
Indiana State University Indiana State University

Sycamore Scholars Sycamore Scholars

Full List of Electronic Theses and Dissertations

2006

Establishing A Web-Based Integration Module In .Net And Establishing A Web-Based Integration Module In .Net And

Labview Environment Labview Environment

Yuqiu You
Indiana State University

Follow this and additional works at: https://scholars.indianastate.edu/etds

Recommended Citation Recommended Citation
You, Yuqiu, "Establishing A Web-Based Integration Module In .Net And Labview Environment" (2006). Full
List of Electronic Theses and Dissertations. 989.
https://scholars.indianastate.edu/etds/989

This Dissertation is brought to you for free and open access by Sycamore Scholars. It has been accepted for
inclusion in Full List of Electronic Theses and Dissertations by an authorized administrator of Sycamore Scholars.
For more information, please contact dana.swinford@indstate.edu.

https://scholars.indianastate.edu/
https://scholars.indianastate.edu/etds
https://scholars.indianastate.edu/etds?utm_source=scholars.indianastate.edu%2Fetds%2F989&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.indianastate.edu/etds/989?utm_source=scholars.indianastate.edu%2Fetds%2F989&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dana.swinford@indstate.edu

VITA

EDUCATION

MS Industrial Education and Technology
Morehead State University, Morehead, KY
May 2002

BE Automation Engineering
Huazhong University o f Science and Technology, P.R.China
July 1995

PROFESSIONAL EXPERIENCE
Assistant Professor Department o f Industrial Engineering and Technology, Morehead
State University, Morehead, KY. August 2005 to Present.

Research Assistant Department o f Electronics and Computer Technology, Indiana
State University, Terre Haute, IN. January 2004 to present.

Graduate Assistant Department of Manufacturing Systems, North Carolina A&T State
University, Greensboro, NC. January 2002 to May 2003.

Graduate Assistant Department of Industrial Education & Technology, Morehead
State University, Morehead, KY. January 2000 to December 2001.

Engineer Tianshi Air-conditioning Technology & Engineering Inc.
Chengdu, China. August 1995 to December 1999.

HONORS
• First Place Prize for Research Presentation Competition in NAIT, 2002
• Future Venture Grant from NC A&T , 2002

PUBLICATIONS
• Implementing LabVIEW in establishing remote control laboratory, NAIT Selected

Papers, 2004.
• Remote logix control, NAIT Selected Papers, 2004.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ESTABLISHING A WEB-BASED INTEGRATION MODULE IN .NET

AND LAB VIEW ENVIRONMENT

A Dissertation

Presented to

The School of Graduate Studies

College of Technology

Indiana State University

Terre Haute, Indiana

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

By

Yuqiu You

May 2006

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 3220264

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI
UMI Microform 3220264

Copyright 2006 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

School of Graduate Studies
Indiana State University

Terre Haute, Indiana

CERTIFICATE OF APPROVAL

DOCTORAL DISSERTATION

This is to certify that the Doctoral Dissertation of

Yuqiu You

entitled

Establishing a Web-based Integration Module in .NET
and Lab VIEW Environment

has been approved by the Examining Committee for the dissertation requirement for the

Doctor o f Philosophy

in Technology Management (Manufacturing Systems)
May 2006

Gerald W. Cockrell, Ed.D
CHAIR
Indiana State University

Dr. Cfbrdon lv(inty, Ph.D
Member
Indiana State University

\ ot>
Date

Biwu Yang, Ph.D
Member
East Carolina University

Ming Zhou, Ph.D
Member
Indiana State University

Date

lyn$/S. Kuhlman, Ph.D. Date
Interim Dean, School of Graduate Studies
Indiana State University

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

iii

ABSTRACT

The top problems faced by manufacturing enterprises to implement system

integration solutions are confusing solutions and terminology, the lack o f understanding

of cross-domain technologies, and the lack o f business justification. In this study, a

generalized web-based partial module was established to interface between

manufacturing control functions and higher management level functions in a

manufacturing enterprise. It is composed of three parts, a LabVIEW-based data

collector, a system server, and a web-based interface. The data collector was constructed

as an open source system module for data collection from LabVIEW-based control

applications. It can be integrated into Lab VIEW Vis without requiring extra system

resource from the control server. The web interface and data structure in the module are

designed by using the terminology and methodologies from the Generalized Enterprise

Reference Architecture and Methodology (GERAM) and ISA S95.

