection. Each TMY3 file included hourly weather data (temperature, 

solar radiation, precipitation, relative humidity, and so on) in one-year durations for a specific 
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location, which is developed based on either 1991–2005 weather data or 1976–2005 weather data 

if the latter existed (Huang & Gurney, 2016). Because Los Angeles County covers a large area, 

the climate can be different due to the urban island effect and the influences from different 

topographies and land uses. Hourly TMY3 data from seven weather locations distributed 

throughout the entire county were used to simulate hourly building energy consumption. 

Sixteen commercial building prototypes developed by the U.S. DOE 

(https://www.energy.gov/eere/buildings/commercial-reference-buildings) were used for the 

simulations. The DOE created these building prototypes based on Commercial Buildings Energy 

Consumption Survey (CBECS) data collected by the U.S. Energy Information Administration 

(EIA), which provided information on building characteristics, including thermal properties, 

operation schedules, and three different age categories (pre-1980, post-1980, and post-2004). 

The age categories reflected differences in the building insulation, envelope, HVAC systems, 

lighting, and equipment technologies for each building type, which led to different energy-saving 

abilities under the same outdoor environmental conditions. Buildings with newer technology had 

more energy-efficient equipment, better insulation to mitigate the impact of nonoptimal outside 

temperatures, smaller energy intensity of lighting, and more energy-efficient HVAC systems 

(Deru et al., 2011; Huang & Gurney, 2016). 

Two prototypes of residential buildings, i.e., multifamily low-rise apartment buildings 

and single-family detached houses, were developed by the DOE in 2009 based on building codes 

specified in the International Energy Conservation Code (IECC) and Residential Energy 

Consumption Survey (RECS). Each prototype was modified to represent three types of heating 

systems (electric resistance, gas furnace, and heat pump), resulting in six residential sub-
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prototype residential houses (Huang & Gurney, 2016). An inventory approach was used to 

disaggregate the industrial energy consumption data from broad scale to fine scale. 

4.2.2.2 Schedules of Building and Occupant Behavior 

In this study, separate profiles were designed for workdays and weekends/holidays to 

obtain an accurate 365-day building energy-use simulation, which was usually ignored in 

previous studies. The differences in operation hours and occupancy statuses between workdays 

and weekends/holidays can result in a difference in energy use to a certain extent. The DOE-

generated building prototypes contained specific operation hours for each type of building on 

workdays, weekends, and public holidays in the Los Angeles area based on the CBECS survey. 

Office buildings, school buildings, and outpatient service buildings were set as closed during the 

weekend and public holidays, while buildings such as fast-food restaurants, hospitals, and hotels 

were set as open seven days a week, 24 hours a day. 

Residential buildings did not have routine operational hours like commercial buildings, 

and the energy consumption statuses of residential buildings are completely dependent on 

occupancy behaviors. Therefore, during the workdays, a population distribution-based modeling 

method was used. The hourly profiles of the population that works at home, the unemployed 

population, and time leaving home and returning to home used to calculate human metabolism 

were applied to determine whether a residential house was occupied. The occupancy number in a 

residential house in each census district can be calculated by dividing the time-dependent 

population by the number of residential houses. If the population number is lower than the 

number of houses, it can be assumed that some houses were vacant during that particular time 

period, and then, the energy consumption for vacant houses was set to zero. For occupied houses, 

lighting load was determined from the time of sunset and the time of the sunrise, which assumed 



39 

that lights turned on in the evening during sunset and turned off during sleep time, and this time 

was set to 12 pm; lights were considered to be turned on again before sunrise in the morning. On 

weekends and public holidays, all residential buildings were set as occupied at all times. 

For commercial and residential buildings, heating and cooling energy consumption was 

simulated depending on the comparison between indoor temperature and the balanced-point 

temperature at which no cooling or heating was required. If the indoor temperature was higher 

than the setup temperature, it can be assumed that the cooling system was working to maintain 

the setup temperature; if the indoor temperature was lower than the comfort temperature, the 

heating system was assumed to be turned on. The balanced-point temperature was usually 

assumed to be 18.3 °C (65 °F) in previous studies (Wang & Chen, 2014). This dissertation 

assigned 20 °C (68 °F) as the temperature that was set up by the occupants on thermostats, which 

was close to the balanced-point temperature. 

Energy use in the industrial sector did not show a large difference from commercial and 

residential buildings due to the relative insensitivity to variations in weather and a much more 

uniform diurnal and seasonal distribution (Sailor, 2011). It is fairly common that energy 

consumption in the industrial sector was assumed to be uniformly distributed among all 8,760 

hours of the year (Sailor, 2011; Sailor & Lu, 2004). 

4.2.2.3 Initial Annual Building Energy Consumption Simulation and Calibration 

The 365-day building energy consumption simulation was categorized into eight different 

“seasonal and day type” profiles: (1) spring workdays; (2) spring weekends/holidays; (3) summer 

workdays; (4) summer weekends/holidays; (5) fall workdays; (6) fall weekends/holidays; (7) 

winter workdays; and (8) winter weekends/holidays. The annual building energy consumption 

from commercial and residential sectors was calculated based on the aggregation of energy 
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consumed during each particular hour, day, and season. First, the hourly building energy use 

intensity (EUI), defined as the hourly energy use per square meter, was simulated using 

EnergyPlus. For commercial buildings, there were 2,688 different EUI values, which resulted 

from the combination of eight “seasonal and day type” profiles, seven weather zones, 16 building 

prototypes, and three age groups. Residential buildings exhibited 366 different values of EUIs, 

which resulted from the combination of eight “seasonal and day type” profiles, seven weather 

zones, and six prototypes. 

The energy consumption for an individual building (BE) i within a particular hour j can 

be calculated by the following equation: 

 

                   𝐵𝐸ℎ𝑜𝑢𝑟(𝑖,𝑗) = 𝐸𝑈𝐼𝑖,𝑗 × 𝐴𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔(𝑖) × 𝐹𝑁𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔(𝑖)                                      (13) 

 

where Abuilding(i) is the footprint area of building i, and FNbuilding(i) is the floor number, which was 

estimated based on building height. The daily energy consumption of building i for day j was 

calculated as follows: 

 

                                            𝐵𝐸𝑑𝑎𝑦(𝑖,𝑗) = ∑ 𝐵𝐸ℎ𝑜𝑢𝑟(𝑖,𝑗)

24

𝑗=1

                                                           (14) 

 

The building energy consumption within a season k was calculated as follows: 

 

                           𝐵𝐸𝑠𝑒𝑎𝑠𝑜𝑛(𝑘) = ∑ 𝐵𝐸𝑤𝑜𝑟𝑘𝑑𝑎𝑦(𝑖,𝑗,𝑘) +

𝑡1

j=1

∑ 𝐵𝐸𝑛𝑜𝑛−𝑤𝑜𝑟𝑘𝑑𝑎𝑦(𝑖,𝑗,𝑘)              (15)

𝑡2

j=1
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where BEworkday(i,j,k) and BEnonworkday(i,j,k) are the EUI at a particular hour i within day j during 

season k on workdays and nonworkdays (weekends and holidays), respectively; and t1 and t2 are 

the number of workdays and nonworkdays within season k, respectively. The annual building 

energy consumption for sector l was calculated as follows: 

 

                          𝐵𝐸𝑎𝑛𝑛𝑢𝑎𝑙(𝑙) = ∑ 𝐵𝐸𝑠𝑒𝑎𝑠𝑜𝑛(𝑘)

4

k=1
                                           (16) 

 

Although the GIS modeling approach can simulate building energy consumption at much 

finer spatial (individual building level) and temporal scales (hourly) than the inventory approach, 

discrepancies remained between the simulation results and the actual energy consumption 

(Herrando et al., 2016), which can be caused by uncertainties between the simulation and the 

truth. Therefore, annual energy consumption data from the California Energy Commission (CEC, 

2016) (http://ecdms.energy.ca.gov/elecbycounty.aspx) and the Energy Atlas 

(http://www.energyatlas.ucla.edu/) were used as references to calibrate the simulation model. 

The Energy Atlas is a database of building energy consumption created by the California Center 

for Sustainable Communities (CCSC) at the University of California, Los Angeles (UCLA). The 

building energy consumption data were created from a separate and confidential geospatial 

relational database that contained approximately five billion unique records 

(http://www.energyatlas.ucla.edu/). These records related the private account-level monthly 

energy consumption data to building characteristics and census information 

(http://www.energyatlas.ucla.edu/). This data source provided detailed historical annual energy 

consumption data from all building energy sectors, including commercial, residential and 

http://ecdms.energy.ca.gov/elecbycounty.aspx
http://www.energyatlas.ucla.edu/
http://www.energyatlas.ucla.edu/
http://www.energyatlas.ucla.edu/
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industrial sectors at a fine scale (city neighborhood level). Compared to previous studies, which 

used county, state, or census division-level energy consumption data to calibrate the simulation, 

the use of neighborhood-level reference data allowed us to address the regional variation in 

energy consumption patterns in each building sector. 

The annual energy consumptions of commercial buildings and residential buildings in 

each neighborhood were calculated and compared to reference energy consumption data. In the 

next step, the EUI of each type of commercial and residential building was calibrated using the 

ratio between the simulated results and reference energy consumption data. Energy consumption 

data for the industrial sector in some neighborhoods were masked out because many industrial 

consumers did not share their data with the public. Therefore, the countywide consumption 

percentage was used to obtain the total volume of industrial energy consumption in those 

neighborhoods and applied the metrics of median consumption per square meter and total floor 

areas of industrial plants in each neighborhood to create the EUI curve of industrial plants in 

each neighborhood. 

4.2.2.4 Final Building Energy Consumption Simulation 

After EUI calibration for each type of building, the gridded algorithm was adopted to 

quantify the building energy consumption in Los Angeles County for 8,760 individual hours 

throughout the year. The 120-m grid layer was overlaid with building footprint layers, and each 

grid cell contained 0, 1, or multiple fractions of buildings. Building energy consumption in a grid 

cell can be estimated using the following equation: 

 

                                               𝑄𝑏 =
∑ 𝐸𝑈𝐼(𝑗) ×

𝑛

𝑗=1
𝐴(𝑗)×𝐹𝑁(𝑗)

𝐴2
                                       (17) 
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where EUI(j), A(j), and FN(j) are the hourly energy intensity index, floor areas, and floor 

numbers of building prototype j, respectively. The algorithm summarized hourly energy 

consumption from all the building prototypes in the given grid cell and divided this value by the 

grid area A2, which equals 14,400 square meters. 

4.2.3 Traffic Emission Simulation 

Hourly traffic emissions within a particular day were simulated based on normalized 

AADT data, which were adjusted by a seasonal scaling factor, weekday scaling factor, and 

diurnal scaling factor. The 2010 AADT data, which were calculated by dividing 365 from the 

total traffic volume of a road for one calendar year, were collected as point shapefiles from the 

California Traffic Census Program in 808 traffic count stations. The data were distributed 

throughout major roads in the study area. The 120-m grid, AADT traffic counts, and road 

shapefiles were overlain together. The hourly traffic count values from the AADT were directly 

assigned to the major road segments if the data were located within the same grid cell as AADT 

points. For grid cells not containing the AADT points, the average values of traffic volume for 

all the points in the same neighborhood were assigned. The traffic volume of the minor roads 

was calculated by dividing the traffic volume of the major roads by 10 (Smith et al., 2009). 

Similar to the building energy simulations, profiles for eight different types of days were 

created. The temporal traffic variations for each day type were calculated by applying the 

seasonal scaling factors and diurnal variation factors for the hourly traffic volume calculated by 

AADT traffic counts. The seasonal scaling factors and the diurnal variation factors were 

calculated using the hourly vehicle miles traveled (VMT) metric, which was available in the 

Caltrans Performance Measurement System (PeMS) Database established by the California 

Department of Transportation. The PeMS database contains historical hourly VMT data for each 
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individual day from 1993 to present. VMT data from 2010 were used to construct the diurnal 

vehicle volume profiles for 8 different types of days. The hourly vehicle volume factor was 

simulated by averaging all the VMT values from the same time during days that were in the 

same category. 

