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ABSTRACT 

Global warming is a well-documented concern.  If left unabated, many scientists believe that 

global warming could potentially have devastating impacts to life on earth.  Current research 

points to greenhouse gas emissions caused by the burning of fossil fuels to produce electricity as 

one of the primary causes of global warming.  The more electricity produced and consumed the 

more greenhouse gas emissions are released to the atmosphere.  Industry is one of the most 

significant consumers of electricity.  Within industry, manufacturing accounts for a significant 

majority of all energy consumed with machine tools being one of the largest consumers.  

Machine tool builders need to develop ways for machine tools to use less energy in producing 

the same amount of product. 

The literature contains suggestions on how a manufacturer can approach reducing the 

amount of energy consumed by machine tools in manufacturing. However, there is paucity in the 

literature related to how “adaptive control” might be employed to reduce the amount of energy 

consumed by machine tools in manufacturing. This study examined the possibility of employing 

“adaptive control” to minimize the amount of energy consumed by machine tools during 

machining. 
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CHAPTER 1 

 

Introduction 

Manufacturing is an important part of any nation’s economy and security.  The 

President’s Council of Advisors on Science and Technology July 2012 report on “Capturing 

Domestic Competitive Advantage in Advanced Manufacturing” states that:  

The United States has long thrived as a result of its ability to manufacture goods 

and sell them to global markets. Manufacturing has supported our economic growth, 

contributing to the Nation’s exports, and employing millions of Americans. 

Manufacturing has driven knowledge production and innovation in the United States by 

supporting two-thirds of private sector research and development (R&D) and by 

employing scientists, engineers, and technicians to invent and produce new products 

(Holdren & Lander, 2012, p.1). 

Further support for the importance of manufacturing is evidenced by the National 

Association of Manufacturers who report that “US manufacturing produces $1.7 trillion of value 

each year, or 11.7 percent of U.S. GDP” (“Facts about manufacturing,” n.d.). 

Although manufacturing, as indicated above, is an extremely important economic sector 

to the US, it comes with a price.  Offsetting the positive attributes of its contribution to US Gross 

Domestic Product, job creation, knowledge production, etc. is the toll that US manufacturing has 

taken on the environment.   Rahiimiifard (2007) found that the manufacturing industry is one of 
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the biggest sources of negative environmental impact.  The environment in general is receiving 

increasing attention especially as it pertains to “climate change” and “Global Warming” (Gupta 

& Lambert, 2008, p. ix).  Manufacturing has a significant role to play in the area of climate 

change mitigation.  This research focuses on one aspect of manufacturing’s potential 

contribution. 

Background 

“Environmentally conscious manufacturing” (“ECM”), according to Gupta & Lambert 

(2008, p. ix), is “an emerging discipline that is concerned with developing methods for 

manufacturing new products with as little negative impact on the environment as possible.”  

Other terms somewhat synonymous to ECM are “green” manufacturing and “sustainable” 

manufacturing as well as “environmentally friendly manufacturing” and “environmentally 

benign manufacturing”.  Not since the evolution of “lean” manufacturing has a strategic concept 

for an approach to manufacturing been introduced with the same velocity as “green” 

manufacturing or “environmentally conscious manufacturing”.  A “Google” search on various 

types of manufacturing conducted on July 18, 2012 reflects the frequency of the following terms 

appearing on the World Wide Web listed in order of prevalence: 

1. "lean manufacturing" - About 6,110,000 results 

2. "advanced manufacturing" - About 3,640,000 results 

3. "flexible manufacturing" - About 884,000 results 

4. “green manufacturing” - About 809,000 results 

5. "Just In Time manufacturing" - About 713,000 results 

6. "additive manufacturing" - About 495,000 results 

7. "environmentally friendly manufacturing" - About 417,000 results 
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8. "sustainable manufacturing" - About 386,000 results 

9. "rapid manufacturing" - About 354,000 results 

10. "intelligent manufacturing" - About 281,000 results 

11. "competitive manufacturing" - About 244,000 results 

12. "agile manufacturing" - About 227,000 results 

13. "six sigma manufacturing" – About 220,000 results 

14. "smart manufacturing" - About 83,000 results 

15. "environmentally conscious manufacturing" - About 62,000 results 

16. "reconfigurable manufacturing" - About 49,700 results 

17. "subtractive manufacturing" - About 48,900 results 

18. "environmentally benign manufacturing" - About 24,200 results 

“Green” manufacturing, arguably a more recently coined term than the others, is already fourth 

in the list and more than likely will move to third in the near future.  Clearly, manufacturers of 

all types and all sizes will be looking to embrace the attributes of “green” manufacturing going 

forward. 

According to the Environmental Protection Agency (“EPA”), “earth's average 

temperature has risen by 1.4°F over the past century, and is projected to rise another 2 to 11.5°F 

over the next hundred years” (“Climate change basics,” 2012).  They also say that “small 

changes in the average temperature of the planet can translate to large and potentially dangerous 

shifts in climate and weather” (“Climate change basics,” 2012).  One of the primary causes of the 

aforementioned temperature escalation is human activities that have released large amounts of 

carbon dioxide and other greenhouse gases into the atmosphere (“Climate change basics,” 2012). 

The EPA also reports “the majority of greenhouse gases come from burning fossil fuels to 
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produce energy” (“Climate change basics,” 2012). These “greenhouse gases act like a blanket 

around Earth, trapping energy in the atmosphere and causing it to warm” (“Climate change 

basics,” 2012). Lastly, the EPA goes on to say that “the buildup of greenhouse gases can change 

earth's climate and result in dangerous effects to human health and welfare and to ecosystems” 

(“Climate change basics,” 2012). 

According to the US Government’s Energy Information Administration (“EIA”), 

manufacturing “accounts for about 80 percent of industrial energy consumption”, and 

manufacturing “also accounts for about 80 percent of industrial energy-related carbon emissions” 

(“Energy-related carbon emissions, 2000”).  When you consider that industrial energy 

consumption represents approximately 40 percent of all energy consumed in the US according to 

the EIA (“What are greenhouse gases?, 2004”) and, as stated above, manufacturing accounts for 

about 80% of that, it becomes abundantly clear how important it is for manufacturers to focus 

some of their efforts towards reducing their greenhouse gas emissions by reducing the amount of 

energy they consume in making their respective products. 

According to Richter (2009), “reducing the amount of energy the motors on a metal 

cutting machine tool use is one way for a manufacturer to increase its competitiveness…while 

“greening” its operations”.  Richter points out that the majority of energy consumed by 

manufacturers is in motor energy consumption on machines.  Therefore targeting methods to 

reduce the amount of energy consumed by motors on machine tools is an effective approach to 

becoming a more sustainable or “greener” manufacturer. 

Problem Statement 

Global warming is a well-documented concern.  If left unabated, many scientists believe 

that global warming could potentially have devastating impacts to life on earth.  One of the 
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primary causes of global warming is thought to be greenhouse gas emissions caused by the 

burning of fossil fuels to produce electricity.  The more electricity produced and consumed the 

more greenhouse gas emissions are released to the atmosphere.  Industry is one of the most 

significant consumers of electricity.  Within industry, manufacturing accounts for about 80 

percent of all energy consumed, as cited above.  Manufacturers need to develop ways to use less 

energy in producing the same amount of product. 

Need for the Study 

The literature contains suggestions on how a manufacturer can approach reducing the 

amount of energy consumed by machine tools in manufacturing, such as replacing single speed 

motors with variable speed motors, replacing older motors with new, more energy efficient 

motors, etc. (Richter, 2009).  However, there is paucity in the literature related to how “adaptive 

control” might be employed to reduce the amount of energy consumed by machine tools in 

manufacturing. 

According to Drozda & Wick (1983, p. 5-70), “adaptive control” is a “method using 

automatic means to change the type and/or influence of control parameters to achieve near 

optimum processing performance”.  The authors go on to say that it “is used to optimize 

independent parameters such as speeds and feeds to be consistent with processing constraints 

such as quality of surface finish and cutter life” (Drozda & Wick, 1983, p. 5-70).  This study 

examined the possibility of employing “adaptive control” to minimize the amount of energy 

consumed by the machine tool during machining. 

Purpose of the Study 

This study encompassed field research directed at reducing the amount of energy 

consumed by machine tools in manufacturing through the employment of “adaptive control” 
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technology.  “Adaptive control” was the primary influencing independent variable researched.  

In addition to “adaptive control,” other influencing independent variables explored included feed 

rate, spindle speed, depth of cut, coolant temperature, coolant flow volume, and tool condition.  

The dependent variable that was the focus of this research was the amount of energy used during 

a chosen machining cycle measured in kilowatt hours which is a common unit of measure for 

energy found in other research such as Ulmer and Ollison (2008). 

Research Questions 

The following questions proposed by the researcher were examined during this study: 

1) Are there significant differences in energy used based on levels of the independent 

controlling variables in predicting energy used?  

2) Do the independent variables described above have a relationship with energy used?  

Can a predictive model using these variables be built that will explain a significant 

amount of the variability in energy used, and provide an accurate prediction given the 

set of parameters? 

3) Does adaptive control or tool condition interact with the other independent variables 

when investigating the relationship with energy used? 

 

Proposed Null and Alternative Hypotheses 

H01: There will not be any significant mean score differences on energy used between 

levels of the independent variables.   

HA1: The levels of the independent variables will be found to have significant energy used 

mean score differences, and therefore the independent variables will be significant 

influencers of energy used.     
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H02: There is no statistically significant direct relationship between the influencing 

variables and the amounts of energy used during a machining cycle. 

HA2: There is a statistically significant direct relationship between the influencing 

variables and the amounts of energy used during a machining cycle. 

H03: There is no statistically significant predictive model that will show a direct linear 

relationship between influencing variables and energy used. 

HA3: There is a statistically significant predictive model that will show a direct linear 

relationship between influencing variables and energy used. 

H04: Independent variables will not be correlated significantly and will not produce 

statistically significant interaction effects in the energy regression models.   

HA4: Independent variables will be significantly inter-correlated, and there will be 

statistically significant interaction effects in the energy regression models. 

Assumptions of the Study 

It is assumed that the results obtained during this study, although conducted on a CNC 

lathe, are somewhat generalizable to other machine tools that adaptive control could be 

implemented on.  It is also assumed that the results of the study will serve as a tool for specific 

targeting for future intervention in an attempt to reduce the amount of energy consumed 

throughout the entire manufacturing enterprise. 

Assumptions regarding the statistical analysis 

Alpha is the probability of committing a Type I error – that is rejecting the null 

hypothesis, H0, when it is true. This error sometimes occurs in studies as it is not possible to 

study every item in the population. The alpha for this study was set to 0.05 – that is the 5 percent 

level.  This level was chosen in order to obtain a 95 confidence which the researcher has 
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determined to be the lowest acceptable confidence level for this type of research.  A higher level 

of confidence was determined not to be needed and would have required more samples which 

would have cost additional money to collect. 

Limitations 

As indicated above, the environment for this study was a specific machine tool that was 

machining a specific material to a specific shape using a specific cutting tool insert.  

Accordingly, the results of this study may not be generalizable to all machine tools.  However, 

this study should serve as a stepping stone for further research into other machine tools to 

determine if more generalizable patterns exist. 

Significance of the Study 

The results of this study should have significant practitioner interest.  Since the literature 

has already shown that a high level of greenhouse gas emissions are attributable to 

manufacturing through the energy that is consumed by machine tools, reducing the amount of 

energy consumed will not only have a positive impact on the environment, but a positive impact 

on business performance through lower energy costs.  The practitioner should take keen interest 

in the findings from this study to facilitate targeting specific machine tools for intervention so 

that the amount of energy consumed can be decreased. 

Organization of the Study 

This study consists of 5 chapters starting with this introductory chapter.  Chapter 2 is a 

review of the relevant literature pertaining to sustainable manufacturing, machine tools, 

computer numerical control, and adaptive control.  Chapter 3 explains the research methodology 

employed by the researcher.  The findings and results of the study are discussed in Chapter 4 
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which in turn is followed by the fifth and final chapter where conclusions and directions for 

future research are discussed. 

Definition of Terms 

The following are definitions of terms that are utilized throughout this document: 

 Adaptive control - a method using automatic means to change the type and/or influence 

of control parameters to achieve near optimum processing performance (Drozda & Wick, 1983, 

p. 5-70). 

 Environmentally conscious manufacturing - an emerging discipline that is concerned with 

developing methods for manufacturing new products with as little negative impact on the 

environment as possible (Gupta & Lambert, 2008). 

 Green manufacturing - the continual optimization of material and energy resources 

during the design, manufacture, and end use of products in order to reduce production costs, 

eliminate negative environmental impacts, and increase business opportunities (“Develop green 

manufacturing skills,” 2012). 

 Sustainable manufacturing - the creation of manufactured products that use processes that 

minimize negative environmental impacts, conserve energy and natural resources, are safe for 

employees, communities, and consumers and are economically sound (“How does Commerce 

define,” n.d.). 

Summary 

This chapter has provided the background, purpose, justification, and rationale for the 

study that was conducted.  The “problem” that the researcher investigated has been clearly 

stated.  The environment, limitations, and assumptions of the study have also been discussed.  

Lastly, the significance of the study, as well as the organization of the study, has been detailed.  
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The following chapter will review the relevant literature pertaining to sustainable manufacturing, 

machine tools, computer numerical control, and adaptive control.   
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CHAPTER 2 

Review of Literature 

Chapter Overview 

 The previous chapter presented a brief introduction of the study, the background for the 

study, the problem statement, the need for the study, the purpose of the study, the proposed 

research questions, the proposed null and alternative hypotheses, the assumptions of the study, 

the limitations of the study, the organization of the study, and definitions of terms pertaining to 

the study.  This chapter presents a summary of the literature reviewed for this study starting with 

a brief introduction to “Sustainable Manufacturing”, the origin of machine tools, their subsequent 

evolution to “Computer Numerically Controlled” (“CNC”) machine tools, an overview of 

“Adaptive Control” as it applies to machine tools and how it can be a key technology to further 

the advancement of “Sustainable Manufacturing”. 

Sustainable Manufacturing 

As manufacturing converts raw materials into products, environmental wastes and 

emissions are simultaneously generated by the consumption of energy, water and excessive 

materials in the manufacturing system. Manufacturing wastes and emissions include various 

pollutants and material wastes such as air emissions, wastewater discharges, hazardous wastes 

and solid wastes (“The lean and the environment toolkit”, 2011). The wastes generated from the 

manufacturing industry are very significant. According to the U.S. Environmental Protection 

Agency (EPA), about 12 billion tons of industrial wastes are generated annually in the United 

States and over one third of these wastes are hazardous wastes (Gungor & Gupta, 1999), (Fiksel, 

1995). 
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Presently, the manufacturing industry is required to produce a higher-than-ever amount of 

goods and services to meet the needs of the growing population and people’s increasing standard 

of living. As the earth has limited natural resources to supply for industrial productions, the 

increasing demands and consumption have led to a shortage of raw materials and a rapid 

deterioration in the global environment which affects all life on the earth for inhabitants and their 

prosperity.  

In order to sustain the economic growth and social progress, sustainable development, 

defined as “development that meets the needs of the present without compromising the ability of 

future generations to meet their own needs”, has been proposed in 1987 by the World 

Commission on Environment and Development of the United Nations (World Commission On 

Environment and Development, 1987,  p.42). Sustainable development is a grand strategy for the 

whole global society. To achieve sustainable development, manufacturing is a fundamental 

enabler as it produces goods and services which are closely related to the economy, society, 

environment and technology (Jovane, et al., 2008). 