To evaluate the efficiency of the data collector, a queuing network model is

established to analyze the effect of system change. The resource measurements are

sampled from the same control server to analyze the effect o f the data collector on the

system resource. A statistical method, one-way ANOVA, is applied to evaluate the effect

on the system. And SPSS statistical software is used for the statistical analysis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

iv

ACKNOWLEDGMENTS

The author wishes to acknowledge all those individuals who assisted in the

completion o f this dissertation. Their support and guidance toward successful completion

o f this dissertation is highly appreciated.

Sincere acknowledgement is expressed to Dr. William James, who passed away

two months before the completion of this dissertation. As the advisor for my first two

years in this program and my dissertation committee member, he helped and encouraged

me all the time during this process. His useful and effective assistance was always a

positive help toward finishing the dissertation.

Also, this dissertation could not have been finished without Dr. Gerald Cockrell,

who not only served as my advisor but also encouraged and challenged me in the last two

and half years in the academic program. He patiently guided me through the dissertation

process, never accepting less than my best efforts.

Special thanks are extended to Dr. Gordon Minty, Dr. Biwu Yang, and Dr. Ming

Zhou for their willingness to lend their educational and research expertise through

constructive criticism and guidance during the completion o f this dissertation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

V

TABLE OF CONTENTS

Page

ACKNOWLEDGMENT.. iv

LIST OF TABLES ..viii

LIST OF FIGURES.. ix

Chapter

1. INTRODUCTION... 1

General Area o f Concern... 1

Purpose of the Study... 3

Significance o f the Study.................................. 5

Definition of Terms..9

2. REVIEW OF LITERATURE....................... 12

Historical Background... 12

Architectural Models for Enterprise Integration.. 17

ISA S95 International Standards for Integration... 20

.NET Technologies for Module Development .. 22

Lab VIEW for the Development o f Control System..23

Relational Database and Data Access... 26

3. METHODOLOGY...30

Restatement o f the Study Objectives...30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Overview of the Integration Module... 31

System Architecture...31

Interface Features... 33

Construction of the Data Collector.. 36

LabVIEWEnvironment and Database ... 36

Database Concept... 37

Components o f the Data Collector... 37

Integration o f the Data Collector M odule...45

Communication with the Database...57

The Database Server and the Web-based Interface...................... 64

Introduction.. 64

Procedure Logic.. 65

Coding Structure... 61

Web-based LabVIEW Control Panel..69

Implementing Security... 75

Security Methods fo r the Three Components.. 75

Forms Authentication fo r the Web-based Interface 76

Testing and Analysis..81

Introduction..81

Queuing Network Modeling... 81

Statistical Technique Used...82

Hypotheses..84

Assumptions and Limitations...85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vii

The Experimental Design... 85

Set the Type I Error Rate..86

The Population and Sample... 87

Descriptive Statistics.. 88

Output Tables o f the Statistical Test...95

Conclusion..99

4. FINDINGS AND RECOMMENDATIONS.. 100

Introduction .. 100

Modular and Structured System.. 100

The Preference on Modular and Structured Systems...........................100

The Template o f a Structured System ... 102

The Personnel Involvement.. 104

The Potential Development and Enhancement of the System....................... 106

Recommendations for Future Study.. 108

REFERENCES... I l l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

viii

LIST OF TABLES

Table Page

1. SQL Commands Used by the Data Collector...40

2. Other ADO Components..45

3. ADO Connection Sub V is ..47

4. ADO Command Sub V is ..48

5. ADO Recordset Sub V is ... 50

6. I/O Addressing of the Control Process..71

7. Descriptive Statistics of CPU Usages in Each System..89

8. Descriptive Statistics of CPU Usages in Both Systems...91

9. Descriptive Statistics of the Number of Threads in Each System92

10. Descriptive Statistics o f the Number o f Threads in Both Systems..........................94

11. Descriptive Statistics of CPU Usages for ANOVA Test.. 95

12. Homogeneity Test on CPU Usage V ariable... 95

13. ANOVA Test on CPU Usage Variable..96

14. Descriptive Statistics of Thread Numbers for ANOVA T est.................................. 97

15. Homogeneity Test on Thread Number Variable.. 97

16. ANOVA Test on Thread Number Variable.. 98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

Figure Page

1. Serial device network................ 13

2. Distributed device networks............................. 14

3. Integration o f production management system s...15

4. System architecture...31

5. The main interface w indow 33

6. Measurement data tab le.. 34

7. Device status data table.. 34

8. LabVIEW real-time control panel..35

9. Communication path between LabVIEW and a database... 38

10. Communication path between ADO and SQL server..42

11. ADO object structure ... 44

12. SQL Execute V I .. 51

13. Block diagram of the SQL Execute V I..52

14. Automation Open Function V I ...53

15. Invoke Node function ... 54

16. The Property Node function.. 56

17. Commands for SQL server security mode.. 59

18. Local system service w indow ... 59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19. SQL server authentication window.. 60