The traffic emissions in each grid cell were calculated using the formula similar to Smith 

et al. (2009), which is as follows: 

 

Qv = ∑(Nmxi(t) × Lxi) × EFm/Ai                                                   (18) 

 

where Qv represents the vehicle emissions in watts per square meter (W/m2), Nmxi is the 

normalized traffic count number for vehicle type m on road x in grid cell i, t is the hour of day, 

Lxi is the length of all roads x within the grid cell i, EFm is the fuel consumption emission factor 

(J/m), which can be calculated, and Ai is the area of each grid cell (120 X 120 = 14,400 m2). The 

fuel consumption emission factor (W/m) was calculated using the equation of Sailor and Lu 

(2004): 

 

EFm= NHC × ρfuel/FE(J/m)                                                 (19) 

 

where NHC is the mean net heat of vehicle gasoline and diesel combustion in kilojoules (KJ) per 

gram, which is 45.85 KJ/g for petrol and 46 KJ/g for diesel (Smith et al., 2009); ρfuel is the mean 

density of gasoline (0.75 kg/l) and diesel (0.832 kg/l) (U.S. Energy Information Administration, 

2014; Chow et al., 2014); FE is the mean fuel efficiency of all vehicles (7.5 km/l in 2010) 

(United States Department of Transportation, 2011; Chow et al., 2014). Based on annual data 
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from gasoline and diesel sales collected by the California State Board of Equalization 

(http://www.boe.ca.gov/sptaxprog/spftrpts.htm), the ratio between the number of gasoline 

vehicles and diesel vehicles in Los Angeles County was set to 5.25:1, and the mean fuel 

consumption emission factor (EF) was estimated to be 4.668 KJ/m. 

4.3 Modeling the Effects of Climate Change on Building Energy Demand 

4.3.1 Future Weather Data Construction 

Los Angeles County consisted of seven weather zones in the TMY3 dataset (Figure 4.2), 

including Burbank-Glendale, Los Angeles International Airport, Long Beach, Van Nuys, 

Lancaster, Palmdale, and Point Mugu. Each weather zone contained different hourly weather 

data collected from 1991–2005. Figure 4.3 shows the current average monthly temperature (o C) 

in seven TMY3 locations in Los Angeles County. The Long Beach, Los Angeles International 

Airport, and Point Mugu weather zones had relatively smaller ranges of monthly temperatures 

because these areas are located in coastal areas and all have Csb climates. The Lancaster and 

Palmdale weather zones had the highest temperatures during the summer months but the lowest 

temperatures during the winter months due to their “cold semiarid” climates. The Burbank-

Glendale and Van Nuys weather zones, with the Csa climate, had similar temperatures during the 

wintertime as the coastal areas but higher temperatures during the summer months. 

The future hourly weather data were projected using HadCM3. Among all future weather 

data construction models, HadCM3 has a smaller grid spacing, which means that the simulation 

resolution is higher than other models and results in higher precision (Shen, 2017). This model 

contains the atmospheric model HadAM3, with a horizontal resolution of 2.5 degrees latitude by 

3.75 degrees longitude, which covers all Los Angeles County. This model provides monthly 

changes in dry-bulb temperature, diurnal temperature variation, relative humidity, wind speed, 

http://www.boe.ca.gov/sptaxprog/spftrpts.htm
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Figure 4.2. TMY3 climate zones in Los Angeles County (Zheng & Weng, 2019). 

 

Figure 4.3. Current monthly temperatures (o C) in seven TMY3 locations in Los Angeles County 

(Zheng & Weng, 2019). 
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and solar radiation, which have a major impact on building heating and cooling loads. 

There are various carbon dioxide emission scenarios projected by the IPCC, which is 

associated with the likely global development projections to the year 2100, including 

technologies, climate and energy policies, and social-economic developments. The most recent 

IPCC Fifth Assessment Synthesis Report (AR5) https://www.ipcc.ch/report/ar5/syr/, which was 

released in 2014, used Representative Concentration Pathways (RCPs) to make projections based 

on these factors (Intergovernmental Panel on Climate Change [IPCC], 2014) to describe four 

different 21st century pathways of GHG emissions and atmospheric concentrations, air pollutant 

emissions, and land use. The RCPs include a stringent mitigation scenario (RCP2.6), two 

intermediate scenarios (RCP4.5 and RCP6.0) and one scenario with very high GHG emissions 

(RCP8.5). 

In this study, RCP8.5 (high emission) and RCP6.0 (medium emission) were chosen for 

simulations. The RCP6.0 scenario fits the current energy policies and emphasizes regional 

differences, which is suitable for county/city level examinations. On the other hand, the RCP8.5 

scenario represents the worst case and can be used for hazard assessment purposes. The low 

emission scenario (RCP2.6) was not chosen because it assumes that the global annual GHG 

emissions peak occurs between 2010 and 2020, and a decline thereafter likely keeps global 

warming below 2 °C, which is overly optimistic according to the current trend, and unlikely to 

occur in the near future. To create hourly data for 2050, the Climate Change World Weather File 

Generator (CCWorldWeatherGen) tool was used; this tool was developed by the Sustainable 

Energy Research Group (University of Southampton). CCWorldWeatherGen uses hourly 

historical weather data (TMY2 and TMY3) as primary input and applies the HadCM3 model to 

construct future hourly data. This tool uses the IPCC Fourth Assessment Report (AR4) model 

https://www.ipcc.ch/report/ar5/syr/
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summary data of the HadCM3 A2 scenario, which is close to the intermediate scenario (RCP6.0) 

in AR5. CCWorldWeatherGen has been widely adopted by a large number of researchers 

(Andrić et al., 2016; Rey-Hernández et al., 2018; Rubio-Bellido, Pérez-Fargallo, & Pulido-Arcas, 

2016; Shen, 2017; Wang & Chen, 2014; Wong, Jusuf, Syafii, Li, & Tan, 2012; Yi & Peng, 2014) 

in recent years. Because the HadCM3 model only provides monthly weather variation data, 

which is insufficient for hourly energy simulation, the CCWorldWeatherGen tool applies a 

morphing method to downscale monthly weather data to hourly weather data. The algorithm to 

calculate future hourly weather data uses the following equation: 

 

X = Xo +Δxm + am(Xo-(Xo)m)                                                            (20) 

 

where Xo is the hourly weather data from the existing historical data (TMY2 or TMY3),Δxm is 

the predicted monthly average change obtained from HadCM3, am is the stretching factor 

calculated based on the changes in monthly average value of a specific variable from future 

weather files relative to the existing reference weather file, and (x0)m is the monthly average of 

current weather data. Because the CCWorldWeatherGen tool can only simulate future weather 

data under the IPCC A2 carbon emission scenario, a pattern-scaling method developed by the 

Finnish Environment Institute (Ruosteenoja, Carter, Jylha, & Tuomenvirta, 2003) was adopted to 

calculate future weather data under the A1F1 carbon emission scenario, which is close to the 

very high GHG emissions (RCP8.5) observed in AR5. This pattern-scaling method can provide 

the magnitude for future temperature changes under different IPCC scenarios based on a series of 

factors, which also varies with locations in the world. 
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4.3.2 Building Prototypes 

The same commercial and residential building prototypes as the ones used in the Qf 

simulation were used for the simulation. The DOE created these building prototypes based on 

CBECS data from the U.S. EIA and provided information on building characteristics in three age 

categories: pre-1980, post-1980, and post-2004. The age categories reflected differences in 

building insulation, envelope, HVAC systems, lighting, and equipment technologies for each 

building type, which led to different energy consumption abilities under the same outdoor 

environmental conditions. Buildings with newer technologies had more energy-efficient 

equipment, better insulation to mitigate the impact of nonoptimal outside temperatures, lower 

lighting energy intensities, and more energy-efficient HVAC systems (Huang & Gurney, 2016). 

Two prototypes of residential buildings, i.e., multifamily low-rise apartment buildings and 

single-family detached houses, were developed by the DOE in 2009 based on building codes 

specified in the IECC and RECS. This study assumed the building stock structure in Los Angeles 

County remained unchanged throughout the simulation period. 

4.3.3 Calibration of Reference Data 

The calibration method used in the Qf estimation was adopted in this research to calibrate 

the simulated current building energy consumption. Compared to the existing study that 

calibrated building energy consumption at a coarse scale, such as the census division (Huang & 

Gurney, 2016), the neighborhood-level reference data in this study can address the regional 

variation in energy consumption patterns in both the commercial and residential sectors, which 

was essential for the purpose of a local-scale study. Moreover, these data can overcome the 

spatial resolution limitation, which was caused by the resolution of weather data (TMY3 data). 

Figure 4.4 presents the calibrated annual building energy consumption intensity for 16 types of 
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commercial buildings in Los Angeles County, which was the simulation result based on the 

historical TMY3 data (1991–2005). The two types of restaurants (full-service and fast-food) 

consumed the largest amount of energy per square meter per year. The ratio between the before 

and after-calibrated building energy consumption results was computed to calibrate the simulated 

future building energy consumption under the two emission scenarios (RCP8.5 and RCP6.0). 

4.4 Green Roof and Solar Photovoltaic Setting 

To evaluate the performance of green and PV-green roof mitigation effects on the 

potential building energy use increase caused by climate change, EnergyPlus software was used 

in this dissertation to simulate hourly building energy consumption in Los Angeles County with 

the proper green roof and photovoltaic modules. This strategy has been widely used in previous 

research (Gargari, Bibbiani, Fantozzi, & Campiotti, 2016; Heusinger et al., 2018; Morakinyo et 

al., 2017; Sailor et al., 2007; Sailor et al., 2012; Scherba et al., 2011; Silva et al., 2016; Tang & 

Qu, 2016; Yang et al., 2018) to estimate green roof cooling effects for reduction in indoor 

temperature and sensible heat fluxes, which can potentially lead to building energy reduction in 

the summer months. However, studies that evaluate the mitigation potential of green roofs on 

building energy increases caused by climate change are rare. The purpose of this part of the 

dissertation is to fill this gap in the current literature and provide a means of evaluating the 

potential contribution of green roofs based on the results of studies that modeled climate change 

effects on building energy demand. 

Figure 4.5 presents the methodology used in this study. The vulnerable buildings that are 

susceptible to the largest increases in energy demand under the context of climate change were 

identified based on the results from previous sections of this dissertation. Because solar potential 

varies at the individual building level, this section was focus on a small study area, which 
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Figure 4.4. The calibrated annual building energy consumption intensity in megajoules (MJ) per 

square meter (m2) for 18 types of buildings in Los Angeles County. The simulation was based on 

historical TMY3 data (1991–2005) (Zheng & Weng, 2019).  

 

contains less than 30 buildings in total, rather than all buildings in Los Angeles County. Multiple 

study sites containing a high percentage of vulnerable buildings were selected. The solar 

potential for each building roof was rated using the open-source roof solar potential data from 

the Google Project Sunroof database (https://www.google.com/get/sunroof#p=0). According to 

Google Project Sunroof, roofs in Los Angeles County should have at least 1,405 hours of usable 

sunlight per year to be ranked as high solar potential roofs. Hours of usable sunlight per year 

were estimated based on the daily analysis of weather patterns. In this dissertation, building roofs 

with high solar potential were added to both green roofs and PV systems during the simulation. 

However, only green roofs were added to buildings with low solar potential. The simulation 

results of building energy consumption with green roofs or PV-green roofs under the projected 

climate in 2050 were compared with the scenario of buildings with traditional roofs. 
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Figure 4.5. The method used to analyze the potential mitigation effect of green and PV-green 

roofs on building energy demand caused by climate change. 
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4.4.1 EnergyPlus Green Roof Module Setting 

In this study, the EnergyPlus green roof module was used to model green roof fluxes. 