Manufacturing is both material and energy-intensive. Environmental impacts of 

manufacturing result mainly from the materials and energy consumed in the manufacturing 

systems. Manufacturing is dominant in its environmental impacts in such categories as toxic 

chemicals, waste generation, energy consumption and carbon emissions (Gutowski, et al., 2001). 

Toxic materials are widely and heavily used in manufacturing for both product 

development and process operations. There are grave concerns pertaining to their toxic effects 

and the significant impact on the environment and human health. There is a wide variety of toxic 

chemicals involved in various manufacturing operations for etching, forming, catalyzing, 
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cleaning, etc. and such chemicals inevitably lead to waste emissions generation from the process 

operations.  

Besides the toxic chemical releases, the manufacturing industry also generates a huge 

amount of waste, mainly in the form of solid waste and waste water, which also causes 

significant environmental problems and impacts. As reported, waste generated in the United 

States are more than any other single country in the world, in both absolute scale and per capita 

(Gutowski, et al., 2001), (Park & Labys, 1999). 

According to the US Government’s Energy Information Administration (“EIA”), 

manufacturing “accounts for about 80 percent of industrial energy consumption”, and 

manufacturing “also accounts for about 80 percent of industrial energy-related carbon emissions” 

(“Energy-related carbon emissions in manufacturing,” 2010).  When you consider that industrial 

energy consumption represents approximately 40 percent of all energy consumed in the US 

according to the EIA (“What are greenhouse gases?, 2004”) and, as stated above, manufacturing 

accounts for about 80% of that, it becomes abundantly clear how important it is for 

manufacturers to focus some of their efforts towards reducing their greenhouse gas emissions by 

reducing the amount of energy they consume in making their respective products.   

Greenhouse gas emissions are another byproduct of manufacturing and are a serious 

concern of the global society. Industrial production consumes fossil fuels heavily through direct 

on-site combustion and indirect utilization of fossil-fuel-generated electricity, all of which 

contribute to the generation of significant amounts of greenhouse gases to the global 

environment. Greenhouse gases induce global warming problems and may cause dangerous 

anthropogenic interference with the climate system (“United nations framework convention on 

climate change,” 1992).  According to the Intergovernmental Panel on Climate Change (IPCC), 
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based on current emission trends the average global temperature is expected to rise by 1.4 °C to 

5.8 °C between 1990 and 2100 (“Climate change 2001: Synthesis report,” 2001). 

Sustainable Manufacturing Concept and Definitions 

As the environmental impacts of manufacturing are so significant in the amount of 

emissions and wastes, sustainable manufacturing has received enormous attention in recent years 

as a comprehensive strategy for reducing the environmental impact and improving the economic 

performance of manufacturing.  Sustainable manufacturing is an expanded concept of green 

manufacturing (also called environmentally conscious manufacturing).  The sustainable 

manufacturing concept is developed through integrating the sustainability notion into the 

manufacturing system with an aim to achieve sustainable development of industrial production. 

Since sustainability is a broad three-dimensional concept involving environmental, economic and 

social concerns, a complete definition of sustainable manufacturing should also integrate 

environmental, economic and social aspects of manufacturing in that context. However, in 

current research and practice, sustainable manufacturing focuses much more on the 

environmental aspect of manufacturing.  In addition, sustainable manufacturing is also defined as 

a means for manufacturers to add the most value to their products and services by making the 

most efficient use of the earth’s limited resources, generating the least pollution to the 

environment, and targeting for environmentally clean production systems (Madu, 2001). 

Motivations and Barriers to Sustainable Manufacturing 

A manufacturing system involves a wide range of stakeholders including suppliers, 

manufacturers, retailers, consumers, policy-makers, etc. As the stakeholders are becoming more 

aware of the values of sustainable manufacturing in practice, the manufacturing industry is 

motivated to implement sustainable manufacturing strategies to reduce the environmental impact 
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and moreover, to improve the economic performance of its manufacturing operations, as 

indicated by a number of research results (Ahmed, Montagno, & Firenze, 1998; Hart, 1995; 

Klassen & Whybark, 1999; Porter & van der Linde, 1995).  

There are quite a number of drivers in effect motivating the manufacturing industry to 

sustainable manufacturing practices. The motivation factors are summarized in the following 

three categories: regulatory pressure, economic incentives, and competitive advantages. 

Regulatory pressure 

Aware of the significant environmental problems of industrial wastes and emissions, 

governmental agencies initiated efforts for environmental impact control and restoration by 

making a series of policies, regulations, and laws, which has achieved significant progress in 

advancing the environmental performance of industrial production activities.  US environmental 

regulations have undergone three stages since 1970 (Frosch, 1995; Gungor & Gupta, 1999).  The 

first stage focused on the “end-of-pipe” control of environmental wastes. Representative 

regulations include the Clean Air Act, the Clean Water Act, and the Resource Conservation and 

Recovery Act (RCRA). The second stage focused on reducing the environmental pollution of 

industrial activities, with the Pollution Prevention Act enacted in 1990. The third stage focuses 

on clean production by encouraging implementation of comprehensive environmental programs 

to reduce the overall impact of industrial production.  

Economic incentives 

Under regulatory pressure and governmental efforts, the manufacturing industry is driven 

towards sustainable manufacturing by the economic benefits which could result from the 

implementation of sustainability programs.  Sustainable manufacturing, in general, includes such 

practices as pollution prevention, product stewardship, and emission control (Bansal, 2005; 



26 

 

Rusinko, 2007).  The economic cost involved in emission control is tremendous for the 

manufacturing industry. It has been reported that the US manufacturers currently spend 

approximately $170 billion per year in waste treatment and disposal costs (Gutowski, et al., 

2001).  Appropriate sustainable manufacturing programs such as pollution prevention for 

minimizing waste generation in manufacturing could effectively cut the costs on both waste 

management and material consumption, and accordingly can improve the profit margin of the 

manufacturing industry. A recent survey on the U.S. commercial carpet manufacturers indicates 

that 84.6% of the manufacturers that adopt emission control strategies such as recycling water 

and diverting solid waste from landfills, and 100% of the manufacturers that adopt pollution 

prevention strategies like reducing raw materials usage and energy consumptions have 

successfully decreased their manufacturing cost (Rusinko, 2007). 

Barriers to Sustainable Manufacturing 

Although sustainable manufacturing is driven by a number of positive factors, the 

manufacturing industry still faces some barriers and challenges that hinder the application of 

sustainable manufacturing strategies in practice. Some early investigations have stated that 

environmental initiatives may induce a negative impact on company performance (Freeman, 

1994; Judge & Krishnan, 1994).  In general, the barriers for sustainable manufacturing could be 

summarized into the following three categories: economic barrier, technological barrier and 

managerial barrier. 

Early sustainable manufacturing practices focused mainly on emission controls and waste 

management (Gutowski, et al., 2001). In the emission control and waste management process, 

the capital cost requirements are high and take a long time to be paid back. In some 

circumstances, the capital input of emission control may exceed the total amount of direct 
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economic gains. This has greatly hindered the practical applications of sustainable manufacturing 

strategies in industry. But as sustainable manufacturing practices are switching from “end-of -

pipe” emission control to pollution prevention, and the costs for waste disposal and 

environmental emissions are increasing, the economic barrier of sustainable manufacturing is 

gradually diminishing for the manufacturing industry (Gutowski, et al., 2001). 

Another major barrier for sustainable manufacturing is that the manufacturing industry 

has to rely on certain processes, technologies or materials to make its products, which may be 

very polluting but cannot be avoided in the current stage due to the lack of appropriate 

technologies or processes. Using automotive manufacturing as an example, the painting 

operations generate a significant amount of volatile organic compound (VOC) emissions which 

cause air pollution by creating ozone and carcinogens. It has been reported that approximately 

80% of Ford’s toxic pollutants that were released into the environment were from the painting 

operations (Kim, Kalis, & Adams, 2001). Even with such an enormous impact identified, 

complete elimination of the painting emissions is not practical in this stage as the industry lacks 

appropriate technologies to replace the process. 

The other major barrier for sustainable manufacturing is that the manufacturing industry 

lacks adequate and scientific decision support tools for effective implementation of sustainable 

manufacturing strategies. To achieve sustainable manufacturing, the industry needs appropriate 

analytical tools to characterize and benchmark the environmental impact of emissions and wastes 

from a specific manufacturing process/system to support decision-making. While manufacturing 

is such a complicated system that numerous types of processes, materials, and system patterns 

are employed, generic decision tools are difficult to use for the whole manufacturing industry as 

each manufacturing process/system has its own specificities. The manufacturing system is 
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closely linked to many other industrial activities and the products from manufacturing impact 

almost everyone in society. As a result, the environmental impact of manufacturing must be 

assessed both comprehensively and specifically for robust decision support in the industrial 

applications. This needs further research efforts on environmental impact assessment methods 

and manufacturing process modeling and characterizations. For example, life cycle impact 

assessment, as a comprehensive system tool for environmental impact analysis, needs to be 

standardized, streamlined and further improved before wider application in industrial practice is 

seen (Hunkeler & Rebitzer, 2005). 

System Management of Industrial Sustainability 

Manufacturing is a comprehensive system which involves a wide range of partners 

including other manufacturers, suppliers, distributors, consumers, recyclers, policy-makers, etc. 

In real practice, a manufacturing system is interconnected with a large number of other systems 

and processes in the whole industrial, social and environmental context. The environmental 

impact of manufacturing partially comes from its upstream partners like materials acquisition, 

processing and supplying. At the same time some environmental consequences of manufacturing 

transfer with the manufactured products to its downstream partners like distributors, consumers, 

recyclers, etc. As a result, the implementation of sustainable manufacturing strategies needs to 

consider not only the impact and benefits of manufacturing itself, but also the interests of all the 

stakeholders associated with manufacturing during the industrial efforts towards an effective 

control and management of the environmental impact of manufacturing. As a result, sustainable 

manufacturing practices require a system level approach within and beyond the whole industry 

for sustainability management and improvement. 
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At the macro level, sustainable manufacturing practices are driven by governmental 

efforts through a series of “top-down” regulations, policies and incentives from the national 

level, followed by regional and industrial sector efforts for the establishment of appropriate 

environmental management programs and the development of specific roadmaps and strategic 

plans. However, the real implementations of sustainable manufacturing are at the bottom level of 

the industrial sector which involves individual or team efforts in technology innovations, process 

manipulations, product stewardship, and system improvements.  In implementing sustainable 

manufacturing strategies, it is important to understand the different levels of the system required 

to make appropriate efforts at a specific level to support sustainability assessment and 

advancement.  

The concept of sustainable manufacturing has only been raised in recent years and 

emphasized as a research focus due to the needs of manufacturing for a simultaneous 

improvement of the economic and environmental performance of industry (Chen, 2006) , 

(Seidel, Shahbazpour, & Seidel, 2007).  In current sustainable manufacturing research, 

significant efforts are put on the development of metrics for environmental performance 

measurement of manufacturing and on the investigations of specific manufacturing processes or 

manufacturing systems for environmental performance improvement. However, few applications 

have been conducted on sustainability improvement of emerging technologies such as nano-scale 

manufacturing (Krishnan, et al., 2008). 

Numerous environmental metrics have been developed for manufacturing and related 

industrial production activities.  Young, Scharp, & Cabezas (2000) have developed a waste 

reduction algorithm for reducing the wastes from materials and energy consumptions in a 

chemical process.  Life Cycle Assessment (LCA) as a comprehensive tool capable of performing 



30 

 

a complete assessment of the environmental performance of a product system has been widely 

researched and applied on the manufactured products.  Socolof, Overly, & Geibig (2005) 

performed an environmental life cycle impact study of CRT and LCD desktop computer 

displays.  MacLean & Lave (1998) conducted a life-cycle assessment of an automobile by using 

economic input-output analysis.  While implementing life-cycle assessment is very costly and 

time consuming and is beyond the capacity of many manufacturers, the manufacturing industry 

is in great need of a system approach which is economical, efficient and effective in facilitating 

decision making in the process of reducing its overall environmental impact. 

Reducing the Environmental Impact of Manufacturing 

Reducing the environmental impact of manufacturing is a complicated issue as it needs 

systematic investigations of the emission mechanisms, quantification of the environmental 

impact and identification of improvement opportunities for industry to implement sustainable 

manufacturing strategies. For reducing the environmental impact of manufacturing, the 

fundamental process and sequence of actions needs to be understood first and then followed in 

real practice. Generally the four steps below are followed in real practice for reducing the 

environmental impact of industrial production: first, understand the sources of the environmental 

impact; second, quantify the environmental impact of industrial emissions and wastes; third, 

identify improvement opportunities for reducing the environmental impact; finally, implement 

strategies to reduce the environmental impact and assess their effectiveness (Nazaroff & 

Alvarez-Cohen, 2001).  Each is discussed below. 

Understand the Sources of Environmental Impact 

To reduce the environmental impact, the first step is to understand the sources of the 

impact.  In manufacturing operations, the environmental impact results mainly from 
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environmental emissions and waste generated from the materials and energy consumed in the 

manufacturing processes.  A wide range of materials is used in manufacturing either as working 

materials (such as metals, polymers, etc.) to make products or as supplemental materials (such as 

chemicals, fluids, etc.) to assist the manufacturing operations.  The residual working materials 

left over after manufacturing and the supplemental materials not completely consumed during 

manufacturing are all categorized as wastes after manufacturing operations.  The energy 

consumed in manufacturing also generates a significant amount of emissions, both directly from 

on-site burning of fossil fuels and indirectly from the purchased electricity.  The products 

manufactured also produce environmental impacts during their use phase and their end-of-life 

stage.  Other closely linked processes such as product design, material production, supply chain, 

etc., all have environmental impacts associated with manufacturing (Nazaroff & Alvarez-Cohen, 

2001). 

Quantifying Environmental Impact 

Quantifying environmental impact is necessary as it provides the information not only to 

improve people’s understanding of the consequences of emissions and wastes on the 

environment, but also to assist decision-making during environmental impact reduction through 

quantitative evaluation and feedback.  However, quantifying environmental impact of 

manufacturing is a complex issue since it needs to quantify the material and energy input into a 

manufacturing system, and measure the amount of emissions/waste output, as well as the effects 

of these emissions/wastes on both environment and human health (Nazaroff & Alvarez-Cohen, 

2001).  
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Environmental Impact Control Opportunities 

For industrial practice, the fundamental strategy for environmental impact reduction is 

environmental emission control and impact remediation. Manufacturing emissions are generated 

from a wide range of manufacturing activities and could be generally categorized into three 

groups: air emissions, water discharges and solid wastes. Controlling such emissions requires 

different strategies and techniques. Generally, there are three opportunities for environmental 

control of emissions and wastes: pollution prevention, “end-of-pipe” control, and environmental 

restoration, (Nazaroff & Alvarez-Cohen, 2001). 

1. Pollution prevention: apply the emission control strategies before and during the 

emission generating process through such preventive measures as using less materials and 

energy, employing environmentally benign materials, etc.  

2. “End-of-pipe” control: apply the control strategies after the emissions and waste are 

generated but before they are released into the environment through such techniques as 

recycling, collection, treatment, etc.  