20. Data pane o f the database interface...•..............................61

21. Design view of the database table.. 61

22. Block diagram of the database V is 62

23. SQL statement format.. 63

24. DeviceStatus data table............................ 64

25. Procedure logic for DataGrid control..65

26. DataSet for DevStatus table.. 67

27. Structure o f VB coding... 67

28. Example of event coding... 68

29. Data binding procedure.. 69

30. Components o f the wet process trainer..69

31. Process control diagram... 73

32. Mode controls and digital indicators..74

33. Emergency Stop and Reset buttons.. 75

34. Web.config...78

35. The server-side login form.. .79

36. Coding example for authentication and authorization...80

37. Coding for interface security.................. 81

38. The Task Manager w indow ...88

39. Histogram of CPU Usages on the existing system ..90

40. Histogram of CPU Usages on the modified system90

41. Histogram of CPU Usages on both systems..91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

xi

42. Histogram of thread numbers on the existing system 93

43. Histogram of thread numbers on the modified system..93

44. Histogram of thread numbers on both systems...94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1

Chapter 1

INTRODUCTION

General Area o f Concern

In today’s new manufacturing environment, manufacturing enterprises are facing

rapidly changing situations. To be competitive, enterprises must adapt to this change and

evolve to be reactive so that changes become natural dynamic states rather than something

forced onto the enterprise. This evolution requirement necessitates the need for enterprise

integration with an increasing emphasis on agility. MEL (Manufacturing Engineering

Laboratory) o f NIST (National Institute of Standards and Technology), an agent for change

in the fast-paced world of manufacturing, defined enterprise integration as providing the

right information, at the right place, at the right time, and updating the information in real

time to reflect the actual state o f the enterprise operation (MEL, 1999).

Enterprise integration has been discussed since the early days of computers in

industry in general and in the manufacturing industry particularly (MEL, 1999). In spite

o f the different understanding of the scope of enterprise integration from that time, the

eventual vision for it is to be a tool for the enterprise operation supporting day-to-day

decision making across the entire operation. This tool links decision makers on all

organizational levels to relevant and real time information across the organizational

boundaries. The implementation of enterprise integration requires explicit knowledge of

both the information needed and created by the different activities in the enterprise

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2

operation; requires information sharing systems and integration platforms capable of

handling information transaction across heterogeneous environments; and also requires

the up-date of the operational data as well as adapting to environmental changes.

However, MEL indicated the top problem associated with the applications of

enterprise integration in its report on issues in enterprise integration in 1997. The problem

is that the application of existing enterprise integration technologies has been hampered

by the lack o f business justification, the plethora of conflicting solutions and terminology,

and by an insufficient understanding of the technology by the end users. Also, a recent

survey in 2003, conducted by ARC Advisory Group, found that one of the top problems

with IT applications in manufacturing enterprise integration is related to confusing

solutions and terminology and the lack of understanding of cross-domain technologies

(ARC, 2003). This especially inhibits, or at least delays, the use o f relevant methods and

tools in small-to-medium-sized enterprises.

In this study, a web-based partial module for implementation o f enterprise

integration is established to interface between manufacturing control functions and higher

management level functions in a manufacturing enterprise. This web-based module

provides a generalized model for integration applications of manufacturing enterprises on

enterprise-control system integration. It is composed of three parts, ASRNET web forms,

LabVIEW control applications, and a dynamic database. The mechanism for retrieving,

storing, and publishing real-time data among these three parts is the core method for

building the module. The method solves the problem of communication between different

applications and languages, and provides a way of getting real-time data from LabVIEW

applications and publishing to web services. The implementation o f this enterprise

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3

module provides a template for enterprise-wide web applications to communicate with

LabVIEW interfaced control and monitor processes in real time.