This module functions as an integral component of the simulation software, performing an 

energy balance on a vegetated rooftop within each time step (Sailor et al., 2012). The input of 

various green roof-related parameters, such as the Leaf Area Index (LAI), plant height, leaf 

emissivity, soil layer thickness, soil thermal properties, and stomatal resistance, are allowed. The 

module also accounts for longwave and shortwave radiative exchanges within the plant canopy, 

plant canopy effects on convective heat transfer, evapotranspiration from soil and plants, and 

heat conduction and storage in the soil layer (Scherba et al., 2011). Moreover, the module allows 

the user to define different irrigation types and to set up specific schedules. 

According to Heusinger et al. (2018), extensive green roofs have much lower static 

requirements and are less expensive, so green roods are generally favored over intensive roof 

types. Therefore, in this dissertation, an extensive green roof type was chosen instead of the 

intensive green roof type. Additionally, other studies combined the extensive green roofs with 

the solar PV system instead of intensive green roofs for PV-green roofs. The setting of 

parameters in extensive green roofs used in this dissertation was follow the settings in Sailor 

(2008), which was based on validated data in two monitored buildings installed with green roofs 

at Portland State University, Oregon. The key green roof parameters include plant height (0.2 m), 

LAI (2), soil depth (20 cm), dry soil conductivity (0.4 w/m-k), dry soil specific heat (1,000 J/kg-

k), and dry soil density (500 kg/m3). For roof irrigation systems, a “smart schedule” was chosen 

that follows the precipitation schedule and did not allow irrigation when soil is already moist 

(30% saturation). This schedule was also activate an early morning irrigation system if the soil 

volumetric moisture content falls below 0.15 m3/m3. 
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4.4.2 EnergyPlus Solar Photovoltaic Module Setting 

EnergyPlus offers different module performance algorithms for predicting the electricity 

produced by solar electric PV panels. The three different options are (1) Simple, (2) Equivalent 

One-Diode, and (3) Sandia; and the algorithm choice will determine the mathematical models 

used to simulate energy production. The simple algorithm allows the user to input an arbitrary 

efficiency that requires prior knowledge about different PV panel types. The other two models 

use empirical relationships to predict PV operating performance based on many environmental 

variables. In this dissertation, the Sandia PV performance algorithm, which is based on extensive 

measurements and data collection performed at Sandia National Laboratory to predict electricity 

generated by PV systems, was chosen for simulation. The Sandia model can accurately predict 

daytime PV cell temperatures and aggregate multiple PV modules by defining the number of 

cells in series and parallel. These parameters were set differently for each single building based 

on recommendations such as the area available for solar panels and the recommended solar 

installation size provided by the Google Project Sunroof website. 

4.5 Summary 

In this chapter, the methodology of this dissertation has been discussed in detail. The 

results of this dissertation will aid municipal governments to tailor adaption and mitigation 

strategies in different regions within megacities such as Los Angeles, which have a high degree 

of diversity in building composition and population density. The mitigation potential assessment 

of PV-green roofs is a good reference for reducing building net energy consumption by 

increasing the supply of renewable energy while decreasing energy use. 
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CHAPTER 5 

 

HIGH SPATIAL AND TEMPORAL RESOLUTION ANTHROPOGENIC HEAT 

DISCHARGE ESTIMATION IN LOS ANGELES COUNTY 

5.1 Introduction 

In this chapter, the results obtained from the estimation of the Qf profile at high spatial 

and temporal resolutions in Los Angeles County are explained. The methods were presented in 

detail in Section 4.2. This chapter has been divided into five sections. Section 5.2 outlines the 

results of the temporal variation of Qf. Section 5.3 presents the results of Qf on extremely hot 

summer days. Section 5.4 illustrates Qf in the urban core area. Section 5.5 discusses the 

significance of the proposed work and presents a comparison with previously published work 

based on the results and the applicability of the methodology. Results of this study were 

published in Journal of Environmental Management (Zheng & Weng, 2018, Appendix A). 

5.2 Temporal Variations of the Anthropogenic Heat Flux 

The diurnal variation of the mean hourly Qf and its components on spring workdays, 

spring nonworkdays, summer workdays, summer nonworkdays, fall workdays, fall 

nonworkdays, winter workdays, and winter nonworkdays in Los Angeles County are presented 

in Figure 5.1. In general, Qb and Qv contributed similar proportions to Qf but at different time, 

and Qm contributed the least to Qf regardless of it being a workday or nonworkday. In all 

profiles, the workday diurnal profiles of Qf exhibited two peaks, i.e., morning and evening peaks, 
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while the nonworkday diurnal profiles of Qf exhibited parabola shapes with only the peak in the 

evening hours. These shapes are related to traffic emissions peaking not only during the evening 

rush but also during the morning rush on workdays. The peak values on workdays were higher 

than on nonworkdays because many buildings were not in operation on nonworkdays. The 

lowest values of Qf were found at 4 am on workdays and 5 am on nonworkdays. 

Figure 5.1 also compares the diurnal variation of Qf in different seasons for (i) workdays 

and (j) nonworkdays. The diurnal variations of Qf exhibited similar shapes but small differences 

in magnitude. The Qf profiles in the summer exhibited higher values at noon (7.76 w/m2) and in 

the evening on workdays and nonworkdays than that of the other seasons (Figure 5.1g). The 

reason is that building energy consumption was highest at noon and in the evening hours in 

summer (Figures 5.1c and d) due to extra energy being consumed for cooling. Moreover, the Qf 

values on winter mornings on workdays and nonworkdays were higher than in the other seasons 

because of the higher building energy consumption (Figures 5.1h and i) for heating to offset the 

large difference between the indoor and outdoor temperatures on winter mornings. This reason 

also explains why winter was the only season with the highest workday Qf value occurring in the 

morning peak instead of the evening peak.  

5.3 Anthropogenic Heat Fluxes on Extremely Hot Summer Days 

Qf appeared to have the highest values on summer workdays in Los Angeles County, 

with its maximum value reaching 7.76 w/m2 (Figure 5.1g). Because traffic emissions and human 

metabolisms did not exhibit obvious seasonal variations, the most significant driver of the 

increased energy use in summer came from the building sector, which required increased energy 

consumption for cooling. This study performed compared Qf on an extremely hot summer 

workday with the averaged summer workday value to examine if there was an obvious increase 



57 

 

(a)                                   (b)                                    (c) 

 

                                        (d)                                  (e)                                    (f) 

 

                                       (g)                                   (h) 

 

(i)                                      (j) 

Figure 5.1. Diurnal variation of Qf, Qb, Qv, and Qm (w/m2) in Los Angeles, USA., based on the 

average values from all (a) spring workdays, (b) spring nonworkdays, (c) summer workdays, (d) 

summer nonworkdays, (e) fall workdays, (f) fall nonworkdays, (g) winter workdays, and (h) 

winter nonworkdays; comparison of the diurnal variation of Qf in different seasons on (i) 

workdays and (j) nonworkdays in Los Angeles, USA (Zheng & Weng, 2018). 
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in building energy demand on extremely hot days and to what extent the energy use increased. 

August 25, 2015, was selected as the extremely hot summer workday for comparison in 

this study because the high temperature reached 37 °C (98.6 °F) at 1 pm. The temperature 

remained above 30 °C (86 °F) for 10 hours (from 10 am to 7 pm). Figure 5.2a presents a 

comparison between Qf on the selected extremely hot summer workday (August 25, 2005) and 

the average of all summer workdays. On the extremely hot summer workday, Qf was 

substantially higher than the average of all summer workdays from 8 am to 11 pm, with its 

maximum value reaching 8.14 w/m2.  

Figure 5.2b shows the time series of the ratio between the anthropogenic heat fluxes (blue 

solid), building emissions (red dash), and traffic emissions (green dash) on the extremely hot 

summer workday and for the average of all summer workdays. When the heat fluxes on the 

extremely hot summer workday exceeded those of the average of all summer workdays, the ratio 

was larger than 1. Higher ratios indicated enhanced heat fluxes were produced on the extremely 

hot summer day. The major contributor of the higher anthropogenic heat fluxes on the extremely 

hot summer day varied with time. According to Figure 5.2b, building emissions were the major 

contributor for most of the day (from 9 am to 6 pm and from 8 pm to 9 pm), as the ratio was 

significantly higher than that of the traffic emissions and anthropogenic heat fluxes during these 

periods. The building ratio increased gradually from 8 am to 11 am because the temperature 

difference between the extremely hot summer day and the average of all summer workdays 

increased. This ratio remained high from 12 pm to 4 pm because the temperature difference 

reached its maximum during the daytime, and the air condition systems consumed more energy 

to offset the larger indoor/outdoor temperature difference on the extremely hot summer day. 

During the daytime (8 am to 6 pm), traffic emission contributed less to the higher Qf on the 
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extremely hot summer day, as indicated by the traffic ratio being generally lower than the 

building ratio. However, at night, the traffic ratio increased dramatically while the building ratio 

remained high, which resulted in a larger Qf increment on the extremely hot summer workday. 

The reason that there was a significantly larger traffic volume on the selected day must be further 

studied. Possible factors included traffic congestion or nighttime activities. 

 

(a) 

 

(b) 

Figure 5.2. (a) Comparison between Qf (w/m2) on an extremely hot summer workday (August 

25, 2005) and the average of all summer workdays; (b) time series of the ratios between the 

anthropogenic heat fluxes, building emissions, and traffic emissions on the extremely hot 

summer workday and those of average summer workdays (Zheng & Weng, 2018). 
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5.4 Anthropogenic Heat Fluxes in the Urban Core Area 

Although the daily maximum Qf estimated in Los Angeles County on the extremely hot 

summer workday did not exceed the average of all summer workdays by 10 w/m2, there was a 

large within-county variation in Qf for different regions. Figure 5.3 presents the spatial 

distribution of Qf estimated at 5 pm on the summer workdays in Los Angeles County, when Qf 

exhibited its highest value (Figure 5.2). The spatial distribution of Qf was uneven, with high 

values (larger than 100 w/m2) being located in some clusters, such as the downtown area, Korean 

Town, Beverly Hills, Hollywood, West Los Angeles, Long Beach, and Santa Monica, which are 

characterized as commercial and industrial zones. Moreover, high Qf values can be found along 

the major freeways due to heavy traffic emissions during the evening rush hours. Moderate Qf 

values (20 to 100 w/m2) were detected in residential zones with high housing and population 

density, while low Qf values (less than 20 w/m2) were located in cities with small populations 

(Palmdale and Lancaster), low-density residential zones, and minor roads. The downtown area 

was found to have the highest mean Qf throughout the year because there are more densely 

distributed tall commercial buildings in this area. Figure 5.3b shows the spatial distribution of Qf 

in the downtown area at 5 pm during summer workdays. The spatial variation of Qf is 

characterized by low values in the southeast part of the downtown area, with values increasing 

dramatically towards the northwest. This spatial distributed reflected the fact that most of the tall 

commercial buildings are located in northwest part of the downtown area. Less tall commercial 

buildings, historical office buildings, apartment complexes, and warehouses are located in the 

southeast part of the downtown area, contributing to a lower Qf value. Some areas with high Qf 

values in this region are representative of freeways.  
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Figure 5.4 shows a comparison of the diurnal variation of Qf in downtown Los Angeles 

for different seasons on (a) workdays and (b) nonworkdays. It can be concluded that Qf in the 

downtown was much higher on workdays than that on nonworkdays, and its maximum value 

reached 100 w/m2 (4 pm on summer workdays). From 9 am to 5 pm, Qf on summer workdays 

was higher than on other workdays (Figure 5.4a), while from 5 am to 9 am, Qf on winter 

weekends was highest (Figure 5.4b). Building energy consumption was the most important factor 

that contributed to Qf (Figure 5.5). 