3. Environmental restoration: this is the environmental strategy typically employed to 

remediate environmental damage after the emissions/waste have been generated and released 

into the environment.  Current environmental restoration strategies are mainly applied on land 

releases for hazardous waste management and site restoration, some on water treatment and just 

a few on airborne emission management.  Environmental restoration is costly when compared 

with the other two strategies.  

Environmental Impact Characterization Metrics 

This approach covers the technology, energy and materials components of a 

manufacturing system and requires a number of metrics and models to characterize and quantify 
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the environmental impact of manufacturing for pollution prevention practice.  The metrics 

employed for the environmental performance characterization and analysis in this research are 

described in detail below. 

Material Flow Analysis 

“Material Flow Analysis” (“MFA”) is a methodology developed for quantitative analysis 

of material flows into and out of a subject system. MFA is a material accounting procedure 

widely employed in the study of industrial ecology topics (Bouman, Heijungs, Van Der Voet, 

Jeroen Van Den Bergh, & Huppes, 2000).  MFA generally employs a material balance approach 

for the analysis of material flows within a target system.  The MFA target could be a selected 

substance, a material, a product, an industrial sector, or an economy (Cooper, n.d.).  Material 

flow analysis can be conducted in various scales at international, national, or regional target 

systems. 

Energy Flow Analysis 

“Energy flow analysis” (“EFA”) is a methodology developed for tracking and 

understanding the energy flows within a complex system, often for decision support in 

minimizing the energy consumption of the target system to reduce its environmental impact from 

fossil fuel energy use.  EFA is very similar to MFA as described in the previous section in terms 

of modeling structure and data acquisition.  In a manufacturing system, energy is universally 

needed to drive machines and operate manufacturing processes.  The energy flows within a 

manufacturing system could be modeled by using an equipment centric approach as described in 

the literature (Krishnan, et al., 2008).  
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Risk Assessment 

Toxic chemical substances used in product design and manufacturing have significant 

impact on the environment and human health. The potential impact of toxic chemicals on human 

health is typically assessed by using a risk assessment method (Ramaswami, Milford, & Small, 

2005).  

Cost of Ownership 

In sustainable manufacturing practice, cost is an important factor to be considered in 

decision-making for all activities manipulating the components of a manufacturing system.  A 

complete cost analysis needs to be performed frequently in sustainable manufacturing for 

decision-making since sustainable manufacturing related adjustments either lead to a cost-

savings or require extra cost for operations.  Decisions have to be made based on the cost and 

pay-back of the activities prior to the implementation of sustainability programs. 

Background of Machine Tools 

The faculty of manufacturing has always been based on a skill to produce a desired 

product and the ease with which such a skill can be manipulated.  Traditionally these two aspects 

of manufacturing were independent entities with the former, i.e. the required skill, being the 

portfolio of the operator or workman while the later, i.e. available ease, implied a machine tool.  

The operator was the one responsible to produce the expected results from the machine and it 

was, as the saying goes, a workman with lesser skills who was at odds with his tools.  The 

operator was therefore selling his skill in the form of a product that has utility for those who can 

afford it.  This pattern of interaction between the manufacturer and end user changed 

dramatically with the societal conformance to industrialization and increased opportunities for an 

individual’s economic growth.  The demand for a product was created because of the ability of a 
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larger part of the society to purchase that product.  This meant that the manufacturing faculty 

was now required to produce not for the manifestation of a skill but for the consumption of a 

marketplace being governed by the concept of supply and demand.  More precise requirements 

to accommodate more stringent engineering design criteria exposed the operator’s skills to 

inherent limitations of human nature.  Also, the awareness within the consumers to get one’s 

money’s worth being their right rather than a chance privilege made the industry compliant to the 

concept of quality that must be guaranteed to the customer.  

These changing scenarios influenced not only the broader aspects of manufacturing, i.e. 

the dynamics of a shift from mere skill or a faculty to an industry that culminated into the 

concept of a complete system, but also concentrated on the man-machine interface at the shop 

floor level.  It was understood that the process of producing precise profiles depends on the 

ability to define an accurate tool path around the work piece.  The machine itself was more 

accommodating in providing a mean to this end and accuracy was incorporated into the machine 

by enhancing its ability to locate the cutting tool more precisely on and along the work piece. 

This created more sophisticated machine tools that gave more control to the operator to 

accurately define a profile and then reproduce that shape repeatedly with the same level of 

accuracy.  However, to produce the given part in a greater quantity required better machine 

utilization and lesser human intervention.  Machine utilization required better planning for the 

jobs which necessitated engineering management approaches that can ensure a smooth flow of 

inputs through the manufacturing system.  

Making machines more independent of the operator’s intervention in carrying out the 

desired operations required making the machine more capable to independently carry out a cut 

once a tool path has been defined by the operator.  Turning operations carried out on lathes are a 
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good example of such capability where once the feed rates have been selected, the tool post can 

be allowed to move along a defined cutting path (linear, or along a single axis) powered by the 

main spindle with the depth of cut reset by the operator after each single cut till the desired 

dimension is achieved (Chapman, 1972. p. 302). 

This shift from manual to mechanical powering of the cutting tool path was followed by 

mechanical automation that allowed automatic tool change and location using a mechanism 

controlled through cams and follower links.  This allowed for automating the manufacture of 

different commonly used high-volume items that had a compliant profile to the extent that 

dedication of equipment for a job became possible.  An example of such a high-volume common 

use item is a screw that although comes in a number of different sizes, its manufacturing consists 

of a given number of well-defined steps; the most basic being turning, shouldering, thread-

cutting and finally cutting-off.  Screw cutting lathe machines, therefore, became one of the 

earliest machine tools for automatic profiling of a round stock or raw material (Arnold, 2001). 

This was an important step in the automation of the machine tools that was, however, subdued 

because of the limited scope and light nature of work that can be handled, with the major task of 

shaping complex profiles on difficult work pieces remaining the domain of highly skilled 

operators that can both set up the job and tooling as well as operate the machine for a given job 

(Chang, Wysk, & Wang, 2005). 

The dawn of the electronic era, however, completely changed the set of possibilities 

available to the machine tool manufacturers for automating machine tools.  The feedback 

capability of an electronic circuit gave this automation the necessary senses to not only carry out 

but also control the process of profile generation that was previously impossible using 

mechanical modes of automation.  From hardwired, logically controlled circuits to the more 
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sophisticated and centralized computer-controlled units, the visibility within the entire 

manufacturing organization was now clear from one end to the other.  This was so because the 

computer on the machine tool can be easily connected to the one controlling other aspects of 

manufacturing such as planning, purchasing, maintenance, etc. thus making the information 

generated at any point available to those who are concerned with the process of decision making 

and operations. This facilitated integration, a concept that literally changed the organizational set 

up of the modern manufacturing industry.  

Computer Numerical Control 

Numerical control, the predecessor for CNC machines, is a method of achieving 

predefined mechanical motion in a machine by the use of a set of instructions in the form of an 

alphanumeric code (Groover, 2001).  This code was digitally translated into electric signals that 

actuated required motions to perform the desired function, machining in this case, using an 

electronic processing unit.  Thus the control required to position the tool as well as define and 

maintain the tool path was now fully within the capability of the machine tool itself with 

minimal, if any, intervention by the operator.  A change of job implied changing the set of 

instructions being fed to the machine tool with the operator being more concerned with loading a 

punched tape rather than working out a new set up on the machine for a new job.  The 

numerically controlled set up, therefore, consisted of three fundamental components that are 

briefly defined as follows (Groover & Zimmers, 1984, pp. 135-138): 

a) Program of Instructions: The different steps required to carry out a machining 

operation were coded in the form of a set of alphanumeric instructions known as the program. 

These instructions were then transferred to a storage medium, generally a punch tape, from 

where the codes were digitally read into the control unit. 



38 

 

b) “Machine Control Unit” (“MCU”): The control unit consisted of electronics and 

hardware that step-by-step interpreted the program of instruction into actual operations of the 

machine tool. The program was read into the buffer memory instruction wise, processed, and the 

resulting output signals relayed to the servomotors for carrying out the desired motion.   

Since the MCU was concerned with controlling the motion of the machine tool, NC 

systems were classified on the basis of the capability of the controller to position the tool and 

work piece for the purpose of machining.  The two basic types of NC systems are (Hitomi, 1996, 

pp. 385): 

• Point-to-Point or positioning system that was valid for such machining operations as 

drilling, punching etc. where the machining operation is carried out on a specific location. Thus 

the trajectory a tool takes to reach that location is of no importance and does not need to be 

controlled. 

• Continuous Path or contouring system required a control on the trajectory of the cutting 

tool throughout the cutting operation and hence these systems were more sophisticated and 

expensive than the positioning systems.  A series of points were identified on the work piece 

profile and the path between these points was interpolated either linearly or as a curve, thus 

defining the required tool trajectory for the cutting operation. 

c) Machine Tool: This is the part of the NC system that actually performs the machining 

operation and contains the worktable, holding mechanism for tool and work piece as well as the 

driving mechanism.  It can also contain a mechanism for automatic tool change to eliminate the 

necessity for machine stoppage and operator’s intervention to change tooling for a given 

operation or a new job.  A control panel was also included with the machine tool, as a built-on or 
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an independent unit, to give necessary control to the operator for such inevitable functions as 

stopping or starting the machine etc.  

NC machining was indeed a great leap forward from the concept of mechanical 

automation based on cams; however, it was based more on automating the motions of the 

machine rather than adjusting to the particular machining requirements of a job.  This meant that 

how the instructions were to be converted into machine tool action, the mathematics and logic of 

the interpretation, came locked in with the particular controller being used – the so called 

hardwired electronics (Groover & Zimmers, 1984, pp. 204).  Any alteration or upgrading of 

these units was generally not possible and the programs were therefore developed keeping in 

mind an “as is” scenario.  Also the input mode for the NC machines, i.e. a punch-tape reader, 

was also highly inflexible to any changes that might be necessary to correct or improve the 

processing output of a machine (Groover & Zimmers, 1984, pp. 203). 

Computers brought about a phenomenal change in how the machine control over the tool 

path could be obtained.  The MCU was replaced by a computer in the CNC machines that 

provided great flexibility to develop, store and edit programs directly at the machine tool site and 

allowed inclusion of more sophisticated operations (McMahon & Browne, 1998, pp. 382-383).  

A number of different programs and routines can now be saved on a single computer and were 

readily available to be loaded as required into the machine tool.  With the program of 

instructions and the controller now combined within the computer peripheral, the machine tool 

itself started to look for greater possibilities to facilitate automation of different auxiliary 

operations.  These included a number of various features some of which are listed as follows 

(McMahon and Browne, 1998, pp. 384): 
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• Tool magazines were provided to hold a large number of tools on the machine.  These 

tools were indexed to be recalled from within the program when required and loaded on the tool 

post for machining operation without the requirement of machine stoppage for tool change by the 

operator. 

• Pallet loading system was devised to place the work piece along with the necessary 

fixtures on a pallet that can then be loaded directly on the machine tool table.  Once the job was 

completed the pallet on board is replaced by another one in waiting decreasing the 

loading/unloading cycle time to a minimum.  This also provided the flexibility to machine 

different parts one after the other by simply changing the program as the work piece gets loaded 

on the tool. 

• Multiple machining spindles were provided on a single machine, known as a machining 

center, to carry out different natures of operations, such as turning and milling, without the 

necessity of loading/unloading for work piece movement between different machine tools.  This 

is of great importance in a batch processing set up where requirement to load the job on different 

machines implies greater work-in-process inventory and hence a greater production planning 

effort.  

Numerical Control: A Historical Perspective 

Most of the manufacturing operations up until the middle of the last century were based 

on traditional machine tools powered generally by electrical supply and controlled mechanically 

through a system of gears and slides by the operator.  Although these machines showed 

capability to define complex profiles on different types of work pieces, these machines required 

a highly skilled workforce to operate and a greater level of intervention to set them up for a 

particular job or machining operation.  The machine itself, and also the operator, were becoming 
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a concern for those who wanted to enhance productivity within the manufacturing environment 

(Kalpakjian & Schmid, 2007, p. 808). The concept of mechanization has been around for some 

time involving mechanical automation of repeated and simple operations on a machine but 

complete automation of a machine so that it is independently available to any sort of a machining 

job, with minimal human intervention and idle time, was still considered an impossible scenario 

on the shop floor.  

Although automation as a concept has been quite awe inspiring in itself, enabling 

complex sets of operations to be completed on their own in order to provide some tangible 

output, the concept carried a predefined set of goals for those who were visualizing its possibility 

in the manufacturing industry; productivity, quality, integration and safety being some of the 

major ones (Kalpakjian & Schmid, 2007, p. 811).  The actual machining time during which a 

machine tool is involved in processing a job is astonishingly small even if the loading/unloading 

time for the work piece is not considered.  A simple turning operation on a conventional lathe 

implies that after the roughing cut the machine be stopped, inspection of the cut diameter, setting 

the tool for the next cut and then starting the machine for the cut.  Whether the cut is of one inch 

in length or ten inches the procedural requirements remain the same.  As the final or finishing cut 

is carried out greater intervention is required, from manual control to physical presence of the 

operator, to ensure the dimensional accuracy on the work piece.  A job can be rendered 

completely useless because of even a single mistake at any step by the operator.  

The nature of job complexity and the production quantity are two conflicting 

requirements that seldom can be separated for the convenience of the human operator.  Jigs and 

fixtures can be developed for different jobs to facilitate tool location and path for the cutting 

operation but that added to the cost of the machining operation as well as an extra effort to 
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design and manufacture the jig or fixture.  Semi-automatic machine operations were incorporated 

in conventional machine tools that automated the motion of tool post or worktable for a given 

single cut.  The control was mechanically shifted to the machine tool using gears and shafts once 

the feed rates and speed for the cut has been set by the operator.  The machine itself was 

becoming more complex and demanding to learn for carrying out the machining process.  The 

control mechanisms have been developed using mechanical engineering practices but the need 

was to somehow make the machine capable of understanding the processing requirements of a 

job and then carry out the job independently without the need of the operator to set feeds, locate 

tool and control the tool path for the cutting operation.  Mechanical faculty was practically not 

equipped to impart such understanding to the machine tool through which the steps of machining 

can be communicated to the machine.  

The answer was electronics.  The ability to control the flow of current and voltage 

through a circuit using electronic devices to generate various output signals that can be 

electrically sensed and mechanically realized literally changed the perspectives of possibilities in 

every dimension.  From vacuum tubes to transistors to integrated circuits, electronics became 

synonymous with the term microprocessor that works on the simple principle of data input, data 

processing, and output.  The input can be an entire program of instructions at a computer 

terminal or a simple click of a button on a TV remote.  Once the given input is processed by the 

electronic circuits the output can be obtained on peripheral screen right in front or as activation 

of an actuation device placed at a remote location.  This was the sort of communication medium 

that was required to automate the controls of a machine tool so that the required steps of 

operation can be electronically conveyed to the machine which can generate electrical signals to 

actuate the control mechanisms on the machine.  The beginning of electronically controlling the 



43 

 

machine tools was, however, not that exciting as one might have expected after witnessing the 

present day state of the art technology. 

Groover (2001) has provided a detailed account of the historical background that led to 

the evolution of Numerical Control systems for the purpose of machining operations.  The detail 

has been summarized as follows to highlight the nature of initial efforts and the pioneers of a 

technology that brought about a revolution in the manufacturing industry (Groover, 2001, pp. 