The web interface and data structure in the module are designed by using the

terminology and methodologies from the Generalized Enterprise Reference Architecture

and Methodology (GERAM) and ISA S95. GERAM is a generalized architecture model

for enterprise integration methodologies, which is designed and published by IFIP-IFAC

(International Federation for Information Processing-International Federation of

Automatic Control) Task Force. ISA S95, published by ISA (the Instrumentation,

Systems, and Automation Society), is a standard used to define the enterprise-control

system integration. Therefore, this web-based enterprise module provides a simplified

interfacing solution for the process segment and production performance monitoring and

control in manufacturing enterprises, especially small-to-medium-sized manufacturing

enterprises. It is easy to understand by people on different levels o f a manufacturing

enterprise. It is small in scale, but its module function adds flexibility, compatibility, and

extendibility for future development.

In this study, a queuing network model is established to analyze the effect of system

change. A statistical method, one-way ANOVA, is applied to evaluate the effect on the

system. And SPSS statistical software is used for the calculations.

Purpose of the Study

The purpose o f this study is to establish a generalized partial enterprise module for

enterprise-control system integration in manufacturing enterprises based on the

development o f a real-time data communication mechanism among ASP web forms,

LabVIEW control applications, and a dynamic database, and evaluate the efficiency of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4

the module by a statistical study based on the queuing network modeling. It is a

web-based enterprise module that provides different interfaces for end users in the

manufacturing enterprise based on their different roles over the Internet. Virtual remote

panels for process control and monitoring, real-time data retrieving, data analysis, and

system maintenance are available from the web-based interfaces. System security is

executed by implementing ASP form authentication and authorization. End users are

required to provide user credentials to logon to the system, and their accesses are

managed by a role-based authorization method. The dynamic database is built in the

Microsoft SQL Server 2000 Desktop Engine (MSDE), a database server. Through the

real-time data communication mechanism, the database is able to update data according

to changes in LabVIEW-based control and monitoring segments in real time, and ASP

web forms will display these changes to end users on the web-based interfaces.

This real-time data management solution on LabVIEW-based control and monitor

processes provides a template to implement enterprise-control integration on

LabVIEW-based control and monitoring segments in manufacturing enterprises. It

integrates LabVIEW-based control and monitoring segments with enterprise-wide web

applications and provides real-time data from manufacturing processes on factory floor

for decision support and operation monitoring in higher enterprise levels. Therefore, a

timely data communication between web-based interfaces, the dynamic database, and

LabVIEW-based control and monitoring segments, is established to support real-time

data access by end users.

The design of this enterprise module uses GERAM as a reference model, and applies

terminologies and data attributes in the ISA S95 standard. This design method

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5

standardizes terms, data structure and attributes in this enterprise module, thus it is easy

for manufacturing people to understand and implement.

In order to evaluate the efficiency of the module, a single service model is

established based on the queuing network modeling. The service represents the system

resource (CPU and processor), and the customer represents the transactions processed in

LabVIEW application. The existing system is the system running a LabVIEW control

application without a data collector. The modified system is the system running a

LabVIEW control application with a data collector integrated. A statistical technique is

required to provide answers to the question - is there a significant difference on the CPU

usage and the number of threads between the existing system and the modified system.

Significance of the Study

The management o f complex value chains in manufacturing enterprises requires

increased integration of disparate plant control systems and other computerized enterprise

processes (Mick, 2003). Using Internet technology to gain more effective integration is a

central unifying theme for the 21 st century manufacturing enterprise (Worthington &

Boyes, 2002). However, the state of enterprise integration becomes rather confusing. On

the one hand, the need for enterprise integration solutions is intensified by the

competitive environment and market expectations. On the other, the solutions seem to

compete with one another, focus on particular issues, use conflicting terminology and do

not provide any clues on their relations to solutions on other issues. This dilemma is even

more obvious on the interfacing between manufacturing control functions and other

enterprise functions for manufacturing enterprises (Williams, 1998).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6

SAP and Lighthammer are software vendors that provide solution packages in

enterprise-control system integration for manufacturing enterprises. SAP created SAP

NetWeaver and SAP .NET Connecter to extend its strong business solutions into the

manufacturing plant floor. Lighthammer uses Microsoft .NET as a platform for

developing and deploying XML-based web services. Its Collaborative Manufacturing

Service (CMS) brings web services technologies to manufacturing control integration. At

the same time, automation manufacturers are trying to integrate web functions into their

automation systems to reach the computerized business processes. For instance, SIMENS

developed SIMATIC IT to help their customers reach the computerized business

processes from SIMENS automation products. Rockwell provided RSLinx and RSView

for web-based remote control and interface design based on Rockwell logix controller

systems. The solution packages provided by these companies have common

characteristics: (1) focusing on their own technology background; (2) being closely

related to their former products; and (3) creating high initial investment. For

small-to-medium-sized manufacturing enterprises, it is hard to get business justification

for implementing these solutions. As indicated by MEL, there exists the need for modular,

more flexible, more compatible and economic solutions to implement enterprise-control

integration in manufacturing enterprises.