 

(a)                                                            (b) 

Figure 5.3. Spatial distribution of Qf (w/m2) in (a) Los Angeles County and (b) downtown Los 

Angeles (Zheng & Weng, 2018). 
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(a)                                                   (b) 

Figure 5.4. Comparison of diurnal variations of Qf (w/m2) in downtown Los Angeles for 

different seasons on (a) workdays and (b) nonworkdays (Zheng & Weng, 2018). 

  

(a)                                                                     (b) 

Figure 5.5. Percentage breakdown (%) of the individual components contributing to Qf from (a) 

9 am to 5 pm on workdays and (b) 5 am to 9 am on nonworkdays in downtown Los Angeles 

(Zheng & Weng, 2018). 

 

5.5 Discussion and Conclusions 

This section discusses the significance of the aforementioned results. Compared to prior 

studies, the advantage of the approach used in this study is the design of separate profiles for 

workdays and weekends. In this way, higher values of Qf on winter mornings and summer 
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evenings on workdays can be identified. These contrasts would be less significant if workday 

and weekend Qf profiles were not separated from each other. 

In addition, a large within-county difference in Qf was uncovered for different regions 

and land use types in the studied area, which agrees with the results of many previous studies 

(Chapman et al., 2016; Chow et al., 2014; Hamilton et al., 2009; Ichinose et al., 1999; Quah & 

Roth, 2012; Smith et al., 2009). The intensity of Qf can be affected by the spatial extent that was 

used for measurement. Downtown Los Angeles was found to have the largest mean Qf 

throughout the year, among all neighborhoods. The maximum Qf value in the downtown Los 

Angeles can exceed 100 w/m2
 (Figure 5.4a) on workdays, which was significantly higher than 

that throughout the county (7.76 w/m2) (Figure 5.1g). Building energy consumption was 

identified as the dominant contributor to the overall Qf in the downtown area. When compared 

with previous studies (Ichinose et al., 1999; Nie et al., 2014; Quah & Roth, 2012; Wong et al., 

2015) which estimated Qf in cities or regions with higher population densities (Tokyo, Hong 

Kong, Singapore), traffic emissions were found to account for a higher percentage of Qf in Los 

Angeles County, while human metabolism contributed less.  

This study proposed an approach to estimate Qf at high spatial and temporal resolution 

for a large metropolitan area with diverse geographic settings. However, the data availability was 

still a major limitation in this study and resulted in uncertainties. The discrepancies between the 

building simulation results and the actual building energy consumption can be caused by many 

factors. First, the simulation model used in EnergyPlus cannot account for all factors that 

determine actual building energy consumption, such as the occupancy status and behaviors. 

Moreover, the building prototypes were developed based on the most common building 

technologies/characteristics in the survey data for Los Angeles County, which may not represent 
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all buildings in reality. Therefore, for validation purposes, this dissertation used the actual 

building energy consumption data at the neighborhood scale to validate the building energy 

consumption simulation results. The simulated energy consumption from all buildings within 

each neighborhood and each sector were aggregated to compare with the corresponding sector in 

each neighborhood in the referenced data. For all neighborhoods, the ratio between the simulated 

results and the reference data ranged from 0.85 (West Los Angeles) to 1.92 (Avalon), with a 

mean value of 1.38. This validation result suggests that the building energy simulation model 

tended to overestimate the actual building energy consumption. After calibration, potential bias 

and uncertainty in the simulated results can be corrected at the neighborhood scale, while the 

differences among individual sectors and buildings within a neighborhood over a given time 

period remain. This result is essential for city governments to work towards a sustainable city by 

tailoring adaption and mitigation strategies at the regional level.  

The proposed approach has a higher degree of applicability for Qf estimation in large 

areas than approaches proposed in previous studies, as all the data used were available to the 

public. Compared with other recent studies (Chow et al., 2014; Nie et al., 2014; Park et al., 

2016), which relied on data that were only available for local regions, this research was not 

restricted to small study areas because all data were available for all of Los Angeles County. 

Therefore, this approach can be readily applied to similar studies in different study areas with 

different climates. Qf in the mid-latitude cities should have its peak value during winter mornings 

when the offset between the indoor and outdoor temperature reaches its maximum value, 

especially on workdays, because more buildings would be in operation than on weekends.  
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CHAPTER 6 

 

MODELING THE EFFECT OF CLIMATE CHANGE ON BUILDING ENERGY DEMAND 

IN LOS ANGELES COUNTY USING A GIS-BASED HIGH SPATIAL AND TEMPORAL 

RESOLUTION APPROACH 

6.1 Introduction 

The effect of climate change on the building energy demand in Los Angeles County is 

discussed in this chapter, which comprises four sections. The methods were presented in detail in 

Section 4.3. In Section 6.2, the impact of climate change on the building energy demand at 

different temporal scales (annual, monthly, and hourly) is presented. The spatial variations of the 

energy demand change at the neighborhood scale are described in Section 6.3. Major findings, 

implications, and the strengths and limitations of the approach applied in this study compared 

previously published works are discussed in Section 6.4. Results of this study were published in 

Energy (Zheng & Weng, 2019, Appendix B). 

The impact of climate change on buildings can be influenced by multiple factors. Each 

factor was analyzed for seven TMY weather zones, three building technologies, eighteen 

building prototypes, and two IPCC carbon dioxide emission scenarios. This chapter analyzes the 

climate impact at three different temporal scales (annual, monthly, and hourly) and assesses 

changes in the spatial patterns of the building energy demand across the Los Angeles County 

using the relative change (RC) and absolute difference (AD). The RC can be calculated by the 
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following formula: 

 

                                                    RC = (Ef – Ep)/Ep * 100%                                                (21) 

 

The RC reflects the energy consumption difference between the calibrated current energy 

consumption (Ep) and projected future energy consumption (Ef). The AD represents the 

difference in energy consumption intensity, which can be calculated as follows: 

 

                                                            AD = (Ef – Ep)/FA                                                    (22) 

 

where FA is the building floor area, which is the product of the number of floors in a particular 

building and the area of each floor. 

 

6.2 Impact of Climate Change on the Building Energy Demand at Different Temporal Scales 

6.2.1 Variation at the Annual Scale 

The variation across building types, ages, and weather zones at the annual scale was first 

analyzed. Tables 6.1 and 6.2 show the annual average building energy demand, as measured by 

the RC and AD, between 2050 and the present (1991–2005) in Los Angeles County for 

commercial and residential buildings. The majority of building types showed an apparent 

increase in energy demand under both emission scenarios, and the energy demand increase was 

higher under the high-emission scenario. A large variation in energy consumption change across 

different types of buildings was identified. For example, the ADs ranged from -28.7 MJ/m2 

(warehouse) to 68.2 MJ/m2 (Outpatient), and the RCs ranged from -11.8% (warehouse) to 7.9% 
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(medium office) under the RCP8.5 scenario. Due to the higher energy consumption intensity 

under the current climate, the majority of commercial buildings showed higher ADs than two 

types of residential houses.  

Because of global warming, the cooling energy intensity for all types of buildings should 

increase under both emission scenarios, while the energy intensity for heating in all types of 

buildings should decrease. The change in the cooling and heating energy demand in the future 

showed even greater changes than the total energy demand change. The RC for cooling energy 

increase ranged from 5.9 MJ/m2 (warehouse) to 166.8 MJ/m2 (full-service restaurant) under the 

RCP8.5 scenario. However, the dramatic changes in the cooling and heating energy demand can 

easily be ignored due to the smaller changes in the total energy demand, if no further analysis 

was performed. For example, under the RCP8.5 scenario, the full-service restaurant category 

showed much larger AD than the hospital category with regard to both the cooling and heating 

energy intensity, although the increase in cooling would nearly be offset by the decrease in 

heating, resulting in a smaller total energy AD than that of the hospital category. The two types 

of restaurants showed the largest ADs in cooling and heating energy intensity among all types of 

buildings, which might be attributed to their large exposure to the outdoor environment and air 

intake in addition to the need for regulating waste heat from cooking. Moreover, restaurants 

should experience a larger heating energy demand decline under a warmer climate because the 

internal heat gain through high-intensity cooking can compensate for the need for space heating 

energy in winter months. Therefore, restaurants should expect to be more sensitive to climate 

change.  
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Table 6.1 

Relative change (%) and absolute difference (MJ/m2) in the average annual building energy 

demand between 2050 and present (1991–2005) in Los Angeles County under the RCP8.5 

emission scenario (Zheng & Weng, 2019). 

Building Type Total  Total Cooling Heating 

  AD RC AD AD 

Commercial     
Full-Service Restaurant 1.3 0.1% 166.8 -169.2 

Hospital 14 1.0% 44.6 -38 

Large Hotel 51.5 3.5% 74.1 -30.6 

Large Office 24.4 4.8% 29.5 -12.8 

Mid-Rise Apartment 30.45 4.5% 49.8 -25.15 

Medium Office 46.9 7.9% 55 -12.3 

Outpatient 68.2 4.0% 102.9 -36.3 

Primary School 31.5 4.8% 51.5 -24.6 

Fast-Food Restaurant 18.3 0.3% 151 -142.9 

Secondary School 36.7 6.2% 68 -38.9 

Small Hotel 40.7 5.2% 45.8 -9.2 

Small Office 31 4.9% 43.3 -13.8 

Stand-Alone Retail 6.8 1.0% 54.6 -47.5 

Strip Mall 4.1 0.4% 57.7 -53.2 

Supermarket -18.1 -0.9% 34.7 -114.1 

Warehouse -28.7 -11.8% 5.9 -34.1 

Residential: Multiple Family  7.2 4.1% 10.9 -5.9 

Residential: Single Family 2.8 2.3% 10.4 -9.5 

  

The effect of building technologies on the energy performance was further analyzed. 

Figure 6.1 presents the differences in total annual energy consumption intensity (a), cooling (b), 

and heating (c) for commercial buildings between the year 2050 and 1991–2005 under the 

RCP8.5 emission scenario, presented for three periods of time: after 2004 (post-2004), 1980 to 

2004 (post-1980), and before 1980 (pre-1980). Although no substantial differences can be 

observed between the pre-1980 and post-1980 buildings regarding the energy consumption 

caused by global warming, the post-2004 buildings exhibited the smallest increase in the annual 

total energy demand for the majority of the studied building types. As shown in Figure 6.1b, the 
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post-2004 buildings had the smallest increase in space cooling energy demand for all types of 

buildings. It can be concluded that the newly constructed buildings in Los Angeles County 

should be less sensitive to higher outdoor temperatures in the future. They have the ability to 

maintain a comfortable indoor environment more efficiently due to their better insulation and 

advanced energy-saving technologies (Deru et al., 2011), such as the installation of air-

conditioning systems with a higher coefficient of performance (COP) to decrease the energy 

demand, especially electricity demand on hot summer days. 

Table 6.2 

Relative change (%) and absolute difference (MJ/m2) in the average annual building energy 

demand between 2050 and present (1991–2005) in Los Angeles County under the RCP6.0 

emission scenario (Zheng & Weng, 2019). 