128-129).  The pioneering work for the development of Numerical Control started in 1948 and is 

attributed mainly to John Parson and his association with the United States Air Force.  He 

conceived the idea of using coordinate position data contained on punched cards to define and 

machine the surface contours of airfoil shapes. After the development work by Parson and his 

colleagues on their ‘cardamatic’ machine, so named because of the punch card, the idea was 

presented to the US Air Force in 1948 which signed a contract with Parson in 1949.  In the same 

year Parson subcontracted with the Servomechanism Laboratories at the Massachusetts Institute 

of Technology (MIT) to carry out research and development work on his cardamatic machine. 

In order to accommodate required data transfer rates, punch cards were relinquished in favor of 

punch paper tape and the term ‘Numerical Control’ was adopted in 1951 for a retrofitted 

Cincinnati Milling Machine Company vertical Hydro-Tel milling machine.  This prototype 

successfully performed simultaneous control of three-axis motion based on coordinate axis data 

punched binary tape.  Although the reaction of machine tool companies to this prototype was not 

that keen, one company that showed its interest in the MIT work was Giddings and Lewis 

Machine Tool Company.  This resulted in a second prototype which was a significant 

advancement over the first Servo Lab machine.  Later, the US Air Force again came into the 

limelight by sponsoring development of NC machine tools at several different companies.  These 
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NC machine tools were then used by different aircraft companies between 1958 and 1960.  As 

the advantages of NC machines became apparent and aerospace industries started showing 

greater interest in their usage, production of NC machine tools gained momentum involving 

more machine tool manufacturers to join in the research and development work of a burgeoning 

industry.  (Groover, 2001).   

One cannot help but notice the role of the defense sector in the rapid growth of the 

manufacturing industry especially after the end of World War II.  It was particularly so because 

of the advent of the aerospace industry that was at that time more or less confined to pursue the 

objectives of military defense.  To be competitive they needed to work with high strength 

materials and required profiling with a higher degree of accuracy and reliability (Chang, Wysk, 

& Wang, 2005, p.452).  According to Rachel Schmidt, there were two main reasons for the 

specific interest in numerical control; firstly, the Air Force was concerned with the lack of 

capability of the conventional equipment to provide the desirable flexibility and output for 

aircraft production, and, secondly was the rising cost of wages and shortage of skilled manpower 

(Schmidt, 1988, p. 5).  Although, as mentioned in the quoted text, the initial reaction of machine 

tool manufacturers was far from eager acceptance, the people associated with the project and 

their sponsor, i.e. US Air Force, had anticipated the benefits of undertaking Numerical Control as 

a breakthrough technology.  Production jobs that characteristically facilitated the application of 

NC machine tools as have been identified by Groover and Zimmers, and will be discussed in a 

later section, included geometric complexity, high metal removal requirements, multiple-

operations processing, anticipated engineering design changes in the job, 100% inspection 

requirements and the frequent small-sized batches for production (Groover and Zimmers, 1984, 

p. 146).   
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It was mainly due to the research work carried out at the MIT and the commitment shown 

by the US Air Force for the pursuance of this project that awareness of the capabilities inherent 

to the Numerical Control for machine tools disseminated to the machine tool manufacturers.  

Commercial models of the NC machines were displayed at the National Machine Tool show in 

1955, and by 1957 several of these machines were installed for use in industrial applications 

(Luggen, 1996, p. 21).  According to Heinrich Arnold, the years between 1959 and 1965 saw a 

rapid expansion of the NC machines (Arnold, 2001, pp. 20-21).  He emphasized this by stating 

that the first multifunction, multipurpose machining center appeared in 1958 and by 1960 ninety 

different models of NC machines were available.  He also identified the historical events that led 

to the motivation of European machine tool industries to embrace the concept of Numerical 

Control and later in the 1960s, as the computer technology evolved, by the Japanese industries 

(Arnold, 2001, pp. 17-18).  Great Britain (1957) and France (1958) were the first in Europe to 

produce NC machine tools but commercial production was not initialized till 1960 which took 

some further four years in taking off (Schmidt, 1988, p. 6). 

In spite of the acknowledgement of possibilities associated with Numerical Control in 

machine tools, a number of challenges still existed for its general acceptance.  The problems with 

conventional NC systems have been outlined by almost every author who has discussed the 

subject and were indeed important in understanding the events that made the computer a more 

widely accepted mode to achieve machine tool automation.  Groover and Zimmers (1984) have 

discussed these problems at length and a brief account is listed below as a set of roadblocks in 

the application viability of this new technology (Groover and Zimmers, 1984, p. 203): 

• Elimination of part programming errors in preparing a punch tape was quite 

cumbersome as well as achieving the best sequence of processing steps. 
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• Conventional NC machines did allow in-process changes in feed or speed with the 

programmer forced to go for worst case scenarios.  This reduced the productivity level of the 

machining process. 

• Handling and storage of the punch tape was itself a problem. 

• The controller was a hard-wired unit whose control features were generally not 

accessible to a change or update. 

• The conventional NC system was inherently stand alone in nature with little or no 

information regarding operational performance to assist managerial activities at the factory, or 

even on the shop floor, level. 

Most of these problems were solved with the advancement in electronics particularly with 

the advent of the computer industry.  Groover (2001) has again provided some interesting 

historical notes, which are the main crux of this sub-section, regarding the application of digital 

computers for Numerical Control (Groover, 2001, pp. 128-129).  He reports that the first 

application of the digital computer for NC processing was to perform part programming.  Again 

MIT coordinated with USAF for research on a computer-aided part programming system with 

the development of “Automatically Programmed Tools” (“APT”) language in the early 1960s.  

This APT language demonstrated greater flexibility as a medium to develop NC machine tool 

programs being applicable to virtually every machine tool and meeting the Air Force’s 

specification for up to five-axis control (Schmidt, 1988, pp. 5-6).  

As the computers became capable of writing part programs the next logical step was to 

eliminate the necessity of using a punch tape medium to communicate with the NC system.  The 

concept of Direct Numerical Control (DNC) was conceived in the mid 1960s, in which different 

NC machine tools were connected to a remote mainframe computer.  The instructions were 
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directly transmitted to the individual machine tool in real time from the computer.  Two 

companies that pioneered the development of DNC were General Electric Company and 

Cincinnati Milling Machine Company.  The problems that surfaced were the economic 

feasibility of a mainframe computer at a company level and the possibility of breakdown of the 

central computer that could render the entire NC system of a large number of machines 

completely redundant. 

The start of the 1970s brought with it the opportunity of using a dedicated computer at 

the machine tool level.  Use of integrated circuits increased the computational performance while 

decreasing size and cost associated with the computers.  The result was the use of 

microcomputers as the machine control units for NC machine tools that surpassed the general 

acceptance of its predecessor DNC in the industrial application arena. 

The Proliferation of CNC Machines 

Computers are a very powerful tool to process, store and disseminate data.  The 

hardwired electronics of the NC machine were practically no match for the extent of flexibility 

that was to be afforded by the computers to control the machine tools.  The processing capability 

of the computers was increasing exponentially over time and the size as well as the cost of the 

circuitry was diminishing at almost a similar rate.  However, it was the power of the computers 

to disseminate the data or information that has defined the nature of opportunities associated with 

the application of computers within the manufacturing industry.  The interaction of computers 

with other computers and electronic devices for the interchange of relevant information evolved 

the concept of networking.  This interconnectivity potential of the computers led to the 

possibility of integration of different disciplines, from managerial to actual processing, within the 



48 

 

production unit.  The entire manufacturing system got streamlined to the concept of automation 

under the influence of the power of the computers (Groover and Zimmers, 1984).  

The hard-wired electronics of the machine control unit were replaced by a computer 

dedicated to the machine tool.  This computer was used to perform the different functions of the 

numerical control using the software stored in its memory that can be accessed for change 

(Groover and Zimmers, 1984, p. 205).  Tanner (1985) has especially concentrated on the 

enhanced interactive capability endowed to the CNC system at the man-machine interface for 

facilitating machine operations.  He points out an essential provision of a multifunction screen to 

display the full operational or parametric data as a part was processed.  An alphanumeric 

keyboard was also provided on many machines to facilitate manual data entry (Tanner, 1985).  It 

is very interesting to note that whatever Tanner (1985) reported as anticipated features in the 

characteristic details for the future of CNC systems in the 1980s are a part of the current CNC 

Technology; this included a two or three-dimensional graphical display for viewing tool path and 

shop-level part programming facility to automatically convert part geometry into cutting tool 

path.  Some of the other characteristic features that differentiated the new CNC technology from 

the previous units were the ability to store and edit more than one program at the machine tool, 

execution of high level interpolation schemes for defining tool path, cutter length and size 

compensation, acceleration/deceleration calculations to avoid sudden feed rate changes, 

communication interfaces and diagnostics (Groover, 2001, p. 130). The communication 

interfaces allowed the machine to be linked to other computers and computer driven devices in 

order to: 

a) Download part programs from a central file as encountered in distributed numerical 

control. 
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b) Enable data collection related to machine operations such as work piece counts, cycle 

time and machine utilization. 

c) Interface with peripheral equipment such as robots that load/unload parts. 

As mentioned before, machine tool manufacturers also concentrated their efforts on the 

machine tool itself to increase the productivity of the system by making the machine capable of 

performing a wider range of machining operations with minimum set-up time and set-up changes 

(McMahon and Browne, 1998, pp. 383-384).  Hitomi (1996) has contended that conventional 

NC/CNC included machines that were intended for a single type of machining operation such as 

lathe, drilling machine, milling machine etc. (Hitomi, 1996, p. 386).  He further states that 

machining centers, originated by Kearney and Trecker Corporation in 1958, in contrast 

automatically performed multiple complicated operations on several faces of the work piece 

employing several axes of control and cutting tools.  This allowed for centralizing of several 

production processes, simplifying process planning and scheduling requirements as well as 

yielding high utilization of the machine. 

As outlined above the shift from the traditional hard-wired Numerical Control to the 

more flexible Computer Numerical Control resulted in a number of advantages for the operator 

at the machine level, however, to understand the scope of this technology in the manufacturing 

industry one needs to evaluate the influence of this technology from a broader perspective.  The 

advantages and limitations of the CNC machine tools are therefore presented in the following 

paragraphs along with some major application characteristics for the technology that will need to 

be evaluated for the feasibility of the use of a CNC machine for a particular job. 
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Advantages and Limitations of CNC Machines 

The advantages attributed to CNC machine tools in comparison with their NC 

counterparts or conventional rivals are listed below: 

a) The shift to the software based CNC machines resulted in a reduction and 

simplification of the hardware circuits with an increased flexibility in controlling the machine 

operation.  Also the availability of diagnostic software allowed for maintenance supervision of 

the machine (Narayan, Rao, & Sarcar, 2008, p. 273). 

b) CNC offers complete control of all axes at all times, ensuring extremely good accuracy 

and repeatability, under optimum cutting conditions (Narayan, Rao, & Sarcar, 2008, p. 273). 

c) The greater potential of the CNC systems to contour complex profiles make them a 

preferred choice particularly in aerospace, automotive and die/mold making industries.  This is 

so because some form of computerized programming is essential for any three-dimensional tool 

path generation (Smid, 2003, p. 3). 

d) A large number of different parts programs can be stored at the machine site and these 

programs are accessible at all times for editing, to debug errors or incorporate changes, and 

loading into the machine control unit.  This makes a CNC machine more flexible to changes in 

engineering design and production schedules (i.e. a change in part).  

e) The CNC machining systems allows the interconnectivity of machine peripheral 

computer with other computers in the factory network to facilitate computerized integration of 

different departments, i.e. design, production, distribution and management (Kalpakjian and 

Schmid, 2007, pp. 854). 

f) Increased opportunities to accommodate newer manufacturing technologies and 

strategies that are inherently computer dependent as will be discussed in the next sections.   
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It must be pointed out that there are many other advantages that are also listed in 

literature which have not been included in this list, such as reduced skill requirement of the 

operator, lower scrap rates, lower machine idle time, simpler work and tool holding 

requirements, etc.  This is so because this set of advantages is characteristic of the NC/CNC 

technology due the same principle of digital automation involved. That is why the disadvantages 

being discussed below are also somewhat similar to the two concepts. These disadvantages of 

NC/CNC systems have been discussed by Groover (2001) and are briefly outlined below 

(Groover, 2001, p. 145): 

a) CNC machine tools are capital intensive investments due to specialized requirements 

of the machine tool, the electronics hardware and software requirements, and other auxiliary 

features and accessories that have not been associated with the conventional machine tools. 

b) Higher maintenance costs and efforts due to the computers and electronics involved 

that also necessitates including personnel who are trained in maintaining and repairing this type 

of equipment. 

c) Part programming is an added step for processing that is not present in the 

conventional machining setup.  

d) Higher cost of the equipment required that higher machine utilization must be ensured 

including working in multiple shifts with the requirement for supervision and other support staff. 

Applications 

Groover (2001) has specified the following part or production characteristics for which 

the NC/CNC technology is most suitable. These characteristics that make this technology 

appropriate for low-to-medium production of medium-to-high variety parts are (Groover, 2001, 

p. 141): 
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a) Batch production: the production setup involves working in batches of small or 

medium lot sizes that will be uneconomical for dedicated automation because of the prohibitive 

cost and manual production will not be able to achieve high productivity levels, comparable to 

mass production systems, and will increase labor cost, lead time and scrap rate due to higher 

operator intervention. 

b) Repeat orders: there is a tendency of producing same or similar parts in batches at 

random or periodic intervals requiring frequent job and set up changes. Such changes imply 

simply changing the part program in the machine control unit. 

c) Complex part geometry: profiling of complex curved surfaces is generally not easy to 

achieve on conventional equipment especially where more than one axis is involved in 

controlling the tool trajectory.  

d) High volume of metal removal: where the volume and weight of the final machined 

part is a relatively small fraction of the starting block. 

e) Multiple machining operations on a single part: parts which require a number of 

different processing operations and hence different cutting tools and respective setups can benefit 

a lot from the use of this technology. 

f) Expensive parts: when the part is expensive, whether due to a costly raw material or 

excessive machining requirements, mistakes in machining can render the part useless at the cost 

of time, effort and money. 

NC/CNC technology has been applied to all types of machine tools for cutting operations 

as well as metal forming and non-machining operations (Groover, 2001, pp. 132-143).  Not only 

the mainstream large scale industries that catered to the production of high-end engineering 

products, such as aerospace and automotive sectors, got involved in the application of CNC 
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technology but also the auxiliary industrial sector, known as the vendor industry, was quick to 

join in for accommodating the requirements of their parent sectors.  The accuracy and 

repeatability potential of CNC machine tools rendered them more suitable to facilitate 

technologically advanced trends in machining operations while maintaining high standards of 

product quality. The machine tool productivity for the machining processes was greatly 

increased due to minimal requirements for jigs or fixtures to facilitate work piece/tool holding or 

positioning and lesser requirements for setup changes needed to perform different types of 

machining operations.  As machining centers, productivity and machine utilization got further 

enhanced, due to their ability to perform a number of different operations without a need to 

reposition the work piece, making the machine more accommodative to automatic 

loading/unloading of different parts and even jobs without the need for human intervention was 

made possible.  