Today many issues exist in enterprise integration. The fragmentation of current

research activities leads to multiple sub-solutions with many overlaps and even more

contradictions. This prevents potential users from employing the research results on a

sufficient scale in their day-to-day operation and in turn reduces the interest of IT vendors

to invest in the necessary support technology for enterprise integration (MEL, 1999). For

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7

example, some solutions are discussed for dealing with particular communication

problems in control-system interfacing (Schneider, 2000). Some studies discussed the

details of the different types of Ethernet standards and future development. Some studies

discussed the advantages and disadvantages of using Ethernet for manufacturing

applications, the various hardware and software available, and the role of web in process

control applications (Wojcik, 2000). Most studies concentrated on one specific

application, such as the development o f a web-based HMI (Taccolini, 2001), and the

application for a remote monitoring (Woods, 2003). A recent study on developing a

multi-agent system for enterprise integration provided a solution called a multi-agent

system to integrate different legacy business applications, like Capacity Analysis (CA)

and Enterprise Resource Planning (ERP) (Peng, Finin, Labrou, Chu, Long, Tolone, and

Boughannam, 2002). As shown above, most studies in this field either provide specific

technical solutions to improve the performance of an integration application, or develop a

new application for a specific situation. However, none of these studies resulted in a

generalized partial enterprise module for implementation of enterprise-control system

integration.

Data access technology is the core technology that determines the efficiency and

feasibility of applications for enterprise-control system integration. The hard part of

managing real-time data has always been trying to make a computerized database to

communicate with plant-floor controllers in a timely manner. Since the late 1980s,

database server vendors have published quite a few versions o f database servers and

provided different database access technologies for their servers, like Microsoft and

Oracle (Foggon & Maharry, 2004). From the Microsoft DataBase (MDB), the simplest

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8

relational database, to MySQL, the best open source relational database server, Microsoft

has published several versions of database servers. Data access technologies also have

evolved from Open DataBase Connectivity (ODBC) to the latest ADO.NET. Database

server vendors like Microsoft have been trying to make database access as easy and as

painless as possible for anyone who needs that facility. But it seems that these

technologies have been heavily applied in page designs and e-commerce related

applications. It is difficult for factory-floor controllers to access databases directly. While

LabVIEW provides virtual interfaces for those controllers, there is no direct application

for a database to communicate with LabVIEW interfaces for real-time data retrieving.

The development o f a dynamic database that is capable of communicating with

LabVIEW-based control and monitoring segments on the factory floor is the requirement

of implementing enterprise-control system integration.

The web-based partial enterprise module established in this study is an integrated

web service platform established in the .NET and LabVIEW environment. It is a

service-based architecture to provide interactive web-based interfaces for people on

different levels of a manufacturing enterprise who are searching for real-time information

from the factory floor. The module functions as a bridge between factory-floor controllers

and higher level enterprise functions for real-time data communication. It can be

implemented in real world industry as a reference integrating infrastructure for

enterprise-control system integration, particularly applicable for small-to-medium-sized

manufacturing enterprises. It also can work as an initialized web-based platform for

system integration simulations in academic laboratories. It is a modular system, and is

extensible to accommodate various web-based controllers and instrumentations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Definition o f Terms

ADO: Microsoft ® ActiveX ® Data Object is used to enable client applications to

access and manipulate data from a variety of sources through an OLE DB provider. ADO

supports key features for building client/server and Web-based applications.

ASP: Active Server Page is a Microsoft web technology for creating dynamic Web

applications. It enables HTML pages to be dynamic and interactive by embedding scripts.

This technology will be used to build the performance management system in this study.

ActiveX: A set of technologies that enables software components to interact with one

another in a networked environment, regardless of the language in which the components

were created. Currently, ActiveX is used primarily to develop interactive content for the

World Wide Web. ActiveX controls can be embedded in Web pages to produce animation

and other multimedia effects, interactive objects, and sophisticated applications. In this

study, ActiveX will be utilized to interact between LabVIEW Vis and web applications.