Building Type Total  Total Cooling Heating 

  AD RC AD AD 

Commercial     
Full-Service Restaurant -20.4 -0.4% 119.7 -137.4 

Hospital 8.6 0.5% 31.2 -29.3 

Large Hotel 34.4 2.2% 53.4 -24.9 

Large Office 16.7 3.1% 21.6 -10.5 

Mid-Rise Apartment 20.75 3.0% 36.05 -19.3 

Medium Office 32.9 5.5% 40.9 -9.3 

Outpatient 53.1 3.1% 75.8 -25.3 

Primary School 20.4 3.1% 37.5 -20 

Fast-Food Restaurant -6.9 0.0% 107.6 -116.4 

Secondary School 21.7 3.7% 48.8 -31.6 

Small Hotel 28.5 3.5% 33 -7.4 

Small Office 20.7 3.4% 31.4 -11.2 

Stand-Alone Retail -0.1 0.1% 40.7 -38.5 

Strip Mall -2.5 -0.2% 42.8 -43.1 

Supermarket -24.1 -1.1% 25 -90.3 

Warehouse -23.9 -9.8% 4.2 -27.4 

Residential: Multiple Family  4.8 2.7% 8.3 -4.9 

Residential: Single Family 1.3 1.1% 7.8 -7.7 
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(a) 

 

(b)                                                                              (c) 

Figure 6.1. Differences in the total annual energy consumption intensity (a), space cooling (b), 

and space heating (c) (MJ/m2) for commercial buildings between the 2050 and 1991–2005 under 

the RCP8.5 emission scenario (Zheng & Weng, 2019). 
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6.2.2 Variation at the Monthly Scale 

Because the impact of global warming on the building energy demand may have larger 

variations at finer geographical scales, this study further analyzed the impact at monthly scales. 

The RCP8.5 scenario was assessed at finer time scales to examine the vulnerability of buildings 

under extreme hot weather. Although the majority of buildings had positive annual AD values, 

all of them had both positive and negative monthly AD values throughout the year. Moreover, all 

buildings showed increased cooling energy demand and decreased heating energy demand in all 

months (Figures 6.2b and c). The largest positive AD in total energy for all buildings occurred in 

August (Figure 6.2a), when the increase in cooling reached its peak and there was little heating 

demand. From April to October, the total energy demand increased because the increased 

cooling energy exceeded the decreased heating energy, and from November to March, the total 

energy demand declined because the increased heating demand could not be offset by the 

decreased cooling demand. Residential buildings showed smaller ADs than commercial 

buildings, regardless of the month and energy type. The total energy AD varied from -1.09 

MJ/m2 (January) to 2.02 MJ/m2 (August) for multiple-family apartments, which showed a 

slightly larger variation than single-family houses. Commercial buildings showed not only larger 

monthly ADs but also a greater variation among the different building types. In January, the AD 

in the total energy ranged from -25.8 MJ/m2 (full-service restaurant) to 2.9 MJ/m2 (outpatient 

buildings), and the increased heating energy use was the major driver. In August, as the cooling 

energy demand reached its peak, the AD in total energy ranged from 1.8 MJ/m2 (warehouse) to 

30.9 MJ/m2 (full-service restaurant). 

Figure 6.2d shows the AD in the monthly energy intensity under the RCP8.5 emission 

scenarios across the different TMY3 weather zones. The Burbank-Glendale weather zone 
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presented the largest increase in the total energy intensity from April to October. Because the 

Burbank-Glendale weather zone exhibited the largest cooling energy increase (Figure 6.2e), 

which was caused by its basin topography, there would likely be a larger temperature increase 

than in the other weather zones. The Lancaster and Palmdale weather zones exhibited the largest 

negative ADs in the context of the total energy demand from October to March because they had 

the largest decrease in heating energy demand. This finding could be the result of the cold, 

semiarid steppe climate of these areas, which have colder and windier winters than the other 

zones. These weather zones were not found to have a large positive AD for cooling. Because the 

average temperature in summer under the current climate is already much higher than the 

comfort temperature (18.3 °C) (Figure 4.3), they already have a high cooling demand. Figure 6.3 

presents the total (a), space cooling (b), and space heating (c) monthly energy consumption 

intensity differences (MJ/m2) between the year 2050 and 1991–2005 under the RCP8.5 emission 

scenario for commercial buildings constructed at different times. The post-2004 buildings 

exhibited the smallest increase in the cooling energy demand and decrease in the heating energy 

for all months, which contributed to the smallest change in the total energy demand throughout 

the year. 

6.2.3 Variation at the Hourly Scale 

It was discovered that the largest total energy increase occurred in the summer months, 

especially in August. This section presents a more detailed analysis of the hourly ADs across 

different weather zones in August. Diurnal time series were created to explain the hourly energy 

consumption changes. For each specific time period, the average value of the energy 

consumption during the same hour over 31 days in August was used. Because there is usually 

little heating energy demand in August, the analysis was only based on total and cooling energy  
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(a)                                               (b)                                                  (c) 

 

          (d)                                                 (e)                                                 (f) 

Figure 6.2. Absolute difference in average monthly (a) total, (b) cooling, and (c) heating building 

energy intensity (MJ/m2) between 2050 and 1991–2005 under the RCP8.5 emission scenario 

across building types; change in monthly energy intensity (MJ/m2) under the RCP8.5 emission 

scenarios across different TMY3 weather zones in Los Angeles County: (d) monthly total energy 

intensity change; (e) monthly cooling energy intensity change; and (f) monthly heating energy 

intensity change (Zheng & Weng, 2019). 
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(a) 

 

(b) 

 

(c) 

Figure 6.3. Energy consumption intensity differences (MJ/m2) by month for commercial 

buildings constructed at different times between the year 2050 and 1991–2005 under the RCP8.5 

emission scenario: (a) total energy consumption; (b) space cooling; and (c) space heating (Zheng 

& Weng, 2019).  
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demands. Figures 6.4a and b show the average hourly building total and cooling energy intensity 

AD between 2050 and 1991-2005 under the RCP8.5 emission scenario across building types. 

Although all buildings exhibited increased total and cooling energy demand throughout the day, 

all commercial buildings showed a larger positive AD and greater variation. Restaurants showed 

a considerably larger positive AD in total energy than the other building types, with a maximum 

AD of 67.5 KJ/m2 (fast-food restaurants at 12 pm). All commercial buildings showed a larger 

positive AD in the daytime than at night, although the time of the peak AD was different for 

some building categories. The majority of commercial buildings showed the largest positive AD 

from 9 am to 5 pm, whereas hotels and residential buildings showed positive ADs in the early 

morning hours and at night. Restaurants observed two AD peaks during the daytime, 

corresponding to lunch and dinner.  

The variation in the diurnal cooling energy demand was much smoother than that of the 

total energy (Figure 6.4c and d) because the total energy demand was affected by additional 

factors in addition to the diurnal temperature variation. The diurnal variation in the total and 

cooling energy ADs at the Los Angeles International Airport was much closer to that of 

commercial buildings. This was surprising because the Los Angeles International Airport 

weather zone possessed the highest percentage of commercial building floor area (30.82%) 

(Table 6.3). The diurnal variation patterns of the total and cooling energy ADs in the Lancaster 

weather zone appeared similar to that of residential buildings because this area had the highest 

percentage of residential building floor area (91.10%). 
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(a) (b) 

 

(c)                                                                           (d) 

Figure 6.4. Diurnal change in absolute difference in the average building energy intensity 

(MJ/m2) between 2050 and 1991–2005 under the RCP8.5 emission scenario across building 

types in Los Angeles in August: (a) total energy and (b) cooling energy; change in energy 

intensity (KJ/m2) under the RCP8.5 emission scenario across different TMY3 weather zones in 

Los Angeles in August: (c) diurnal total energy intensity change and (d) diurnal cooling energy 

intensity change (Zheng & Weng, 2019).  
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Table 6.3 

The percentage (%) of residential and commercial building floor areas in the 7 weather zones in 

Los Angeles County (Zheng & Weng, 2019).  

  

Percentage of Residential 

Building 

Percentage of Commercial 

Building 

Burbank-Glendale 81.66% 18.34% 

Van Nuys 85.51% 14.49% 

Los Angeles Intl Airport 69.18% 30.82% 

Long Beach 80.27% 19.73% 

Lancaster 91.10% 8.90% 

Palmdale 84.52% 15.48% 

Point Mugu 86.89% 13.11% 

 

6.3 Spatial Variations of Energy Demand Change at the Neighborhood Scale 

This section presents the spatial variation of changes in energy demand by 2050 due to 

climate change at the neighborhood scale. Figure 6.5 presents the spatial variation of total energy 

consumption changes (both RC and AD) in 2050 under the RCP8.5 and RCP6.0 scenarios. Large 

within-county RC and AD variations can be seen under both scenarios. In general, the RC and 

AD in the annual total energy variation followed the same pattern, represented by a larger 

increase in the south part of the county and a smaller increase or even decrease in the north part. 

This finding is because the current climate is warmer in the south, resulting in a low current 

heating energy demand. Thus, there is a limitation to the heating energy consumption decrease 

because the minimum heating energy demand cannot be less than zero, whereas there is no 

limitation to the increase in the cooling energy demand. Because the climate would be warmer in 

2050, the slight decrease in the heating energy demand in the south cannot be offset by the larger 

cooling energy demand, leading to a larger increase in the total energy demand than in the north. 

The increased energy demand was found to be more substantial under the RCP8.5 scenario than 

under the RCP6.0 scenario. The number of neighborhoods with an annual total energy demand 
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increasing by more than 4.5% was 188 under the RCP8.5 scenario and only 33 under the RCP6.0 

scenario. A similar difference can be observed when using the AD as the metric. The number of 

neighborhoods with an increase in the total energy demand exceeding 17 MJ/m2 was 145 under 

the RCP8.5 scenario and only 45 under the RCP6.0 scenario. 

The increase in the cooling energy demand should be more severe than that of the total 

energy demand (Figures 6.6a through d). The RC in the cooling energy demand ranged from 

27% to 122% under the RCP8.5 scenario and 25% to 95% under the RCP6.0 scenario, much 

larger than -1.8% to 7.9% and -1.8% to 6.7% for the total energy demand RCs, respectively. 

Neighborhoods with a RC in the cooling energy demand of more than 100% were mostly located 

in the Los Angeles International Airport weather zone because it had the highest percentage of 

commercial buildings (Table 6.3). Commercial buildings were found to have a higher energy 

demand increase than residential buildings, as discussed in the previous section. The dramatic 

positive RC for commercial buildings could cause a huge challenge for the cooling energy 

supply, while frequent power outrages could happen in the future if no changes are made to the 

current electronic system configuration. The AD in the cooling energy demand under the RCP8.5 

scenario did not follow the same trend as the AD in the total energy demand. The “hotspots” 

(larger than 30 MJ/m2) in the cooling energy demand in response to climate change were found 

in the Burbank-Glendale weather zone. The probable cause is a greater number of warmer 

months in this zone than in other locations because it is located in a valley. Moreover, building 

size and density played an important role in the energy demand AD. Neighborhoods with the 

largest increase in energy consumption intensity were located in the major commercial zones 

with high density of tall buildings. As shown in Figures 6.6e and f, the downtown area had the 

highest increase of per building energy demand because it had the largest average building floor 
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area (more than 3,000 m2) among all neighborhoods in the Los Angeles County. 

 

(a)                                                    (b) 

 

 

(c)                                                        (d) 

Figure 6.5. The spatial variation of total energy consumption changes in 2050 due to climate 

change in Los Angeles: (a) annual relative change (%) under the RCP8.5 scenario; (b) annual 

relative change (%) under the RCP6.0 scenario; (c) annual energy intensity absolute difference 

(MJ/m2) under RCP8.5 scenario; (d) annual energy intensity absolute difference (MJ/m2) under 

the RCP6.0 scenario. Note: this sixth version of neighborhood boundaries were defined by the 

Los Angeles Times in June 2010, which represents the boundaries of communities and social 

organizations within each city (Zheng & Weng, 2019).  
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(a)                                                       (b)                                                      (c) 

     

         (d)                                                        (e)                                                        (f) 

Figure 6.6. The spatial variation of cooling energy consumption changes by 2050 caused by 

climate change in Los Angeles County at the neighborhood scale: (a) annual relative change  (%) 

under the RCP8.5 scenario; (b) annual relative change (%) under the RCP6.0 scenario; (c) annual 

energy intensity absolute difference (MJ/m2) under the RCP8.5 scenario; (d) annual energy 

intensity absolute difference (MJ/m2) under the RCP6.0 scenario; the spatial variation of the 

absolute difference in cooling energy consumption per building in 2050 caused by climate 

change in Los Angeles County at the neighborhood scale (MJ/m2): (e) under the RCP8.5 

scenario; (f) average floor area per building (m2) (Zheng & Weng, 2019). 
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6.4 Discussion and Conclusions 

This section discusses the major findings, implications, strengths and limitations of the 

approach used in this study compared to previous published studies. The results of previous 

studies suggest that buildings in warmer climate zones have larger annual total energy increases 

than those in colder climate zones. The findings of this study agree with those of previous 

findings, However, more importantly, this study discovered a large variation even within the 

same climate zone, which was caused by building types and ages. In examining the changes in 

energy demand at finer temporal scales (i.e., monthly and diurnal), the variation of energy 

demand increases across different building types were larger, suggesting that simulations at high 

spatial and temporal resolutions were indeed necessary. Although lighting and equipment usage 

were not directly affected by climate change, they can increase the internal heat gain and raise 

the indoor temperature, resulting in the need for more cooling energy consumption.  