This meant that one of the main objectives of computerized automation of machine tools, 

i.e. to make the output productivity of batch-type production at par with that expected from a 

mass production system using dedicated machines and layout, was now a perceivable reality 

(Hitomi, 1996, p. 390).  Economically feasible applications of CNC machine tools implied 

developing smart strategies to modernize the managerial agenda of a manufacturing 

organization.  The recent time has been a witness to large scale organizational restructuring of 

manufacturing industries in order to maximize their benefits of shifting to CNC machine tools 

from their conventional or NC counterparts, a phenomenon that in its own self defined the 

strategic advantage and competitive survival of today’s manufacturing industry.  
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Technology Trends Complementing CNC Proliferation 

Krar and Gill, (2003) have given a detailed account of the different advanced 

manufacturing technologies that have developed in recent times. Although they have dealt with 

each of them as a separate entity most of these are associated with Computer Numerical Control 

in one way or the other and have paved numerous opportunities for the proliferation of CNC 

machine tools and systems. These technologies are briefly discussed in this section, mainly 

adopted from Krar and Gill (2003) to elaborate how Computer Numerical Control machining has 

become a common denominator in nearly all aspects of manufacturing operations at the very 

basic level of the machine tool itself.   

a) “High Speed Machining” (“HSM”): according to Krar and Gill (2003) the speeds 

involved in high speed machining (HSM) can make CNC machine centers compete 

with a dedicated manufacturing system, such as mass production transfer lines, by 

delivering such benefits as: 

i. Producing more parts than are possible with conventional feed rates and 

spindle speeds. 

ii. Better surface finish can be achieved due to lighter cuts eliminating the need 

for a finishing operation like grinding. 

iii. Lighter depth of cut reduces the possibility of warping in large work pieces 

that present high-volume material removal requirements as is prevalent in the 

aerospace industry. 

iv. Production of a single complex part facilitates design integration. 

Pasko, Przybylski, and Slodki (2005, pp. 2-3) have reported that there are three main 

categories of industrial sector using HSM due to their specific requirements; these categories are: 
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• Machining of non-ferrous parts, mainly aluminum, for use in automotive 

components, small computer parts or medical devices because of the need for high 

metal removal rates. High rate of material removal is a characteristic requirement for 

those jobs that require many machining operations. 

• Aerospace industry that involve machining of long aluminum parts with thin cross-

section. The requirement characteristics for this category are high volume of material 

removal and accuracy. 

• Die mold industry where working with hard materials requiring high accuracy and 

finish from processing operations is a normal procedure. 

b) Combination tools: in order to increase productivity at the machine level, CNC 

machining centers have a great potential to use special tools that can combine more than 

one operation and operational steps into a single tool thus reducing time required to 

prepare the machine tool for each individual operation.  These tools are inherently CNC 

dependent by virtue of exploiting the CNC capabilities for helical interpolation. 

c) Non-Cartesian machines: as the name indicates, non-Cartesian machines have a 

positioning system that is not based on three different axes for the machine worktable. 

Instead of the conventional design of three drives placed one on top of each other to 

achieve target position through individual motion of each slide in a Cartesian coordinate 

(X-, Y- and Z-axes) workspace that promotes cumulative error, these machines are 

developed on a hexapod design consisting of triangular linkages that provides a literally 

floating worktable similar to the concept of Stewart Platform employed in flight 

simulators (Bray, 2002).  
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CNC and Factory Automation 

The use of NC and CNC techniques allows the introduction of sophisticated automation 

that has contributed in the implementation of a number of modern manufacturing strategies at the 

plant or factory level (Beddoes & Bibby, 1999, p. 223). These are briefly discussed as follows: 

a) Cellular manufacturing: cellular manufacturing is related to the switch from the 

functional plant layout, characterized by similar machines grouped together, to layout 

based on group technology.  In this layout parts can be divided into groups on the basis of 

similarity in features or processing requirements, and the equipment needed to carry out 

all those operations are grouped together to facilitate ease of part flow and process 

control (McMahon and Browne, 1998, p. 427).  CNC technology allows full automation 

of part production as well as greater coordination with auxiliary equipment to minimize 

the supervisory requirements of a given cell.  Thus manufacturing cells can be made 

flexible, to a greater product variety and smaller lot sizes, in a practically unmanned, 

highly automated environment (Kalpakjian and Schmid, 2007, p. 873). 

b) “Flexible Manufacturing System” (“FMS”): FMS allows the integration of different 

activities related to manufacturing into a highly automated system (Kalpakjian and 

Schmid, 2007, p. 874).  This is based on automated manufacturing cells consisting of 

CNC machine tools and equipment as well as an automated material handling system that 

can be interconnected to handle a large part variety irrespective of the order of production 

of the various parts.  The control of the production process is concentrated on the 

production of a part rather than providing a route to an entire batch of a given part 

through the manufacturing system. 
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c) Computer Aided Design and Manufacture: the influence of computers in the 

manufacturing industry was not restricted to only the processing aspect but also was 

rapidly gaining acceptance in other activities related to the product development 

activities.  Design of products was now not a cumbersome activity involving sheets and 

sheets of papers to convey the engineering and processing requirements to a large number 

of people with a varying level of understanding.  Virtual models of the product can now 

be built on computers that communicated the design intent in a more accessible and 

understandable manner to all concerned and these models can be validated for design 

intent using simulation software.  Once validated, these models can generate the 

engineering drawings that will be used by the process department to generate part 

program for the CNC machine tools. 

d) “Computer Integrated Manufacturing” (“CIM”): since every aspect of manufacturing 

was now being automated through the use of computers, it was becoming more and more 

logical to integrate the different departments involved in the manufacturing activities, 

from design to production and ultimate marketing of the product (Kalpakjian and 

Schmid, 2007, p. 854).  These departments have traditionally been islands of individual 

responsibilities and relevant information was used to travel in a sequential or “over-the-

wall” manner between them.  CIM is a methodology that provided a centralized 

information processing facility through the interconnection of a network of computers 

such that the entire status of each job or event can be updated and communicated on a 

real-time basis.  Thus as a design engineer completes the formalities related to the design 

task, the material and processing requirements will be generated and communicated 

through the information system to the relevant departments. 
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CNC machine tools have greatly influenced the concept of automation not only at the 

shop floor level but throughout the entire manufacturing system.  These machines have a great 

potential to incorporate different advanced machining technologies to increase their competitive 

advantage over conventional machining processes as well as making them suitable for a larger 

set of complicated machining applications.  It can be confidently concluded that the potential of 

CNC machine tools will increase and develop in future, due to the powerful impact of computers 

on the automation and integration of manufacturing activities, as well as their accessibility for a 

wider set of application areas. 

The final goal of manufacturing is to create products rapidly, economically, and with 

high quality.  CNC machines are widely used in the metal cutting industry to achieve this goal 

while maintaining flexible production.  Although the advent of CNC in the cutting industry has 

given many conveniences and benefits, CNC still has many limits.  For example, contemporary 

CNC machines often cannot anticipate the problems caused by unexpected changes in the work 

piece.  Consequently, much research has been done to develop techniques to respond to these 

changes.  

While in the process of metal cutting operations, if a tool fails it may harm the tool 

holder, the work piece, or the machine elements.  Also, as machining continues and the cutting 

tool begins to wear, the surface quality and the dimensional correctness of the product degrade. 

Furthermore, tool cracking may put the operator in danger from a safety perspective, or may 

cause a problem in the manufacturing system. 

In turning operations especially, unexpected changes in the work piece material 

properties can have significant negative effects on the efficiency of the operation and quality of 

the product.  Variations in work piece hardness and dimensions can cause variation in cutting 
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forces, which can then lead to accelerated tool wear and even breakage. Such problems can be 

overcome during CNC operations by measuring the variation in hardness in the work piece and 

adjusting the cutting conditions to account for increased forces.  However, there are limitations 

to in-process measurements of material hardness.  Conventional hardness measurement devices 

require contact with the material being measured, which can be time-consuming and may 

damage the work piece.  A method to detect variations in work piece hardness that does not rely 

on contact could preserve tool life without costing additional time or creating damage in the 

work piece.  Theoretically, the spindle power required for turning operations in hard materials is 

higher than that required for soft materials.  Therefore, a power sensor provides a novel means of 

detecting hardness changes in the work material without affecting the cutting process.  

Adaptive Control of Machine Tools 

The use of “Adaptive Control” (“AC”), to optimize production rate and product quality as 

well as to minimize cost, is a logical extension of the above described CNC systems (Arnone, 

1998).  According to Colwell, Frederick, and Quackenbush (1969), “throughout the nineteenth 

century and for more than half of the twentieth, adaptive control has been entirely dependent 

upon the skill of machine tool operators” (p. iii).  The authors describe what followed as a 

“frantic "grasping for straws" in the search for automatic, instrumented, or mechanized adaptive 

control to solve the unpredictable problems which occur in manufacturing.” (p. iii). 

AC allows the machine to automatically adapt the operating parameters to conform to 

newer circumstances (Kalpakjian and Schmid, 2007).  Drozda & Wick define “adaptive control” 

as a “method using automatic means to change the type and/or influence of control parameters to 

achieve near optimum processing performance (1983, p. 5-70).   Davim (2008, p. 330) describes 

AC this way: 
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An adaptively controlled machine is able to adapt to the dynamic changes of the system 

caused by the variability of machining process due to changes in the cutting conditions 

such as the hardness of the work material, tool wear, deflection of the tool and the work 

piece, and so on. 

Davim (2008, pp. 330-331) goes on to explain the main objectives of an adaptive control 

system as: 

1. to adjust the machining parameters such as cutting speeds and feed rates and/or the 

motion of the cutter to optimize the machining process by maximizing some performance 

criteria based on the cost or the production; 

2. to satisfy various constraints against variations due to external factors and respond to 

such variations in the process in real time; 

3. to automatically improve the performance of the machining process through its learning 

capability. 

Chapman (2004, p. 236) describes AC as a “special feature that allows for the control to 

automatically override the programmed feed rate under certain conditions.” Chapman goes on to 

say that “the programmer specifies the desired cutting parameters (speed, feed, etc.) and while 

the machine is executing the program the control monitors the cutting load on the tool and 

automatically reduces the feed rate if the load becomes too high.” (p. 236). 

Jain and de Silva (1999) note that AC has been “extensively used in several industries 

including chemical, aerospace, automotive, and pulp and paper.” (p. 30).  Youssef and El-Hofy 

(2008, p. 621) describe three types of AC as: 
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1. Adaptive control with optimization (ACO), in which an economic index of performance is 

used to optimize the process using online measurements. This strategy may involve 

maximizing material removal rate or improving surface quality. 

2. Adaptive control with constraints (ACC), in which the process is controlled using online 

measurements to maintain a particular process constraint (force, power, temperature, and 

so on).  If the cutting force and hence the torque increases excessively, the AC system 

changes the speed or the feed (cutter travel), to lower the cutting force to an acceptable 

level.  Without AC or without direct intervention of the operator (in case of conventional 

machining), high cutting forces may cause the tools to chip or break, or the work piece to 

deflect or distort excessively. As a result the accuracy and surface finish would 

deteriorate. 

3. Geometric adaptive control (GAC), in which the process is controlled using online 

measurements to maintain desired dimensional accuracy or surface finish. 

Summary 

This chapter has provided a thorough review of the literature pertaining to sustainable 

manufacturing, a rich background of machine tools, the history of computer numerical control as 

it pertains to machine tools, and lastly “adaptive control” as it pertains to machine tools.  In the 

AC literature specifically, examples discussed to date suggest AC is useful in controlling work 

piece dimensions, the surface finish of the work piece, and the cycle time associated with 

machining the work piece.  However, there is paucity in the literature related to how “adaptive 

control” might be employed to reduce the amount of energy consumed by machine tools in 

manufacturing.  The next chapter will present the research methodology that the researcher used 

to carry out the study to explore the aforementioned paucity. 
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CHAPTER III 

METHODOLOGY 

Introduction 

The previous chapter presented a review of the relevant literature pertaining to 

sustainable manufacturing, machine tools, computer numerical control, and adaptive control.  

The purpose of this chapter is to outline the study that was conducted to examine what factors 

might impact the energy efficiency of a machine in terms of reducing the amount of energy used 

when the machine is performing a programmed operation.  It was envisioned that multiple 

factors may contribute to this measure of energy efficiency and they are addressed both 

individually and in combination or interaction with each other.  The influencing independent 

variables studied were adaptive control, feed rate, spindle speed, depth of cut, coolant 

temperature, coolant flow volume, and tool condition.  The research design and methodology 

that the researcher utilized in carrying out the study is outlined.   

Data Collection 

The researcher secured permission to collect the required data in an actual production 

environment at one of the factories that the researcher had management oversight of.  The lathe 

chosen to be used in this research project was an Okuma LC40-2ST CNC (computer numeric 

control) turret lathe.  A picture is provided below (Figure 1).   
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Figure 1. Okuma LC40-2ST CNC. 

 

The lathe is programmed manually by a CNC programmer to generate the desired 

finished part geometry, while using the desired parameter values.  Parameter values determine 

how quickly material is removed from the work piece.  Feed rate is programmed in inches per 

revolution, and it describes the advancement of the tool in the direction of cutting; spindle speed 

is programmed in revolutions per minute, and describes the rate of rotation of the work piece; 

depth of cut is programmed in inches, and determines the amount of material removed from the 

surface of the work piece with each cutting pass.  Additional parameters investigated as 

mentioned above were coolant flow volume, coolant temperature, tool condition, and adaptive 

control. 

Each of the aforementioned parameters was set at two distinct levels during the study.  

“Adaptive Control” was programmed to be “on” 50% of the time and “off” the other 50% of the 

time.  All of the other parameters listed above were programmed at a “high” level 50% of the 

time and a “low” level 50% of the time.  Machining experts determined the exact ranges of 
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“high” and low for each parameter taking into consideration the limits of the machine, tooling, 

and work piece.  The ranges were sufficient to assure a distinctive difference as judged by the 

machining experts.  It was hypothesized that adjusting the above parameters this way would 

impact the amount of energy required to complete the programmed operation.  Tool wear and 

Adaptive Control were varied across two levels for all of the machine runs, but the other 

variables were varied on a level different than a standard machine level.  Spindle speed, feed 

rate, depth of cut, coolant temperature, and coolant flow volume were tested one variable at a 

time, and not within the same machine runs.  A sample of “standard” runs using the typical 

program set-up to machine these specific parts in normal production, were collected, and then a 

sample of each of the following was collected:  higher spindle speed runs, higher feed rate runs, 

smaller depth of cut runs, lower coolant temperature runs, and lower coolant flow volume runs.  

There were not any machine runs that mixed different levels of these variables at one time.  The 

below figure pictorially displays the above described research model as framed: 

 

Figure 2. Planned research model. 
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Work pieces 

 The work pieces used for this research were forged steel (Grade 43400).  The 

work pieces were heat treated to a Rockwell hardness range of RC 27 to 35.  Their initial 

geometry is cylindrical, with outside diameter 6-7/8” and inside diameter 3”.  One end of the 

cylinder is open, while the other is closed.  The diameter surface is roughly 16” long, the 

‘shoulder’ is roughly 2-1/2” long, and the constant-diameter surface at the closed end of the work 

piece is roughly 2” long.  A drawing of a typical work piece is shown below.  

 

Figure 3. Work piece sketch. 