Enterprise Integration: ISA S95 defines enterprise integration as the coordination of

the operation of all elements of the enterprise working together in order to achieve the

optimal fulfillment o f the mission o f that enterprise as defined by enterprise management

(Williams, 1998). A more understandable definition by MEL is providing the right

information, at the right place, at the right time, and updating the information in real time

to reflect the actual state of the enterprise operation (MEL, 1999).

Enterprise-control System Integration: A part of the whole enterprise integration,

which defines the interface between plant control systems and other enterprise systems,

such as business process systems (Williams, 1998).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

GERAM: Generalized Enterprise Reference Architecture and Methodology is about

those methods, models and tools which are needed to build and maintain the integrated

enterprise (MEL, 1999).

ISA S95: The international standard for the integration of enterprise and control

systems. S95 consists of models and terminology which can be used to determine which

information has to be exchanged betweens systems for sales, finance and logistics and

systems for production, maintenance and quality.

LabVIEW: The graphical development environment for creating flexible and

scalable test, measurement, and control applications rapidly. It will be used to develop

Vis that interface with real-world signals, analyze data for meaningful information, and

share results and applications in this study.

.NET: This term denotes the Microsoft platform that can be used to develop

applications to connect information, people, systems, and devices based on web service

architectures. Microsoft .NET technology will be used to develop web forms and XML

web services for the performance management system in this study.

Relational Database: The concept of relational databases was first described by

Edgar Frank Codd (almost exclusively referenced as E. F. Codd in technical literature) in

the IBM research report RJ599, dated August 19th, 1969. Basically, a relational database

consists of a set o f tables, where each table is a set o f records. A record in turn is a set of

fields and each field is a pair field-name/field-value. All records in a particular table have

the same number of fields with the same field-names. All information in the database

should be represented in one and only one way — as values in a table. Each and every

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11

datum (atomic value) is guaranteed to be logically accessible by resorting to a

combination of table name, primary key value, and column name.

Vis: Virtual instruments. In this study, Vis represent the graphical user interfaces

programmed in LabVIEW environment for the purpose of motion control and process

control.

Web Forms: A Web Forms page presents information to the user in any browser or

client device and implements application logic using server-side code. Web forms are

designed by using Microsoft ASP.NET technology in which code that runs on the server

dynamically generates Web page output to the browser or client device. In this study, web

forms are the main elements for constructing the performance management system.

XML Web Service: Extensible Markup Language (XML) is a simple, very flexible

text format code. It is applied in the exchange of a wide variety o f data on the Web and

elsewhere. An XML Web service is a programmable entity that provides a particular

element of functionality, such as application logic, and is accessible to any number of

potentially disparate systems using ubiquitous Internet standards, such as XML and

HTTP. An XML Web service can be used internally by a single application or exposed

externally over the Internet for use by any number of applications. In this study, XML

web service is the key element for realizing real-time performance management.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

Chapter 2

REVIEW OF LITERATURE

Historical Background

Enterprise integration is the re-engineering of business processes and information

systems to improve teamwork and co-organizational boundaries, thereby increasing the

effectiveness of the whole enterprise (Francois, 1996). It has been discussed since the

early days of industrial computers in industry in general and in the manufacturing

industry in particular. The integration in manufacturing industry has been explained as the

operation integration and support of communication in manufacturing by means of

information technology. Until today, there are four phases in the evolution of the

integration applications in manufacturing systems: (1) serial device networks on the plant

floor; (2) distributed device networks including serial and Ethernet networking; (3)

integration of production management system with automation system; and (4) the

current challenge o f real-time performance management (Mick, 2003).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13

n
co m 2 port

PLC R S-232 port for
AB Serial O CX ActiveX
D river

Local I/O
D iscre te Signal

Robot RobotS w itc h /S e n so r C onveryor

Figure 1. Serial device network

As shown in Figure 1, computers were initially used in plant floor applications as

production device configuration tools and for providing diverse operator interfaces. The

system was integrated commonly through serial connection (RS232 or RS485) and was

quite suitable for PLC (Programmable Logical Controller) programming, device

configuration, and some operator interface applications. The serial device networking

system had limited capabilities. However, the software running on this system for

trending, archiving, sequencing, and PC-based control, demonstrated the demand for

built-in networking. This phase is the integration o f plant-floor controllers with HMI.