Unlike previous studies, which used representative buildings (Andrić et al. 2016; Berger 

et al. 2014; Dirks et al. 2015; Huang and Gurney 2016) or assumed that each type of building 

had the same floor area fraction to the total building stock (Wang and Chen, 2014), this approach 

linked the building energy simulation and climate change model to fine-scale urban building 

inventory data. Therefore, this approach allows analysts and policy makers to assess the 

sensitivity of different regions in a city to climate change with regard to building energy demand 

increases at different spatial and temporal scales. In addition, a complete database of each 

building in Los Angeles County was built and can be combined with other data. Policy makers 

can take the database as a reference to choose appropriate policies that target specific regions. At 

the county scale, the results in this study suggest that the likely dramatic increase in the cooling 

energy demand is the major driving force of total energy increases at all-time scales. Because 
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electricity is the main source for space cooling, the high cooling demand should exceed the 

current electricity generate capacity. Moreover, due to electricity being the secondary energy 

source, the rising cooling energy demand will also lead to the increased consumption of other 

energy sources, such as traditional fossil fuels, which are widely used to generate electricity. 

According to the California Energy Commission, only 29% of electricity was generated through 

renewable energy sources in 2016, and the traditional energy sources remained the major 

sources. As a result, more greenhouse gases have been emitted. This study found that the 

increase in the energy demand was not distributed evenly throughout Los Angeles County at the 

neighborhood scale. Regions with a high density of tall commercial buildings (downtown and 

major commercial zones) exhibited the largest energy demand increase. Advanced building 

technologies can help save large amounts of energy, as indicated by buildings built after 2004 

being more energy efficient than those built before 2004 at the annual and monthly time scales. 

However, 188,060 commercial buildings were built before 2004 in Los Angeles County, which 

account for 97.84% of all existing commercial buildings. In contrast, only 4,152 (2.16%) existing 

commercial buildings were built after 2004. Therefore, policy makers may consider the potential 

of zero net energy buildings (Rey-Hernandez et al., 2018) throughout the county and give the 

highest priority to regions most vulnerable to climate change. To achieve this goal, the high-

resolution database of building sustainability created in this study can be combined with the solar 

potential rate for each region in Los Angeles County. At the individual building scale, two types 

of restaurants were identified to have much higher energy demand increases than the other types 

of buildings despite their locations and ages. Given that their peak energy demand increase was 

during lunch and dinner times in summer, reducing the solar heat gain and the effectiveness of 

cooling should be considered simultaneously for all restaurants. Strategies, such as installing 
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solar panels, cool roofs, green roofs, cooling system update, and window retrofit, should be 

considered. 
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CHAPTER 7 

 

MODELING THE PERFORMANCE OF GREEN ROOF SYSTEMS AND PHOTOVOLTAIC 

PANELS FOR BUILDING ENERGY SAVINGS 

7.1 Introduction 

The potential mitigation effects of green roofs and PV-green roofs on buildings that are 

more vulnerable to climate change in terms of increased energy demand are discussed in this 

chapter, which comprises four sections. The methods were presented in detail in Section 4.4. In 

Section 7.2, the performance of PV-green roof mitigation strategies on the potential building 

energy use increase due to climate change is evaluated at different temporal (annual and 

monthly) scales. Section 7.3 presents the result of sensitivity analysis of the green roof model to 

key parameters. Major findings, strengths, and limitations of the methodology used in this study 

compared to previously published works are discussed in Section 7.4. 

7.2 Evaluation of Green Roofs and Photovoltaic Panels on building Energy Savings at Different 

Temporal Scales 

            According to the results in Chapter 6, there are large within-county spatial variations in 

the building energy demand increases under both climate change scenarios. However, the 

increased energy demand was found to be more substantial under the RCP8.5 scenario. 

Moreover, the increased cooling energy demand was found to be more severe than the total 

energy demand. To assess the potential mitigation effects of PV-green roof systems, this study 
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identified the neighborhoods that are expected to have the largest increase in the cooling energy 

demand in buildings under the RCP8.5 scenario as study sites. In the following step, buildings 

found to have greater energy increases were selected as the buildings for experiment.   

Glendale and Koreatown were selected as the study sites because they exhibited the 

largest positive AD and RC in the cooling energy demand among all neighborhoods (Figure 7.1), 

respectively. Within the two study sites, the two types of restaurants (full-service and fast-food 

restaurants) were found to be more susceptible to the large increases in the cooling energy 

demand in both neighborhoods based on the measured AD or RC. Among the other building 

types, outpatient buildings showed the highest AD in Glendale, while medium offices showed 

the highest RC in Koreatown. Building composition was the primary factor that caused these two 

neighborhoods to have large increases in the cooling energy demand. The two types of 

restaurants made up 6.03% and 9.56% of commercial buildings in Glendale and Koreatown, 

which was higher than that in the entire Los Angeles County (4.26%). Table 7.1 summarizes the 

results for 13 selected vulnerable buildings in terms of the performance of PV-green roof 

mitigation on potential building energy savings. This study intended to include one building per 

prototype, although not all the prototypes were available in the study sites. For example, post-

2004 outpatient facilities and fast-food restaurants could not be found in Glendale.  

7.2.1 Evaluation of Green Roofs and Photovoltaic Panels on Building Energy Savings at the 

Annual Scale 

The solar potential for each building roof was rated using the open-source roof solar 

potential data from the Google Project Sunroof database, which provides the area available for 

PV system installation. All 13 buildings passed the threshold of 1,405 hours of usable sunlight 

per year and ranked as high solar potential roofs. Therefore, in this dissertation, both green roofs 
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Figure 7.1. The location of the two study sites for evaluation of green roofs and photovoltaic 

panels on building Energy Savings: Glendale and Koreatown, Los Angeles County, California, 

USA. 
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Table 7.1  

Selected buildings for performance evaluation of PV-green roof mitigation effects on potential 

building energy savings. 

ID Area (m2) Number 

of 

Floors 

Type Neighborhood Age 

1 1,057 1 Full-Service Restaurant Glendale Before 1980 

2 304 1 Fast-Food Restaurant Glendale 1980–2003 

3 290 1 Full-Service Restaurant Glendale 1980–2003 

4 138 1 Fast-food Restaurant Glendale Before 1980 

5 352 1 Fast-Food Restaurant Glendale After 2004 

6 876 1 Outpatient Glendale 1980–2003 

7 186 1 Outpatient Glendale Before 1980 

8 219 1 Fast-Food Restaurant Koreatown Before 1980 

9 353 1 Full-Service Restaurant Koreatown Before 1980 

10 467 1 Full-Service Restaurant Koreatown 1980–2003 

11 455 1 Fast-Food Restaurant Koreatown 1980–2003 

12 587 3 Medium Office Koreatown Before 1980 

13 828 3 Medium Office Koreatown 1980–2003 

 

and PV systems were added to each tested building during the simulation. Table 7.2 presents the 

available area for PV system installation and simulated annual electricity produced in gigajoules 

(GJ) for each tested building in 2050.  

Figure 7.2 presents the annual energy savings (MJ/m2) from green roofs on the tested 

buildings compared to traditional roofs at two study sites under the RCP8.5 emission scenario. 

All buildings with green roofs showed positive energy savings with regard to both the total 

energy and electricity demand, although the extent of the savings differed according to building 

type. The majority of the total energy savings arose from electricity savings. The two types of 

restaurants showed a higher degree of electricity and natural gas savings than the other building 

categories, suggesting that they would receive the most benefits in terms of energy savings after 

the installation of green roofs. However, green roofs were predicted to save less energy for 
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Table 7.2  

Simulation of annual electricity produced by photovoltaic panels in 2050 for the tested buildings 

under the RCP8.5 emission scenario. 

ID Available Area for Photovoltaic 

System Installation (m2) 

Simulated Annual Electricity Produced by the 

Photovoltaic System in Gigajoules (GJ)  

1 183 55.84 

2 39 11.63 

3 54 16.69 

4 29 8.62 

5 65 19 

6 425 127.02 

7 57 16.62 

8 42 12.82 

9 73 20.52 

10 99 29.62 

11 139 39.55 

12 253 74.4 

13 549 160.34 

 

newly constructed restaurants. Green roofs exhibited the largest energy savings for pre-1980 

restaurants, but for post-2004 restaurants showed the least savings. However, this contrast was 

not obvious for medium offices and outpatient buildings. Figure 7.3 shows the percentage 

breakdown of the individual components contributing to the annual electricity savings from 

green roofs at the two study sites under the RCP8.5 emission scenario. Most electricity savings 

were derived from cooling energy savings, followed by savings on fan energy, suggesting that 

lower indoor temperatures can also save ventilation energy. Other savings (e.g., lighting, 

equipment, pumps, humidification, and refrigeration) were trivial for most of the tested buildings 

except for the two outpatient buildings and post-1980 medium office. One reason for this 

difference is that the space heating energy was supplied by electricity, which also contributed to  
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(a) 

 

(b) 

Figure 7.2. Annual energy savings (MJ/m2) for green roofs on the tested buildings compared to 

traditional roofs under the RCP8.5 emission scenario in 2050: (a) Glendale; (b) Koreatown.    
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(a) 

 

(b) 

Figure 7.3. Percentage breakdown (%) of the individual components contributing to the 

simulated annual electricity savings from green roofs compared with traditional roofs under the 

RCP8.5 emission scenario in 2050: (a) Glendale; (b) Koreatown.  
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(a) 

 

(b) 

Figure 7.4. Percentage (%) of annual electricity savings from the integration of green roofs and 

photovoltaic systems compared with traditional roofs under the RCP8.5 emission scenario in 

2050: (a) Glendale; (b) Koreatown.  
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percentage due to the integration of green roofs and photovoltaic systems at the two study sites 

under the RCP8.5 emission scenario. The annual electricity savings from the installation of PV-

green roofs ranged from 1.2% (pre-1980 outpatient building) to 6.92% (post-1980 fast-food 

restaurant). Table 7.3 and Table 7.4 present the RC between 2050 and present (1991–2005) for 

all tested buildings under the RCP8.5 emission scenario with regard to the annual total energy 

and electricity demand, respectively. All restaurants with PV-green roofs were predicted to 

consume less total energy in 2050 than at present (Table 7.3), even under the high-emission 

scenario (RCP8.5), which indicates the robustness of PV-green roofs. The reduction in the 

increased net building energy demand caused by climate change ranged from 8.2% (pre-1980 

outpatient building) to 299.2% (pre-1980 full-service restaurant). Although PV-green roofs 

cannot fully offset the increases in predicted electricity consumption in 2050 for the majority of 

buildings, the extent of the increase is much lower than with traditional roofs (Table 7.4).   