 

Data Collection 

 The data collected for the study was done in a real production environment across 

300 machine “runs” over a period of seven days.  The data was collected over multiple shifts on 

multiple days.  Machine operators never knew which variables were adjusted during any of the 
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so called “runs” in order to prevent operator bias.  The table below displays the frequencies for 

each level of the influencing variables.   

Table 1 

Base sizes of the sample population 

Number of “runs” N 

Low Spindle Speed 50 

High Spindle Speed 50 

Low Feed Rate 50 

High Feed Rate 50 

Small Depth of Cut 50 

Large Depth of Cut 50 

Low Coolant Temperature 50 

High Coolant Flow Volume 50 

Adaptive Control On 150 

Adaptive Control Off 150 

Tool Condition New 150 

Tool Condition Worn 150 

 

 

 

Proposed Research Questions 

 The following questions were examined during this study: 

1) Are there significant differences in energy used based on levels of the independent 

controlling variables in predicting energy used?  

2) Do the independent variables described above have a relationship with energy used? 

3) Can a predictive model using these variables be built that will explain a significant 

amount of the variability in energy used, and provide an accurate prediction given the 

set of parameters? 
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4) Does adaptive control or tool condition interact with the other independent variables 

when investigating the relationship with energy used? 

Proposed Null and Alternative Hypotheses 

 The influencing variables of spindle speed, feed rate, depth of cut, coolant 

temperature, and flow volume were compared one level against a standard program one variable 

at a time.  That is, spindle speed was adjusted to a higher level for some runs and a lower level 

for some runs while the other variables remained constant or standard.  This produced a sub-

sample of the total runs that were directly measuring spindle speed. 

   Since the main objective is to understand the influence that the independent 

variables had on energy used, a series of t-test mean comparisons were conducted first to 

compare the energy used averages for varying levels of spindle speed, feed rate, depth of cut, 

coolant temperature, flow volume, adaptive control and tool condition.  Since adaptive control 

and tool condition was collected across all runs (on/off, new/worn), it is possible that the effects 

that they have on energy used may have been hindered by the fluctuations across the spindle 

speed, feed rate, depth of cut, coolant temperature, and flow volume levels.  Adaptive control 

and tool condition effects on energy used were also studied within a subsample of standard runs 

when there were no other variables being manipulated.  The following hypotheses were tested to 

learn what levels of the independent variables had the greatest average energy score differences: 

H01: There will not be any significant mean score differences on energy used between 

levels of the independent variables.   
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HA1: The levels of the independent variables will be found to have significant energy used 

mean score differences, and therefore the independent variables will be significant 

influencers of energy used.     

Beyond the mean comparisons, analysis was also conducted to investigate the 

relationships across the variables.  Conducting a regression analysis model on the total sample of 

runs was not possible since several of the independent variables were tested only among a subset 

of runs so there is systematic missing data within each run.  However, models were analyzed on 

each of the five sub-samples. Additionally, the interaction effects between spindle speed, feed 

rate, depth of cut, coolant temperature, and coolant flow volume with adaptive control and tool 

condition were investigated.  Regression analysis tables are reported that include correlation 

coefficients between the variables, the model ANOVA table, a summary of the regression model, 

and the regression coefficient tables with weights and significance levels of the variables. 

 Since it was believed that each of the independent variables would have an 

influence on energy used, all of the influencing variables were investigated in terms of their 

relationship with energy efficiency.  The following hypotheses were tested through a correlation 

analysis to understand the relationship between the influencing variables and the measure of 

energy efficiency: 

H02: There is no statistically significant direct relationship between the influencing 

variables and the amounts of energy used during a machining cycle. 

HA2: There is a statistically significant direct relationship between the influencing 

variables and the amounts of energy used during a machining cycle. 
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In order to more fully understand the independent variables and their potential influence 

on energy efficiency, a predictive model was built using all the influencing variables as 

dichotomous variables predicting energy used.  The regression output yielded significance levels 

and weights to formulate a prediction for energy used.  The magnitude and significance of these 

weights aid in determining the potential influence each variable had in a combined model of 

energy used.  The following hypotheses addressed the expectations of the influencing variables’ 

predictive power: 

H03: There is no statistically significant predictive model that will show a direct linear 

relationship between influencing variables and energy used. 

HA3: There is a statistically significant predictive model that will show a direct linear 

relationship between influencing variables and energy used. 

Additionally, the levels of interaction among the independent variables were investigated.  

Two-way independent variable combinations or interactions were investigated between adaptive 

control and spindle speed, feed rate, depth of cut, coolant temperature, and coolant flow volume; 

and also between tool condition and spindle speed, feed rate, depth of cut, coolant temperature, 

and coolant flow volume.  The effects of the interactions were studied in terms of their ability to 

aid in the prediction of energy used.    

It was hypothesized that the independent variables may interact in a meaningful way and 

contribute to explaining variation in energy used.  The following hypotheses were tested.   

H04: Independent variables will not be correlated significantly and will not produce 

statistically significant interaction effects in the energy regression models.   

HA4: Independent variables will significantly inter-correlated, and there will be 

statistically significant interaction effects in the energy regression models. 
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Summary of Hypotheses Testing 

The following table depicts the type of data analysis performed for each of the respective 

hypotheses presented in this chapter.  The results of these tests are presented in the next chapter. 

Table 2 

Summary of hypotheses tests 

Hypothesis Description Planned Test 

1 Investigating the average energy used scores 

across the levels of the independent variables.  

Adaptive control and tool condition were 

investigated in total, on a sub-sample of standard 

runs, and within levels of spindle speed, feed rate, 

depth of cut, coolant temperature, and flow 

volume. 

T-test 

2 Investigating the relationship between 7 

independent variables (adaptive control, feed rate, 

spindle speed, depth of cut, coolant temperature, 

coolant flow volume, and tool condition) with 

energy used during a machining cycle. 

Correlation 

3 Investigating the ability to build a significant 

predictive model of energy used from the 

independent variable sub-samples. 

Regression 

4 Investigating the relationship between the levels 

of the influencing variables to understand any 

potential interaction effect among adaptive 

control and tool condition with spindle speed, 

feed rate, depth of cut, coolant temperature, and 

flow volume. 

Regression 

 

Selection of Alpha 

Alpha is the probability of committing a Type I error – that is rejecting the null 

hypothesis, H0, when it is true. The alpha for this study is set to 0.05 – that is the 5 percent level.  

This level was chosen in order to obtain a 95% confidence which the researcher determined to be 

the appropriate confidence level for this study.  A higher level of confidence was determined not 
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to be needed and would have required more samples which would have cost additional money to 

collect.  Had this study focused on product geometries and dimensional accuracy viewed as 

critical, a higher confidence level would have been chosen. 

Statistical Assumptions 

Assumptions regarding the sample population include: 

1. Normality.  The population of values for each combination of independent variables is 

normally distributed. 

2. Equal Variances.  The populations in Assumption 1 all have the same variance. 

3. Independence.  The dependent variables used in the analyses are independent.  This 

typically means that each observed y value must be from a separate subject or entity. 

Summary 

This chapter began by presenting the framework for the proposed study designed to 

examine the influencing variables on energy efficiency, specifically the amount of energy used 

during machining.  The null and alternative hypotheses that the researcher explored were 

presented.  The next chapter will present the analysis of the data and the resultant findings from 

the tests conducted.  
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CHAPTER IV 

ANALYSIS 

Introduction 

 The previous chapter presented the framework for the research study as well as the 

research design and methodology that the researcher employed in carrying out the study. The 

respective research questions and hypotheses were outlined.  The profile of the data was 

presented.  This chapter will present the analysis results from the statistical tests conducted as it 

pertains to the hypotheses presented.   

Data Description 

 As was described in the previous chapter, the data collected for the study was 

done in a real production environment across 300 machine “runs” over multiple shifts on 

multiple days.  Machine operators never knew which variables were adjusted during any of the 

so called “runs” in order to prevent operator bias.  Adaptive control and tool condition varied on 

two levels across all 300 machine runs.  The other independent variables varied on one level 

versus a standard program.  For data coding in SPSS, the following codes were used: 

Adaptive Control: 1 = “on”; 2 = “off” 

Tool Condition: 1 = new edge (first fifteen cuts); 2 = worn edge (all cuts after fifteen) 

Spindle Speed: 1 = Low (800 revolutions per minute – “RPM”); 2 = High (1000 RPM); 

Feed Rate: 1 = Low (381 mm per revolution); 2 = High (419 mm per revolution) 

Depth of Cut: 1 = Low (2mm); 2 = High (4mm) 

Coolant Temp: 1 = Low (ambient temperature less 10°); 2 = High (ambient temperature) 

Coolant Volume: 1 = Low (one gallon per minute); 2 = High (four gallons per minute) 
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The tables below show the pairings of those levels with the standard program machine 

runs.       

Table 3 

Independent Variable Pairings 

Adaptive Control N 

Adaptive Control On 150 

Adaptive Control Off 150 

 

Tool Condition N 

Tool Condition New 150 

Tool Condition Worn 150 

  

Spindle Speed N 

(A)Standard Program 50 

(B)Higher Spindle Speed 50 

  

Feed Rate N 

(A)Standard Program 50 

(C)Higher Feed Rate 50 

  

Depth of Cut N 

(A)Standard Program 50 

(D)Smaller Depth of Cut 50 

  

Coolant Temperature N 

(A)Standard Program  50 

(E)Lower Coolant Temperature 50 

 

Coolant Flow Volume N 

(A)Standard Program 50 

(F)Lower Coolant Flow Volume 50 

  

In terms of the dependent variable, power used, the table below displays the base, range, 

average and standard deviation. 
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Descriptive Statistics 

Table 4 

Dependent Variable Descriptive Statistics 

  
N Minimum Maximum Mean 

Std. 

Deviation Skewness 

 

Power Used 

 

300 

 

131.7 

 

720.1 

 

360.4 

 

153.2 

 

.564 

 

 The dependent variable, power used, median’s value was 340.6, which is slightly lower 

than the mean indicating there is some positive skewness in the variable.  The chart below 

illustrates that there is a large amount of runs that were in a 200-250 watt hours range and only a 

few runs over 700 watt hours.   

 

Figure 4. Histogram of Dependent Variable "Energy Used". 
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According to von Hippel, “since many statistical inferences assume that variables are 

symmetrically or even normally distributed, those inferences can be inaccurate if applied to a 

variable that is skewed” (as cited in Lovric, 2010, p. 1341).  Von Hippel goes on to say that 

“inferences grow more accurate as the sample size grows, with the required sample size 

depending on the amount of skew and the desired level of accuracy” (as cited in Lovric, 2010, p. 

1341).  Since, as previously reported above, the alpha for this study was set to 0.05 in order to 

obtain a 95% confidence level.  Von Hippel states that for a 95% confidence level, “a sample 

of  fifty observations should be plenty even if the skew is as large as 2 or -2” (as cited in Lovric, 

2010, p. 1342).  As seen in Table 4 above, the skewness value for this sample was only 0.564 

and the sample size was 300, therefore the inferences drawn from the analysis presented below 

can be viewed as accurate, despite the small amount of skewness. 

Tests of the Hypotheses 

 As noted in the previous chapter, the first research question to be examined was whether 

or not there are statistically significant differences in energy used based on levels of the 

independent controlling variables in predicting energy used.  It was hypothesized that energy 

used would be significantly different within levels of adaptive control, tool condition, spindle 

speed, feed rate, depth of cut, coolant temperature, and flow volume.  The null hypothesis to be 

tested is: 

H01: 1 = 2 There will not be a statistically significant difference in mean scores on 

energy used between levels of the independent variables.   

HA1: 1  2 There will be a statistically significant difference in mean scores on energy 

used between levels of the independent variables.   
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The tables below display the results of the t-tests of significance on these variables.   

Table 5 

Independent Variable T-test Statistics 

 

 The results suggest that Adaptive Control achieved statistically significant mean 

differences on power use along independent variables of Spindle Speed, Depth of Cut, Coolant 

Temperature, and Coolant Flow while Tool Condition and Feed Rate did not.   The table below 
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summarizes whether or not the null hypothesis was rejected or failed to be rejected for each 

variable: 

Table 6 

Independent Variables Effect on Energy Used 

Significantly less energy used: No significant difference on energy 

Adaptive Control On – rejected null Tool Condition -  failed to reject the null 

Lower Spindle Speed – rejected null Feed Rate -  failed to reject the null 

Smaller Depth of Cut – rejected null  

Lower Coolant Temperature – rejected null  

Lower Coolant Volume – rejected null  

 

 Since many of the variables can fluctuate within levels of adaptive control and tool 

condition, adaptive control and tool condition can be analyzed within standard runs in order to 

more clearly measure their unique effects on energy.  There were 50 standard runs within the 

sample.  The following table displays and tests the energy scores within levels of adaptive 

control and tool condition on this sub-sample. 

Table 7 

Energy Used comparison within levels of Adaptive Control and Tool Condition 
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 The above results reflect that there is no statistically significant energy difference among 

levels of tool condition and adaptive control, thus failure to reject the null hypothesis.  There is a 

difference in energy averages when adaptive control is “on” versus “off” among the standard 

programs, but in a different direction than previously found across all runs when the other 

variables were allowed to fluctuate.  In total, within the 150 runs where Adaptive Control was 

turned “on”, the amount of power used was significantly lower than in the 150 runs when 

Adaptive Control was “off”.  In this case, the null hypothesis was rejected.  Among the standard 

runs, when Adaptive Control is “on”, the amount of power used is higher, although this 

difference is not statistically significant, thus failure to reject the null hypothesis.  When the 

other independent variables were not allowed to fluctuate, as isolated in the standard runs, the 

results indicate that Adaptive Control would negatively impact the amount of energy.  However, 

as the results above reflect, Adaptive Control’s relationship with five of the independent 

variables indicates it can be an efficient controlling variable of power used.   

   The second hypothesis moves beyond the group mean differences to investigate the 

relationship between the influencing variables and energy used.  Given the results of the t-test on 

differences by the levels of the independent variables, it was hypothesized that there would be a 

significantly linear relationship between the independent variables and the dependent variable of 

energy used.  The null hypothesis from Chapter 3 states: 

H02: ßj = 0 There is no statistically significant direct relationship between the influencing 

variables and the amounts of energy used during a machining cycle. 

HA2: ßj  0 There is a statistically significant direct relationship between the influencing 

variables and the amounts of energy used during a machining cycle. 
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The relationship is measured through a Pearson Product Moment Coefficient, reflected in the 

below table displaying the resulting relationships (r-value), with corresponding significance 

levels (p-values).  A full correlation matrix among the variables can be found in Appendix A. 

Table 8 

Correlations between independent variables and energy used 

 

Among Total 
Sample (n=300) 

Isolated correlation 
between standard 
program and test 
program (n=100) 

 

Power Used r p-value r p-value 

 Spindle Speed .593 < .000 .477 < .000 Higher Spindle Speed/More Energy Used 

Feed Rate .278 < .000 .016 .878   

Depth of Cut .278 < .000 .774 < .000 Higher Depth of Cut/Higher Energy Used 

Coolant Temp .416 < .000 .874 < .000 Higher Coolant Temperature/Higher Energy Used 

Coolant Volume .448 < .000 .878 < .000 Higher Coolant Flow Volume/Higher Energy Used 

Adaptive Control -.239 < .000     Adaptive Control On/Lower Energy Used 

Tool Condition -.052 .366     

  

 The correlation between Adaptive Control and energy used is significant and negative, 

implying that when Adaptive Control is “on”, the amount of energy being used is lower, thus the 

null hypothesis is rejected.  If the correlation between Adaptive Control and energy used is 

calculated only among the 50 standard machine runs, it is an opposite direction, (r=.210/p=.143), 

implying that when Adaptive Control is “on”, energy used is higher, although this relationship is 

not significantly different from no correlation and the null hypothesis could not be rejected, 

similar to what was found in the comparison of mean scores on power used by Adaptive Control 

levels.    