Distributed systems, the second phase for integration of manufacturing systems, are

the integration o f plant-floor device control with networked computers for plant

management. Distributed systems are extended from the principle of Distributed I/O. The

concept of Distributed I/O is an industry standard in the data acquisition and control

industries. Distributed I/O is essentially the placement o f intelligent devices that have the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

ability to make decisions based upon environmental conditions. By using robust

networking technology to position intelligent, distributed I/O devices closer to the sensor,

process, or unit under test, significant cost savings and improved performance can be

obtained. Distributed I/O systems include special capabilities to improve reliability,

onboard diagnostics, and maintenance to maximize system uptime. Intelligent distributed

systems can help to implement embedded, deterministic control systems. Some practical

applications o f distributed I/O are assembly line control, remote control o f construction

equipment, military excursions, hazardous material situations, factory monitoring and

control, and Heating Ventilation and Air Conditioning (HVAC) systems.

1 3 HM , O l H is to rY a In fo rm a tio n
, , S e rv e r , . M a n a g e m e n t

j | ' 1 Etherm
S u p e rv iso ry D ata M achine t c p /II

C ontro l A cq u is itio n C o n tro l U K

Device buses PLC buses E therne t buses :

1 i - nil sin
Distributed Systems

Figure 2. Distributed device networks

(Courtesy o f Microsoft Corporation)

Distributed systems were enabled by the advancement of control devices and

industrial device level busses which evolved from serial media to Ethernet control

networks. The distributed systems managed all aspects o f automation systems and field

devices, including programming, configuration, and operation. They collected and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15

managed growing amounts of historical data in support of production operators,

supervisors, and engineers. The typical systems are Windows NT-based system

(Microsoft) and NI FieldPoint system (National Instrument). It becomes clear that

standard software interfaces to devices and information are required. Advanced control

functions such as on-line optimization, statistical quality control, and PC-based control

need to be economically feasible.

® Planning (T i t Mana9e t’TTB Pla n t"Wide 8i
L lH i Scheduling l Inven tory , Product Data,

, %,— O ptim ization , t— W orkflow, , — History, Quality,
D ispatching - if"* 'A le r ts________, G enealogy______

a
•

a a
■ ***

a . ■*—.

E th e rn e t TCP/IP

a a
.■CT “

El

T “ (

m

r ~ r a '' ' la 11a a
■ sz * -. — - O L -

II i ■ ■ ■ -10 Hi ■ 1 1 4IU

Figure 3. Integration of production management system

(Courtesy of Microsoft Corporation)

The integrated systems in Figure 3 went beyond the automation systems to include

production management systems, including such capabilities as detailed planning and

scheduling, batch management, plant-wide historical data management, and quality data

management. This third phase of integration in manufacturing systems built hierarchical

LAN (Local Area Network) or WAN (Wide Area Network) networks for plant-wide

information management. The integration o f production management systems requires

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16

considerably more IT infrastructure than just automation systems. Typically, Microsoft’s

relational database, SQL Server, is required for data management needs, MSMQ for

messaging, BizTalk for process-centric integration, and COM+.

The current challenge for the integration in manufacturing systems is to build

integrated systems that are able to detect and react to events in real time and provide near

immediate feedback on how the enterprise is doing against dynamic targets (Mick, 2003).

This accentuates the demand on information systems to reliably bring together

information from production and business systems, and place it in a context where people

at any level can make better decisions faster. Dynamic, standards-based architectures are

required for realizing the potential o f such a Real-time Performance Management (RPM).

Faster integration and flexibility are being pursued for enterprise-wide service-based

architectures.

Web-based applications, which have been used in business systems, are being

applied in manufacturing systems to achieve the manufacturing system integration over

the Internet. Web forms, web services, and Extensible Markup Language (XML), are

critical tools for implementing web-based system integration. Because o f the data variety

in manufacturing systems, database and data access technologies are especially important

for the efficiency and feasibility o f manufacturing systems integration. Opportunities for

manufacturing systems are to implement re-useable services and rapid application

development tools to build agility and track enterprise objectives closely; to use service

based process engines to implement processes that cross business and manufacturing

functions; and to develop manufacturing metrics and intelligence using standard Web

forms and services that consistently access historical information and status across

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

diverse systems. Also manufacturing systems can store and manage persistent data for

product models, processes and configurations in XML, minimizing the loss of intellectual

property, and use service registries to manage and define interfaces and deploy

applications with the most appropriate communication methods.

The future challenge will be to standardize the implementation to achieve

interoperability and easy integration. Security problems and requirements will be met,

opening the door for higher levels of real-time visibility and more dynamic enterprise

wide platforms.