A life-cycle approach, as adopted in Bianchini and Hewage (2012), was performed to 

analyze the social-economic benefits of installing PV-green roofs on all tested buildings. The 

parameter settings also followed the settings in Bianchini and Hewage (2012), which are listed in 

Table 7.5. The PV system installation cost for each building was found on the Google Project 

Sunroof website. The return on investment (ROI) after 20 years was found to exceed 100% in 12 

of the 13 tested buildings, and the payback periods for installing PV-green roofs on all tested 

buildings ranged from 5.3 years (post-1980 medium office) to 14.2 years (post-1980 fast-food 

restaurant) (Table 7.6), suggesting that these buildings could receive considerable social-

economic benefits. Compared to traditional roofs, which have a lifespan of only 20 years, the 

expected lifespan of a green roof varies from 30 to 55 years (Bianchini & Hewage, 2012; 

Chemisana & Lamnatou, 2014; Lamnatou & Chemisana, 2014, 2015). Therefore, the savings  
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Table 7.3 

Relative change (%) in annual total energy demand between 2050 and present (1991–2005) in all 

tested buildings under RCP8.5 emission scenario. 

Building Type Neighborhood RC (Traditional 

Roof) (%) 

RC (PV-green 

Roof) (%) 

Pre-1980 Full-Service Restaurant Glendale 1.3% -2.6% 

Post-1980 Full-Service Restaurant Glendale 1.7% -0.2% 

Pre-1980 Fast-Food Restaurant Glendale 1.6% -0.9% 

Post-1980 Fast-Food Restaurant Glendale 1.1% -1.6% 

Post-2004 Fast-Food Restaurant Glendale 1.0% -0.2% 

Pre-1980 Outpatient Glendale 5.1% 4.7% 

Post-1980 Outpatient Glendale 5.8% 4.7% 

Pre-1980 Full-Service Restaurant Koreatown 1.0% -1.3% 

Post-1980 Full-Service Restaurant Koreatown 1.3% -0.9% 

Pre-1980 Fast-Food Restaurant Koreatown 1.1% -0.8% 

Post-1980 Fast-Food Restaurant Koreatown 0.6% -3.2% 

Pre-1980 Medium Office Koreatown 9.5% 6.1% 

Post-1980 Medium Office Koreatown 7.8% 1.5% 

Table 7.4  

Relative change (%) in annual electricity energy demand between 2050 and present (1991–2005) 

in all tested buildings under the RCP8.5 emission scenario. 

Building Type Neighborhood RC (Traditional 

Roof) (%) 

RC (PV-green 

Roof) (%) 

Pre-1980 Full-Service Restaurant Glendale 9.9% 2.8% 

Post-1980 Full-Service Restaurant Glendale 9.5% 6.0% 

Pre-1980 Fast-Food Restaurant Glendale 7.4% 3.3% 

Post-1980 Fast-Food Restaurant Glendale 7.4% 2.7% 

Post-2004 Fast-Food Restaurant Glendale 6.8% 3.5% 

Pre-1980 Outpatient Glendale 5.8% 4.6% 

Post-1980 Outpatient Glendale 6.3% 4.2% 

Pre-1980 Full-Service Restaurant Koreatown 6.8% 2.7% 

Post-1980 Full-Service Restaurant Koreatown 6.6% 2.5% 

Pre-1980 Fast-Food Restaurant Koreatown 4.5% 1.4% 

Post-1980 Fast-Food Restaurant Koreatown 4.5% -2.7% 

Pre-1980 Medium Office Koreatown 10.0% 6.5% 

Post-1980 Medium Office Koreatown 7.9% 1.6% 
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Table 7.5  

Key parameters for the social-economic benefit analysis of installing green roofs (Bianchini & 

Hewage, 2012). 

Investment/benefits Value ($/m2) Type Time frame 

Initial Construction Cost 146 Investment One time 

Maintenance Cost 2 Investment Annual 

Storm Water Retention 0.38 Benefit Annual 

Avoid Infrastructure Cost  39 Benefit One time 

Longevity Benefit 160 Benefit After 20 years 

Reduction of 

Infrastructure 

Improvement  

8 Benefit One time 

 

Table 7.6  

Return on investment (%) and payback periods (years) for installing green roofs and photovoltaic 

systems on all tested buildings. 

Building Type Neighborhood Return on Investment 

(ROI) after 20 years (%) 

Payback 

Period (Years) 

Pre-1980 Full-Service Restaurant Glendale 173.9% 8.5 

Post-1980 Full-Service Restaurant Glendale 109.2% 12.7 

Pre-1980 Fast-Food Restaurant Glendale 126.8% 11.5 

Post-1980 Fast-Food Restaurant Glendale 95.2% 14.2 

Post-2004 Fast-Food Restaurant Glendale 162.8% 8.9 

Pre-1980 Outpatient Glendale 182.4% 9.0 

Post-1980 Outpatient Glendale 101.3% 13.7 

Pre-1980 Full-Service Restaurant Koreatown 104.5% 14.1 

Post-1980 Full-Service Restaurant Koreatown 124.1% 11.9 

Pre-1980 Fast-Food Restaurant Koreatown 126.8% 11.8 

Post-1980 Fast-Food Restaurant Koreatown 128.3% 11.7 

Pre-1980 Medium Office Koreatown 281.1% 5.9 

Post-1980 Medium Office Koreatown 322.1% 5.3 

 

from re-roofing 20 years after initial construction can be counted as a longevity benefit of green 

roofs. In addition to the longevity benefit, installation of extensive green roofs could also 

increase property prices by at least 2% (Bianchini & Hewage, 2012), which could contribute to 
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the high ROI and reasonable payback period. In this study, the estimation of projected increase 

in property prices was made based on the current prices of commercial buildings in Glendale and 

Koreatown using the LoopNet website (https://www.loopnet.com/). 

7.2.2 Evaluation of Green Roofs and Photovoltaic Panels on Building Energy Saving at the 

Monthly Scale 

Because larger increases in building energy demand were observed at finer time scales in 

Chapter 6, this section further analyzed the performance of green roofs on energy savings at the 

monthly scale. Because the outputs of energy generated by PV systems were only provided at the 

annual scale, this section focused only on the performance of green roofs on electricity savings. 

Figure 7.5 demonstrates the monthly electricity saving percentage from green roofs at the two 

study sites under the RCP8.5 emission scenario compared with traditional roofs. All buildings 

with green roofs showed positive electricity savings in all months except the post-2004 fast-food 

restaurant from October to March, although the negative electricity savings are less than 1%. 

Moreover, all buildings showed more electricity savings during the summer months than the 

winter months except for the two outpatient buildings in Glendale. All restaurants showed higher 

monthly electricity savings in the summer months regardless of location and building age, which 

indicates that green roofs can provide more benefits to restaurants when temperatures are high at 

the study sites. It was also observed that electricity savings were slightly higher for buildings in 

Glendale than those in Koreatown. The reason for this difference is that Glendale is located in 

the Burbank-Glendale weather zone, which has higher monthly temperatures than Koreatown, 

which is located in the Los Angeles International Airport weather zone (Figure 4.3). In addition, 

green roofs installed on older restaurants were found to save more electricity for most months, 

because newly built restaurants, especially the post-2004 restaurants, were found to be less  

https://www.loopnet.com/
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(a) 

 

(b) 

Figure 7.5. Percentage (%) of monthly electricity savings from green roofs compared with 

traditional roofs under the RCP8.5 emission scenario in 2050: (a) Glendale; (b) Koreatown.  
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sensitive to climate change as they were already equipped with advanced HVAC systems and 

higher insulation levels. 

7.3 Evaluation of the Green Roof Model Sensitivity 

            In this section, the model sensitivity to key input parameters related to green roofs is 

evaluated. Because a detailed parametric test of all green roof parameters is beyond the scope of 

this dissertation, only the three most important parameters (LAI, soil depth, and irrigation), 

which were identified from the previous literature (Sailor, 2008; Sailor et al., 2012), are 

examined. The pre-1980 full-service restaurant in Glendale was selected, because it showed the 

highest electricity saving potential at both time scales (annual and monthly). Table 7.7 shows the 

matrix of seven different settings for LAI, soil depth, and irrigation saturation percentage. The 

base model was defined as the model used in the previous section. Soil depth and LAI variations 

were set to the minimum and maximum threshold values allowed by EnergyPlus. For roof 

irrigation systems, the “smart schedule” was used, although the irrigation saturation percentages 

were set differently. For the low-irrigation model, the irrigation saturation percentage was set to 

5%, which means that irrigation would not be performed when the soil is considered to be 

“moist” (higher than 5% saturation). For the high-irrigation model, the irrigation saturation 

percentage was set to 95%. All other parameters were unchanged from Section 4.4.1. 

Differences in monthly electricity savings for various green roof settings applied to the pre-1980 

full-service restaurant under the RCP8.5 emission scenario in 2050 are presented in Figure 7.6. 

The energy saving ability of the green roof was positively correlated with the three key 

parameters, which agrees with the results of the literature (Sailor, 2008; Sailor et al., 2012). The 

irrigation saturation percentage had the largest impact on electricity savings among the three key 

parameters for most months, and this impact reached its maximum in summer (August). This 
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result differs from what was found in Sailor (2008), who suggested that soil thickness had the 

largest impact on energy use. The reason for this difference is that Glendale is a neighborhood in 

the Los Angeles Basin that experiences very little precipitation throughout the year (except in 

winter). Therefore, irrigation is essential for the plants used for green roofs on Glendale 

buildings.  

Table 7.7 

Characteristics of different settings of green roofs simulated under the RCP8.5 emission scenario. 

Simulation Model  Leaf Area 

Index (LAI) 

Soil Depth (m) Irrigation Saturation 

Percentage (%) 

Base Model  2 0.2 30% 

Low LAI 1 0.2 30% 

High LAI 5 0.2 30% 

Thin Soil 2 0.1 30% 

Thick Soil 2 0.7 30% 

Low-Irrigation  2 0.2 5% 

High-Irrigation  2 0.2 90% 

 

7.4 Discussion and Conclusions 

            This section discusses the major findings, strengths, and limitations of the methodology 

used in this chapter compared with previously published works. All buildings with green roofs 

showed positive energy savings with regard to total energy and electricity, and the savings 

caused by green roofs were positively correlated with three key parameters: LAI, soil depth, and 

irrigation saturation percentage. Moreover, the majority of the electricity saving benefits from 

green roofs were found in the HVAC systems. In addition, the energy saving ability of green 

roofs did exhibit seasonality. The above findings agree with the results of previous studies 

(Gargari et al., 2016; Morakinyo et al., 2017; Semaan & Pearce, 2016; Sailor, 2008; Sailor et al., 

2012). However, this study further found that green roofs have different energy  
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Figure 7.6. Differences (%) in monthly electricity savings for various green roof settings applied 

to the selected full-service restaurant constructed before 1980 under the RCP8.5 emission 

scenario in 2050 in Glendale, Los Angeles County, USA. 

 

saving abilities on different types of buildings with different technologies, which has received 
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electricity and natural gas savings than the other building types, and less energy savings for 

newly constructed restaurants was also predicted.  
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limitations of the current green roof module in EnergyPlus. The latest version of the module does 
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the energy saving ability of green roofs. However, an increase of soil thickness will also increase 

the weight of the green roof, which may exceed the load bearing capacity of some building roofs. 

Therefore, in this study followed the settings of Sailor (2008), which were based on validated 

data from two monitored buildings with green roofs at Portland State University, Oregon, instead 

of applied the optimal settings. 
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CHAPTER 8 

 

CONCLUSIONS AND FUTURE DIRECTIONS 

8.1 Introduction 

This chapter summarizes the contributions of this dissertation, outlines the limitations of 

the methodology, and discusses the directions for future research. Section 8.2 summarizes the 

major findings and draws conclusions on the five hypotheses. Section 8.3 discusses the 

limitations that may lead to uncertainties in the output, and proposes some plans for further 

research based on these limitations. 