 The variables spindle speed, depth of cut, coolant temperature and coolant flow volume 

show positive correlation values with energy used, with coolant temperature and volume having 
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the strongest relationship with power used.  (r= .874, and r= .878, respectively), so the null 

hypothesis is rejected for each.  The magnitude of these correlations suggests that lower coolant 

temperature and lower coolant flow volume have a strong relationship with lower amounts of 

energy used.  Conversely, feed rate was not found to have a significant correlation thus the null 

could not be rejected for this variable. 

 In order to better understand the relationships between these variables and the effects on 

energy used, the next hypotheses measured the predictability of energy used among these 

variables in five separate data sub-sets.  Since spindle speed, feed rate, depth of cut, coolant 

temperature, and flow volume were not varied within the same machine run, there is a valid set 

of runs for each of these variables.  Since adaptive control and tool condition was collected 

across all machine runs, they can be included in each sub-set of data.  Each of these subsets is 

defined below:  

Table 9 

Predictability of Energy Used Subsets 

  Sub-sample Definitions Base 

1 (Program A and B) Spindle Speed/Adaptive control/Tool condition 100 

2 (Program A and C) Feed Rate/Adaptive control/Tool condition 100 

3 (Program A and D) Depth of Cut/Adaptive control/Tool condition 100 

4 (Program A and E) Coolant Temperature/Adaptive control/Tool condition 100 

5 (Program A and F) Coolant Volume/Adaptive control/Tool condition 100 

 

 Hypotheses 3 and 4 will be tested within each of these sub-samples.  Hypothesis 3 will be 

testing the relationship of the independent variables in a regression model of energy used, and 

hypothesis 4 will test if there are significant interaction effects among the variables in the 
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regression model.  The results will be presented together by sub-sample, and full regression 

tables are displayed in Appendix B.  Hypothesis 3 from Chapter 3 is restated here: 

H03: There is no statistically significant predictive model that will show a direct linear 

relationship between influencing variables and energy used. 

HA3: There is a statistically significant predictive model that will show a direct linear 

relationship between influencing variables and energy used. 

A mathematical equation representing hypothesis 3 would look like this: 

(V1) = 0+XAC+XV2+XV3+XV(2, 3)+e 

Rephrasing the third hypothesis by incorporating the specific variables would look like this: 

H03:  Machine runs with or without Adaptive Control, Spindle Speed (V2), Tool 

Condition (V3), and AC Spindle Interaction (V(2, 3)) will not significantly explain the 

variance in Energy Consumption (V1). 

HA3: Machine runs with or without Adaptive Control, Spindle Speed (V2), Tool 

Condition (V3), and AC Spindle Interaction (V(2, 3)) will significantly explain the 

variance in Energy Consumption (V1). 

 The first sub-sample tested uses spindle speed, along with adaptive control and tool 

condition, and the interaction between adaptive control and spindle speed to predict energy used.  

The F-value of the regression model is significant (F=45.052/sig.<.000) thus the null hypothesis 

is rejected and the alternative hypothesis would be tenable, and the R-square value is fairly high 

(R-square=.655).  Within this sample of 100 machine runs, about 66% of the variation in energy 

used can be explained by spindle speed, adaptive control, tool condition and the interactions 

among these variables.  The table below displays the regression coefficients and their 

significance to the overall energy model. 
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Table 10 

Regression Analysis of Spindle Speed/Adaptive control/Tool condition 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. B 
Std. 
Error Beta 

1 (Constant) -36.667 74.121 
  

-.495 .622 

Spindle Speed 472.200 44.215 2.042 10.680 .000 

Adaptive Control 278.140 44.176 1.203 6.296 .000 

Tool Condition -25.229 13.998 -.109 -1.802 .075 

AC Spindle Interaction -241.254 27.973 -2.273 -8.625 .000 

 

 The table shows that adaptive control, spindle speed, and the interaction of these 2 

variables are significant predictors of energy used.  The significant interaction implies that the 

combination of these 2 variables help predict the amount of energy used.  The interaction is 

calculated by multiplying these variables together to form a new variable. The values of these 

variables are on a 1-2 scale, so the range of the interaction is 1-4.  A value of 4 is a run with both 

adaptive control on, and a higher spindle speed.  This situation can provide additional 

information beyond the singular influence of adaptive control and spindle speed.   The regression 

equation for these results is: ŷ = -36.667 + 472.2SS + 278.14AC – 25.229TC – 241.254ACS 

where “ŷ” is Energy Used, “SS” is Spindle Speed, “AC” is Adaptive Control, “TC” is Tool 

Condition and “ACS” is Adaptive Control Spindle interaction. 

 The next group analyzed used feed rate, along with adaptive control, and tool condition 

across 100 machine runs.  Since feed rate was the lowest independent variable correlated with 

energy used, it was not expected that this model would be very strong.  The results show a low, 

but significant F-value (F=5.665 / sig. <.000), thus the null hypothesis is rejected and the 
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alternative hypothesis would be tenable.  The R-square value for this model is relatively low, but 

still meaningful (R-square = .193), reflecting a correlation approximately 19.3% of the time.  The 

table below displays the regression coefficients for the variables and their interactions.   

Table 11 

Regression Analysis of Feed Rate/Adaptive control/Tool condition 

Coefficients 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. B 
Std. 
Error Beta 

1 (Constant) 234.265 72.522 
  

3.230 .002 

Feed Rate 183.419 43.782 1.221 4.189 .000 

Adaptive Control 158.069 43.786 1.053 3.610 .000 

Tool Condition -13.787 13.856 -.092 -.995 .322 

 AC Feed Rate interaction -120.726 27.690 -1.752 -4.360 .000 

 

 The above table shows that adaptive control, feed rate, and the interaction of these two 

variables are statistically significant and may be predictors of energy used.  The significant 

interaction implies that the combination of these two variables help predict the amount of energy 

used.  The interaction is calculated by multiplying these variables together to form a new 

variable as was done with spindle speed. The values of these variables are on a 1-2 scale, so the 

range of the interaction is 1-4.  A value of 4 is a run with both adaptive control on, and a higher 

feed rate.  Again, this provides additional information beyond the singular influence of adaptive 

control and feed rate speed.   The regression equation for these results is: ŷ = 234.265 + 

183.419FR + 158.069AC – 13.787TC – 120.726ACFR where “ŷ” is Energy Used,  “FR” is Feed 
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Rate, “AC” is Adaptive Control, “TC” is Tool Condition and “ACFR” is Adaptive Control Feed 

Rate interaction. 

 The next sub-sample was based on 100 machine runs, and includes the depth of cut in the 

analysis.  The F-value from the ANOVA table for this regression model is significant 

(F=52.534/sig. < .000), thus the null hypothesis is rejected and the alternative hypothesis would 

be tenable.  The interaction term for this variable, as well as for coolant temperature and volume 

was calculated a bit differently.  These variables are on a scale of 1-2 where 1=low, and 2=high.  

For depth of cut, coolant temperature and volume, high levels (2) are the standard program, and 

the variation or tested levels for these variables is a ‘low’ (1).  To calculate the interaction term 

for this variable, if these variables are at a high level (2) and AC is off, the interaction term=1.  If 

either the AC is on, or these variables are set to low, the interaction term equals 2.  If these levels 

are set to low and AC is on, then the interaction term equals 4.   

 The coefficient table, which is displayed below, shows a significant interaction effect 

between adaptive control and depth of cut, although the individual significance for depth of cut is 

non-significant.  This suggests that even though depth of cut has a good relationship with power 

used (r=.774) when used in a regression equation, its ability to predict power used becomes 

redundant when adaptive control and the interaction with adaptive control are taken into account.  

The summary table below shows that the significant predictors of this model are adaptive control 

and the interaction between adaptive control and depth of cut.  The relationship formed between 

adaptive control and depth of cut is more significant than depth of cut isolated on its own.  The 

regression equation for these results is: ŷ = 431.325 – 8.592DC + 168.356AC – 11.516TC – 

130.922ACDC where “ŷ” is Energy Used, “DC” is Depth of Cut, “AC” is Adaptive Control, 

“TC” is Tool Condition and “ACDC” is Adaptive Control Depth of Cut interaction. 
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Table 12 

Regression Analysis of Depth of Cut/Adaptive control/Tool condition 

Coefficients 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. B 
Std. 
Error Beta 

1 (Constant) 431.325 71.821 
  

6.006 .000 

Depth of Cut -8.592 43.948 -.035 -.196 .845 

Adaptive Control 168.356 43.948 .694 3.831 .000 

Tool Condition -11.516 13.899 -.047 -.829 .409 

AC Depth of Cut Interaction -130.922 27.798 -1.176 -4.710 .000 

 

 As it was previously noted from the correlations with energy used, coolant temperature 

and coolant flow volume show strong correlation values with energy used.  It is expected that the 

regression models for these variables with the addition of adaptive control, tool condition and 

interaction variables will yield strong predictive models of energy.  Coolant temperature was 

calculated across 100 runs, and the results of the sub-sample regression for this group are 

displayed below.  The F-values for these models are the highest of all of the sub-sample 

regressions.   

  



86 

 

Table 13 

Regression Analysis of Coolant Temperature/Adaptive control/Tool condition 

Coefficients 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. B 
Std. 
Error Beta 

1 (Constant) 193.066 68.710 
  

2.810 .006 

Coolant Temp 113.766 40.293 .423 2.823 .006 

Adaptive Control 117.989 40.205 .439 2.935 .004 

Tool Condition -15.655 12.839 -.058 -1.219 .226 

AC Coolant Temp interaction -80.720 25.492 -.654 -3.167 .002 

 

 For this regression model, adaptive control, coolant temperature, and the interaction of 

the two, carry significant weight in the prediction of energy used.  The F-value for this model is 

very high, and significant (F=88.169.06/sig. < .000), thus the null hypothesis is rejected and the 

alternative hypothesis would be tenable, and the R-square value is also high (R-square = .788).  

The regression weights and correlations show that there is a direct pattern between the variables 

and energy used.  When adaptive control is ‘on’, energy is lower.  When coolant temperature is 

lower, energy used is lower; and in runs when adaptive control is on and coolant temperature is 

lower, energy used is lower. The regression equation for these results is: ŷ = 193.066 + 

113.766CT + 117.989AC – 15.655TC – 80.72ACCT where “ŷ” is Energy Used, “CT” is Coolant 

Temperature, “AC” is Adaptive Control, “TC” is Tool Condition and “ACCT” is Adaptive 

Control Coolant Temperature interaction. 

 Coolant flow volume shares a similar relationship with energy used.  The last sub-sample 

is a group of 100 runs where coolant flow volume is adjusted (lower coolant flow volume vs. 
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higher coolant flow volume).  The regression model includes coolant flow volume, adaptive 

control, tool condition and interaction variable.  The F-value is very high (F=95.9565 / sig. < 

.000), thus the null hypothesis is rejected and the alternative hypothesis would be tenable, and 

the R-square value is .802.  The results for this regression also show a significant interaction 

effect with adaptive control.  The regression coefficient table is displayed below. 

Table 14 

Regression Analysis of Coolant Volume/Adaptive control/Tool condition 

Coefficients 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. B 
Std. 
Error Beta 

1 (Constant) 170.544 64.046 
  

2.663 .009 

Coolant Volume 130.000 42.114 .464 3.087 .003 

Adaptive Control 114.272 41.328 .408 2.765 .007 

Tool Condition -22.030 13.776 -.079 -1.599 .113 

AC Coolant Volume 
Interaction 

-77.258 26.746 -.601 -2.889 .005 

 

 As seen in the coolant temperature analysis, there are significant regression weights for 

adaptive control, coolant flow volume and the interaction between the two variables.  When both 

coolant flow volume is low, and adaptive control is on, energy used is lower.  The regression 

equation for these results is: ŷ = 170.544 + 130CV + 114.272AC – 22.03TC – 77.258ACCV 

where “ŷ” is Energy Used, “CV” is Coolant Volume, “AC” is Adaptive Control, “TC” is Tool 

Condition and “ACCV” is Adaptive Control Coolant Volume interaction. 

 The table below displays summary results on all the sub-sample regression models. 
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Table 15 

Summary Results on all the Sub-sample Regression Models 

 
 

The regression results complement the initial t-tests and the correlational analysis by 

reinforcing that the following variables are significant and meaningful: spindle speed, depth of 

cut, coolant temperature, coolant flow volume, and adaptive control.  The regression analysis 

further analyzes the interaction terms and shows that spindle speed, depth of cut, coolant 

temperature, and coolant flow volume all have a significant interaction effect with adaptive 

control.  These interactions are investigated to understand the overall magnitude of the 

relationship between adaptive control and the other influencing variables.  The table below 

displays the average amount of energy used for the levels of interaction.   
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Table 16 

Interaction with Adaptive Control and the Effect on Energy Used 

 

 The mean scores above were analyzed using an ANOVA in order to understand if the 

changes in energy used by the levels of interaction are significant.  The results of each analysis 

of variance test are presented in the tables below and full ANOVA tables and follow-up test 

results are displayed in Appendix C.  This analysis was conducted to test hypothesis 4 from 

Chapter 3, which is stated again here: 

H04: Independent variables will not be correlated significantly and will not produce 

statistically significant interaction effects in the energy regression models.   
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HA4: Independent variables will significantly inter-correlated, and there will be 

statistically significant interaction effects in the energy regression models. 

A mathematical equation representing hypothesis 4 would look like this: 

(V1) = 0+XAC+XV2+XV3+XV(2, 3)+e 

Table 17 

Interaction with Adaptive Control and the Effect on Energy Used 

 

 For spindle speed, follow-up tests show that the amount of energy used is significantly 

higher in the machine runs where adaptive control is on or spindle speed is high, thus the null 
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hypothesis is rejected and the alternative hypothesis would be tenable.  For depth of cut, follow-

up tests show that the amount of power used is significantly higher when adaptive control is on, 

and depth of cut is high, thus the null hypothesis is rejected and the alternative hypothesis would 

be tenable.  For feed rate, follow-up tests show that the amount of power used is significantly 

higher when adaptive control is on, and feed rate is high, thus the null hypothesis is rejected and 

the alternative hypothesis would be tenable.  Coolant temperature and volume share the same 

pattern and results.  Power used is significantly higher when adaptive control is on, and coolant 

temperature or volume is high, thus the null hypotheses are rejected here as well. Having 

adaptive control on or a high amount of coolant temperature or volume uses significantly more 

power than runs with adaptive control off and a low coolant temperature or volume.    

Summary of Results 

 The initial hypothesis focused on uncovering group differences among several 

independent variables.  It was hypothesized that these independent variables would influence the 

amount of energy used in machine runs.  The t-tests found that there were significantly different 

amounts of energy used across levels of adaptive control, spindle speed, depth of cut, coolant 

temperature, and coolant flow volume, thus the null hypotheses were rejected for these variables.   