8.2 Summary of Major Findings 

            This dissertation contains three interrelated studies in Los Angeles County: 1) high 

spatial and temporal resolution Qf estimation; 2) modeling the effect of climate change on 

building energy demand using a GIS-based high spatial and temporal resolution approach; and 3) 

modeling the performance of PV-green roof systems on building energy savings. The first study 

provided a hybrid approach to Qf modeling, as presented in Chapter 5, which combined the 

inventory and GIS methods to create a 365-day hourly Qf profile at 120-m spatial resolution 

based on data available to the public. A high spatial and temporal Qf profile that can be readily 

incorporated into urban energy balance and UHI models was developed, providing valuable 

information for government agencies, the energy sector, and the general public. The second 

study proposed an integrated approach of modeling and GIS to assess the impact of climate 
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change on building energy consumption for different types and ages of buildings in Los Angeles 

County at both high spatial and temporal resolutions, as described in Chapter 6. The third study 

discussed the potential mitigation effects of PV-green roofs on vulnerable buildings that are 

susceptible to the largest increases in energy demand under the context of climate change, as 

presented in Chapter 7. 

Hypothesis 1 “Building energy demand is the major contributor to Qf, and building 

energy demand can make the typical diurnal Qf profiles across all four seasons appear to have 

different shapes due to changes in cooling and heating demands” was supported. The main 

findings from the first study were that the magnitudes and temporal patterns of Qf in Los Angeles 

County varied on workdays and nonworkdays by season and for different land use types. 

Moreover, a large within-county difference in Qf was discovered among different regions. The 

downtown Los Angeles area was found to have the largest mean Qf throughout the year. 

Building energy consumption was identified as the dominant contributor to the overall Qf in the 

downtown area. In addition, Qf on the selected extremely hot summer workday was substantially 

higher than that of the average of all summer workdays from 8 am to 11 pm. The increase in 

building energy consumption due to higher demands for space cooling to offset the extremely hot 

weather was the dominant driver that caused the higher Qf.  

Hypothesis 2 “The majority of building types show an obvious annual increase in energy 

demand by 2050, and the variation in energy increases across different building types will be 

even larger at finer temporal scales (i.e., monthly and diurnal)” was supported. The results of the 

second study suggested that the majority of building types showed an apparent increase in energy 

demand under both emission scenarios, and the energy demand increase was higher with the 

high-emission scenario. In examining the change in energy demand at finer temporal scales (i.e., 
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monthly and diurnal), it was found that the energy increase differed considerably according to 

the building type.  

Hypothesis 3 “Areas with more commercial buildings are more vulnerable to climate 

change because commercial buildings have higher energy consumption intensities than 

residential buildings” was supported. Commercial buildings were found to have a higher energy 

demand increase than residential buildings. Neighborhoods with larger than 100% RC in the 

cooling energy demand were mostly located in the Los Angeles International Airport weather 

zone, because it had the highest percentage of commercial buildings. Moreover, building size 

and density played an important role in the energy demand AD. Neighborhoods with the largest 

increase in energy consumption intensity were located in the major commercial zones with a 

high density of tall commercial buildings. 

Hypothesis 4 “The installation of PV-green roofs can reduce at least 20% of net building 

energy demand increase caused by climate change for all chosen types of test buildings, and the 

reduction extent will vary by building type” was partially supported. Reductions in the increased 

net building energy demand caused by climate change varied by building type, which ranged 

from 8.2% (pre-1980 outpatient building) to 299.2% (pre-1980 full-service restaurant). The 

reduction in the net building energy demand was found to exceed 20% in 11 of the 13 tested 

buildings.   

Hypothesis 5 “Building types that are predicted to have the highest energy demand 

increase caused by climate change receive the most benefits in terms of energy savings” was 

supported. In Chapter 6, two types of restaurants (full-service and fast-food restaurants) were 

predicted to have the highest summer energy demand increase due to climate change. In Chapter 

7, restaurants were predicted to have 112.5% to 299.5% reductions in the increased net energy 
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demand due to climate change, much higher than the other types of buildings examined in this 

study. Moreover, all restaurants with PV-green roofs were predicted to consume less total energy 

in 2050 than at present even under the high-emission scenario (RCP8.5), indicated that they 

received the most benefits in terms of energy savings.  

In addition to the hypothesis testing, this dissertation also included some other major 

findings. When compared with previous studies (Ichinose et al., 1999; Nie et al., 2014; Quah & 

Roth., 2012; Wong et al., 2015), which estimated Qf in cities or regions with higher population 

densities (Tokyo, Hong Kong, and Singapore), traffic emissions were found to account for a 

higher percentage of Qf in Los Angeles County, while human metabolism contributed less. This 

finding suggests that in addition to climate conditions, social-economic factors of a city can also 

affect the characteristics of Qf.  

The results of the second study suggest that under the same climate conditions, the 

different composition, technologies, size, and density of buildings can induce large spatial 

variations in energy demand, even within the same city. How to control the cooling energy 

consumption is vital for the sustainability of Los Angeles under climate change scenarios. 

Advanced building technologies, including increased insulation and energy efficient equipment 

and materials, can all contribute significantly to cooling energy savings while maintaining the 

comfort level. Other strategies, such as transforming to renewable energy, should also be 

considered.  

All buildings with green roofs showed positive energy savings with regard to total energy 

and electricity, and the majority of the benefits in terms of electricity savings from green roofs 

were found in the HVAC systems. In addition, the energy saving ability of green roofs did 

exhibit seasonality.  
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All three studies showed the innovation of the proposed methodology, filled gaps in the 

current literature, and indicated strong applicability. The first study developed a hybrid approach 

that integrated the inventory and GIS modeling approaches. The GIS modeling approach can 

create a time-dependent Qf profile at high spatial and temporal resolutions with high accuracy, 

and the inventory approach can validate and calibrate the results estimated from the GIS 

modeling approach. This integration allowed for assessing the discrepancies between simulated 

and actual energy consumption. Compared to the approaches of previous studies that used state, 

county, or census levels for calibrating the simulation results, the use of neighborhood-level 

reference data enabled us to address local variations of energy consumption patterns by building.  

The second research project designed an innovative approach to study the climate change 

effect on building energy consumption at fine spatial and temporal scales. By utilizing the unique 

capability of GIS, which integrates different types of data and organizes them based on spatial 

locations, the approach used in this study can capture the spatial and temporal variations of 

building energy use in Los Angeles County. It can generate valuable datasets and information 

suitable for policy makers, energy suppliers and consumers to consider adaptation and mitigation 

strategies. The approach used in this study has strong applicability, because it is appropriate for 

any area with the availability of a GIS-based building dataset and weather data at a high temporal 

resolution.  

In the existing literature, the mitigation potential of increased building energy 

consumption caused by climate change have been briefly discussed, and no experiments have 

been conducted to test the performance of mitigation options, such as sustainable roofs (green 

roofs, PV roofs, or PV-green roofs). The third study filled this gap by estimating the mitigation 

performance of PV-green roofs on buildings that are more vulnerable to climate change in terms 
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of the increased energy demand. Factors that might affect the energy saving ability of PV-green 

roofs, such as local climate conditions, seasonal effects, building types, and building 

technologies, were examined, and the results provided valuable information to guide policy 

makers.  

Based on all the findings of this dissertation, the recommendations to Los Angeles 

County can be summarized as follows. First, it is necessary to apply several strategies to avoid 

the future energy consumption path towards the high-emission scenario (RCP8.5), such as 

transferring more energy supply from fossil fuel sources to renewable sources, reducing the 

transmission loss of electricity, and increasing the awareness of the general public to reducing 

unnecessary cooling energy use. Second, because the majority of existing commercial buildings 

in Los Angeles County were built before 2004, which were found to be more sensitive to climate 

change in terms of the increased energy consumption potential, mitigation strategies will need to 

be applied. Because the majority of the energy demand increase was predicted for electricity and 

cooling energy, PV-green roofs are a viable mitigation option. This is especially for buildings 

built before 2004. To optimize the performance of PV-green roofs, experiments will need to be 

conducted at the individual building scale that take the local climate condition into consideration 

when determining the key parameters for the experiment. For example, irrigation and species 

selection can be essential, because Los Angeles County has very low precipitation in summer. 

The three potential ways to reduce irrigation cost and water usage are to use drought-tolerant 

plant species, to apply efficient irrigation techniques, and to store rainwater for irrigation 

(Heusinger et al., 2018; Shafique et al., 2018). In addition to the roofs, the sides of buildings can 

also be utilized for building energy mitigation, as the benefits of wall-mounted PV-green 
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systems, solar thermal collectors, and hybrid solar windows have been studied in previous 

studies (Moren & Korjenic, 2017; Ulavi, Hebrink, & Davidson, 2014). 

8.3 Limitations and Future Directions 

Although this dissertation fills multiple gaps in the existing literature, limitations remain. 

First, data availability was still a major limitation in this dissertation and caused uncertainties in 

each part. As discussed in Section 5.5, the uncertainties in the building energy consumption 

came from occupancy behaviors and building prototypes, which can only represent the most 

common building technologies and characteristics in the survey data in Los Angeles County. 

Moreover, the traffic emission simulation would be more accurate, if seasonal variations of 

emission factors from several types of vehicles could be included. During hot weather, vehicles 

tend to consume more fuel to run air conditioners. Although the Qf simulation included the 

majority of its components, some other components, such as greenhouses gases emitted from 

pollution and solid waste process, were not included. The resolution of the weather data (TMY3) 

was still relatively coarse, which is not sufficient to reflect the regional differences in the Los 

Angeles County. More detailed information regarding residential buildings, such as building age 

and materials, were not readily available. Additional uncertainty was caused by the fact that data 

from multiple spatial scales were combined in this dissertation. For example, the actual building 

energy consumption at the neighborhood scale was used for the validation. Although this is 

much more accurate than that used in previous studies, which used coarser reference data at the 

state and county level, the discrepancy between simulations and actual consumption within a 

neighborhood cannot be addressed. Finally, the energy consumption data for individual buildings 

were not available for this study because they are confidential.   
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Future studies can achieve higher modeling accuracy if the issues of the aforementioned 

data can be overcome. Under the context of the development of “Geospatial big data”, the spatial 

and temporal scales of the data available to the public are expected to become finer in the future. 

Moreover, interdisciplinary research will likely be conducted more frequently. Both of these 

directions of development will increase the dimensions of input data. For example, Building 

Information Modeling (BIM) data, which is an intelligent 3D model-based building dataset, are 

under development in many cities. The 3D BIM data contain a greater level of detail for each 

individual building than the 2D building shapefile used in this dissertation. Information such as 

materials, structures, specific models of HVAC systems, and drainage systems will become 

available. The integration of BIM and GIS will increase the accuracy of energy consumption 

simulations and provide more options to customize PV-green roofs at the individual building 

level. For example, this integration would allow decision makers and designers to run sensitivity 

tests while considering different combinations of input parameters, such as local water 

availability, irrigation investments, types of blinds, and facing directions of windows to 

determine the best option. On the other hand, the simulation of individual building energy 

consumption can be made much more accurate if multistage HVAC systems and survey results 

of personal behaviors regarding the choice of heating and cooling temperatures in a study area 

into are considered.  

However, the larger amount and finer scales of the input data will also bring challenges to 

computing, storage, and the integration of data from different sources and scales, which will 

become a more important issue to be addressed. In this study, the time required for the building 

energy simulation in Los Angeles County was approximately five and a half hours using Python. 

However, in the future, the time required for data processing over large areas, such as the entire 
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country, will likely increase dramatically due to the increased complexity of the input data. 

Therefore, the development of geospatial technologies is crucial and will play an important role 

in solving this problem by reducing the size of data and advancing the computing algorithms. In 

conclusion, the higher level of data availability, interdisciplinary research, and advanced 

geospatial technologies will promote the developments in high-resolution Qf and building energy 

demand modeling studies.
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