Given these results, correlational analysis was conducted to get a measurement of the 

linear relationship between these variables and energy used. It was again hypothesized that these 

independent variables would have a linear relationship with energy used, and as the levels of the 

independent variables were manipulated, energy levels would change.  The results show that the 

same variables, adaptive control, spindle speed, depth of cut, coolant temperature, and coolant 

flow volume, all had a significant correlation with energy used, thus the null hypotheses were 

rejected for these variables.         



92 

 

Finally, to more fully understand the independent variables and their interactions with 

each other, regression analysis was conducted.  Since five of the independent variables were 

gathered independently of each other, the regression analysis was run on five sub-samples of 

machine runs.  Within each regression analysis, 3 independent variables were used to predict 

energy used.  Adaptive control and tool condition were collected across all runs, so they are able 

to be analyzed in each regression analysis. Spindle speed, feed rate, depth of cut, coolant 

temperature, and coolant flow volume were analyzed in separate regression models.  The 

interaction effects between the variable and adaptive control was also included in the regression 

model to investigate possible interactive relationships that would impact energy use.   

Each of the five regression models had significant F-values in the regression ANOVA 

table, thus the null hypotheses were rejected, and the significance of the independent variables 

mirrored the correlational analysis.  Depth of cut was independently not as directly related with 

energy used, although its interaction with adaptive control was a strong predictor.  The other 

variables: spindle speed, feed rate, coolant temperature and coolant flow volume were strong 

predictors of energy used.   

Interestingly, adaptive control interacted significantly with all five of the independent 

variables when predicting energy used.  The t-test results show that when adaptive control is on, 

energy used is significantly lower, although the other independent variables were allowed to 

fluctuate within the 2 groups.  When isolated, keeping all other independent variables constant, 

having adaptive control on, increases energy used.  The interaction between adaptive control and 

spindle speed, feed rate, depth of cut, coolant temperature, and coolant flow volume further 

shows that the effects of adaptive control are heightened when combined with the levels of 

speed, cut, temperature, and volume.   
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 The results of the analysis are in general agreement with the hypotheses – the 

independent variables influence energy used.  There were little to no differences in energy used 

among varying levels of tool condition, but the other independent variables proved to be 

significant influencers of energy used.  Coolant temperature and coolant flow volume are 

strongly linked to energy used.  Adaptive control shows differences in energy when turned on vs. 

off, and also shows that it interacts significantly with other variables. 

  

Summary 

This chapter presented the analysis results from the statistical tests conducted as it 

pertains to the respective hypotheses presented.  The next chapter will present the discussion of 

the above findings along with the managerial implications of them.  Additionally, limitations of 

the study will be addressed as well as recommendations for future research.  Finally, an overall 

conclusion will be made to summarize the project. 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

Introduction 

 The previous chapter presented the analysis results from the statistical tests conducted as 

it pertains to the respective hypotheses presented.  This chapter will revisit the originally stated 

purpose of the study and then present the discussion of the findings from the previous chapter. 

Implications for academic research as well as implications for practitioners will be addressed.  

Additionally, limitations of the study as well as recommendations for future research will be 

posited.  Finally, an overall conclusion will be made to summarize the project. 

Purpose of the Study Revisited 

As previously mentioned, according to Richter (2009), “reducing the amount of energy 

the motors on a metal cutting machine tool use is one way for a manufacturer to increase its 

competitiveness…while “greening” its operations”.  Richter points out that the majority of 

energy consumed by manufacturers is in motor energy consumption on machines.  Therefore 

targeting methods to reduce the amount of energy consumed by motors on machine tools, an 

effective approach to becoming a more sustainable or “greener” manufacturer, was the primary 

focus of this study. 

Field research was conducted directed at reducing the amount of energy consumed by the 

motors on machine tools used in manufacturing through the employment of “adaptive control” 

technology.  “Adaptive control” was the primary influencing independent variable researched.  

In addition to “adaptive control,” other influencing independent variables explored included feed 

rate, spindle speed, depth of cut, coolant temperature, coolant flow volume, and tool condition.  

The dependent variable that was the focus of this research was the amount of energy used during 
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a chosen machining cycle measured in kilowatt hours which is a common unit of measure for 

energy found in other research such as Ulmer and Ollison (2008). 

Discussion of the Research Findings  

 Most of the variables speculated/hypothesized to have an influence on energy were 

shown to have significant findings.  Multiple methods of analysis reinforced the significant 

independent variables influencing the dependent variable “energy used” were adaptive control, 

spindle speed, feed rate, depth of cut, coolant temperature, and coolant flow volume.  T-tests 

found significant mean differences on “energy used” between levels of these variables.  These 

variables also significantly correlated with energy used – meaning they move together (when one 

goes up/the other goes up), as reflected here: 

 Higher Spindle Speed/More Energy Used 

 Higher Feed Rate/More Energy Used 

 Higher Depth of Cut/Higher Energy Used 

 Higher Coolant Flow Volume/Higher Energy Used 

 Adaptive Control On/Lower Power Used 

 Higher Coolant Temperature/Higher Energy Used 

Out of the above findings, they all made sense logically to the researcher, except the last one.  

One would expect a higher demand for energy if the spindle speed were to be increased.  A 

higher feed rate puts more load on the machine’s motors thus increasing energy, as would a 

higher (deeper) depth of cut.  In order to increase coolant flow, the coolant pump motor has to 

run faster thus increasing the amount of energy required.  And, since adaptive control is shown to 

reduce cycle time, here again it would seem reasonable that less energy would be required.  
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However, in order to have a higher coolant temperature, the machine’s coolant chiller was turned 

off.  Logically, a reduction in energy would be expected, thus this finding is counterintuitive.  

Interestingly, when evaluating adaptive control in its purest form (among the standard 

runs only – all other variables held constant) the relationship is reversed from the overall 

findings.  Overall, among all 300 runs, the average amount of energy used when adaptive control 

is on is 0.324 kwh, compared to 0.397 kwh when adaptive control is off.  This was a significant 

difference and shows that when adaptive control is on, energy used is lower, which is exactly 

what the researcher expected to find.  However, if adaptive control is looked at only within 

standard runs (so there is no fluctuation in depth of cut, spindle speed, etc.), then the results are 

opposite.  The average amount of energy used in the standard runs when adaptive control is on is 

0.472 kwh as compared to 0.434 kwh when adaptive control is off among the isolated 50 runs.   

The correlations support this as well.  The correlation between adaptive control and energy used 

in total across all runs is r = -.239 (when adaptive control is on, there tends to be a lower amount 

of energy used).  The correlations within the standard runs only is r = .210 (when adaptive 

control is on, there tends to be a higher amount of energy used).  This is completely surprising 

given that the expectation of the use of adaptive control is that it would result in the machine 

requiring less energy.  Apparently, without the influence of the other independent variables, 

along with their respective interaction with adaptive control, the extra energy consumed by the 

motors caused by adaptive control increasing feed rate outweighed the lesser amount of energy 

consumed due to the shortened cycle time.  Fortunately, the interaction with the other key 

variables makes it an efficient energy reducing measure regardless. 

What becomes important then is to understand how adaptive control combines with the 

other key variables that influence energy.  This was done by adding an interaction component to 



97 

 

the regression modeling and by evaluating average energy used scores by varying levels of these 

interaction terms.  The results show that among all the other key variables (spindle speed, feed 

rate, depth of cut, coolant temperature, and flow volume) there was a statistically significant 

interaction with adaptive control.  The significant interaction terms mean that the combination of 

the variables can be worked together to explain variation in energy used.  The interaction term 

was calculated simply by multiplying the variables together.  The interaction term for depth of 

cut, coolant temperature and coolant volume were calculated differently since the value is set to 

“high” for standard runs, and “low” for test runs of these variables.  Since the interaction terms 

with the key variables were statistically significant, the average energy used scores were 

evaluated and tested across the three groups defined above and were all found to be significant. 

 Although all the key variables had significant differences, significant correlations, etc., 

when reviewing the results we can see which of the key variables show the largest differences 

/strongest correlation to energy.  In the table below, results of the t-tests when each of the 

significant key variables was tested against its respective counterpart are shown.    

Table 18 

Strongest Correlation to “Energy Used” by Variable 
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It can be seen above that varying coolant temperature and coolant volume greatly impacts 

the amount of energy used (the “energy used” means were lower by 235 and 246 respectively 

suggesting these two variables most highly impact energy used.  Additionally, their correlations 

are strongest to energy used, as shown below: 

Table 19 

Correlation of Coolant Temperature and Coolant Volume to “Energy Used” 

Correlation with power used: Isolated correlation between 

standard program and test 

program (n=100) 

Coolant Temp .874 

Coolant Volume .878 

 

Implications for Practitioners 

 The above discussed research findings should result in keen interest by practitioners.  As 

presented in Chapter 1 and Chapter 2, manufacturing is an extremely important economic sector 

to any country.  Manufacturers in the US and many other countries are investigating ways to not 

only lower their manufacturing costs in order to be more competitive or to increase their 

profitability, but they are also beginning to investigate ways to lower their carbon footprint and 

become more “green”.  Reducing the amount of energy consumed by machine tools can be a 

significant enabler to accomplishing both. At the specific plant where this study was conducted, 

the approximate amount of energy consumed by machine tools during the year of the study was 

estimated to be 9,894,635 kwh at a cost of $688,331.  Assuming the same 18.3% reduction of 

energy derived from using adaptive control that was found in the study could be achieved on all 

machine tools in the plant, the company could realize an annual savings on their energy bill of 

approximately $126,000.  Using the “Greenhouse Gas Equivalencies Calculator” found on the 



99 

 

EPS’s website, the same 18.3% reduction applied to the total amount of 9,894,635 kwh the plant 

used in 2012 would result in a reduction of 1,278 metric tons of carbon dioxide equivalent 

(Greenhouse Gas Equivalencies Calculator, 2013). 

 Unfortunately, the above described savings make it hard to justify the cost of installing 

requisite adaptive control modules on each machine.  The cost of the unit used for the study was 

approximately $10,000.  Based on projected machine usage provided by the plant, it would take 

approximately five years before the investment would pay for itself in energy savings.  Such a 

“Return on Investment” (“ROI”) time frame would be very difficult to justify.  Market research 

would need to support the required investment through increased sales of product due to the 

“greener” moniker that could be offered. 

 Although not part of the research study as designed, it is worth mentioning that all of the 

300 parts machined in this study passed 100% of the quality inspections performed on standard 

production parts and were utilized in subsequent downstream production.  Practitioners should 

take note that the employment of adaptive control did not adversely affect the quality of the 

resulting machined part in any way. 

Limitations of the Study 

As mentioned in Chapter 1, the environment for this study was a specific machine tool 

that was machining a specific material to a specific shape using a specific cutting tool insert.  

Accordingly, the results of this study may not be generalizable to all machine tools.  However, 

this study should serve as a stepping stone for further research into other machine tools to 

determine if more generalizable patterns exist. 
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Recommendations for Future Research 

 The findings of this research study, although significant on their own, need further 

validation.  Replication studies should be undertaken.  Additionally, in order to address the 

above mentioned limitations to the study, additional research should be undertaken varying the 

type of material, the type of machine tool, the type of cutting insert, etc., to determine if the 

results of this study are indeed potentially generalizable across varying environments. 

Conclusions 

This study provided a comprehensive and robust look at energy used by evaluating 

several potential measures in a structured and reliable manner. It focused on a number of 

variables, most of which had a significant impact on energy used.  The effect on energy was 

evaluated by t-tests on group differences and correlations for pattern similarities.  The analyses 

complemented each other by providing consistent results.  Key variables to “energy used” were 

found to be adaptive control, spindle speed, depth of cut, coolant temperature, and coolant flow 

volume.  The combination of key variables (adaptive control’s interaction with the other key 

variables) further increased the understanding and ability to capitalize on efficiency by providing 

a pathway to reducing energy used.   

Although adaptive control is a technology that has been researched for many years, this 

study is the first time adaptive control has been investigated as a potential technology to be used 

to reduce the amount of energy consumed by machine tools used in manufacturing.  Combined 

with the other influencing variables investigated in this study, adaptive control has been found to 

be a key technology that manufacturers who are interested in reducing costs and reducing 

energy, in order to reduce their carbon footprint and become more competitive, should seriously 

evaluate. 
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Summary 

Chapter 1 provided the background, problem statement, need for the study, purpose of the 

study, and the proposed research questions that the study would address.  Proposed hypotheses, 

assumptions of the study, limitations of the study, and the significance of the study were also 

discussed.  Lastly, the organization of the study and the definition of key terms were detailed. 

The second chapter reviewed the literature pertaining to sustainable manufacturing, the 

background of machine tools and computer numerical control, and the history of adaptive control 

technology relating to machine tools. 

The third chapter presented the method of data collection, a description of the sample to 

be collected, proposed research questions and hypotheses, and lastly a summary describing the 

methodology of how the hypotheses would be tested. 

Chapter 4 provided a description of the data collected, descriptive statistics, and the 

various analytical procedures followed to statistically investigate the hypotheses presented.  It 

concluded with a presentation of the results of the analysis. 

Lastly, this fifth and final chapter presented a brief review of the purpose of the study as 

well as a discussion of the findings from the previous chapter.  Additionally, implications for 

practitioners were offered, limitations of the study were addressed, and recommendations for 

future research were posited.  Finally, an overall conclusion was made to summarize the project. 
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APPENDIX A 

CORRELATION ANALYSIS 

 

 

Among Total Sample 
(n=300) 

Isloated correlation 
between standard 
program and test 
program (n=100) 

Power Used r p-value r p-value 

Spindle Speed .593 < .000 .477 < .000 

Feed Rate .278 < .000 .016 .878 

Depth of Cut .278 < .000 .774 < .000 

Coolant Temp .416 < .000 .874 < .000 

Coolant Volume .448 < .000 .878 < .000 

Adaptive Control -.239 < .000     

Tool Condition -.052 .366     

 

Total 
    Correlations 

 
 

  Power 
Used 

Adaptive 
Control 

Tool 
Condition 

Power Used Pearson Correlation 1 -.239 -.052 

Sig. (2-tailed)   .000 .366 

N 300 300 300 

Adaptive Control Pearson Correlation -.239 1 .067 

Sig. (2-tailed) .000   .250 

N 300 300 300 

Tool Condition Pearson Correlation -.052 .067 1 

Sig. (2-tailed) .366 .250   

N 300 300 300 
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APPENDIX B 

REGRESSION ANALYSIS 

Model 1 – Spindle Speed, Adaptive Control, Tool Condition 
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Model 2 – Feed Rate, Adaptive Control, Tool Condition 
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Model 3 – Depth of Cut, Adaptive Control, Tool Condition 
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Model 4 – Coolant Temperature, Adaptive Control, Tool Condition 
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Model 5 – Coolant Flow Volume, Adaptive Control, Tool Condition 
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APPENDIX C 

ANOVA ANALYSIS 

 

Interaction between Adaptive Control and Spindle Speed 
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Interaction between Adaptive Control and Feed Rate 
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Interaction between Adaptive Control and Depth of Cut 
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Interaction between Adaptive Control and Coolant Temperature 
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Interaction between Adaptive Control and Coolant Flow Volume 

 

 

 

 

  



125 

 

APPENDIX D 

DATA 
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