Architecture Models for Enterprise Integration

Enterprise integration attempts to create a complete information processing system

to serve both functional requirements and the corporate business objectives of enterprises

in real time. In order to enable consistent modeling of the enterprise integration, the

modeling process has to be guided and supported by reference architecture, a

methodology and IT based tools. Previous researches have produced several reference

architectures to organize all enterprise integration knowledge and serve as a guide in

enterprise integration applications, for example, CIMOSA by the AMICE Consortium,

PERAby Purdue University, TOVE by the University o f Toronto, GRAI and GIM by the

GRAI Laboratory, and GERAM by IFAC/IFIP Task Force. These reference architectures

proposed conceptual frameworks and associated methodologies to support the life-cycle

states of an integrated manufacturing enterprise.

CIMOSA (Computer Integrated Manufacturing Open System Architecture) was

developed for ESPRIT (European Strategic Program for Research and Development in

Information Technology) by AMICE (a consortium of 30 major European vendors and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

users o f CIM systems. It is aimed at the development o f open reference architecture for

the definition, specification and implementation of CIM systems. CIMOSA defines a

model-based enterprise engineering method which categorizes manufacturing operations

into Generic and Specific (Partial and Particular) functions. The CIMOSA framework has

3 levels of architectural generality: the requirements modeling definition level, the design

specification modeling level, and the implementation description modeling level. These

levels contain all the constructs required to gather the user requirements for this system

operation and to translate these requirements into a consistent system description and

implementation. CIMOSA provides four different types of views: function view,

information view, resource view and organization view (Francois, 1996). The Function

View describes work flows. The Information View describes the Inputs and Outputs of

Functions. The Resource View describes the structure o f resources (humans, machines,

and control and information systems). The Organization View defines authorities and

responsibilities.

PERA (Purdue Enterprise Reference Architecture) developed at Purdue University

focuses on separating human based functions in an enterprise from those with a

manufacturing or information perspective (Weston, 1998). PERA takes two views of the

enterprise, a functional view and an implementation view. The functional view consists of

an information functional model and a manufacturing functional model. The

implementation view consists o f the information architecture and the manufacturing

architecture (Francois, 1996). Both information and manufacturing streams flow

throughout the two views. The information stream consists of planning, scheduling,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

control, and data management functions whereas the manufacturing stream consists o f

physical production functions.

TOVE (Toronto Virtual Enterprise), developed at the University of Toronto, created

a data model that provides a shared terminology for an enterprise that different computer

systems can jointly understand and use. It defined a generic level representation that

includes the representations of time, causality, activity and constraints. This generic level

is defined in terms of a conceptual level based on a certain terminology (Tham, 1997).

The GRAI-GIM methodology was begun at the University o f Bordeaux in the 1970's.

It was designed to help define a model of an Integrated Manufacturing System in order to

specify a CIM System for subsequent purchase or development. The GRAI model is a

reference through which various elements of real world can be identified. The macro

conceptual model is used to express one's perception and ideas on the manufacturing

system which is decomposed into a decision subsystem, an information subsystem and a

physical subsystem. Particularly within the decision subsystem one finds a hierarchical

decision structure composed of decision centers. Decision centers are connected by a

decision frame (objectives, variables, constraints and criteria for decision making). The

operating system is an interface between the decision system and the physical system.

The micro conceptual model is used to represent the internal elements and structure of the

decision center (Williams & Li, 1998).

The IFIP/IFAC Task Force analyzed all the existing architectures and concluded that

even if there were some overlaps, none o f the reference architectures subsumed the others;

each of them had something unique to offer. Starting from the evaluation of existing

enterprise integration architectures, the IFAC/IFIP Task Force has developed an overall

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20

definition of a generalized architecture, GERAM (Generalized Enterprise Reference

Architecture and Methodology) (MEL, 1999). GERAM provides a description o f all the

elements recommended in enterprise integration and sets the standard for the collection of

tools and methods. GERAM views enterprise models as an essential component of

enterprise integration. The set of components identified in GERAM include generalized

enterprise reference architecture, enterprise engineering methodology, enterprise

modeling languages, partial enterprise models, generic enterprise modeling, enterprise

engineering tools, enterprise modules, and enterprise operational systems (MEL, 1999).

In conclusion, GERAM provides the necessary guidance of the modeling process,

and enables semantic unification of the model contents. To develop a generalized partial

enterprise module in this study, GERAM is selected to be the reference architecture for

modeling.

ISA S95 International Standards for Integration

This study establishes a partial enterprise module to interface between

manufacturing control functions and other computerized enterprise functions for

enterprise-control system integration. This enterprise module is a very important example

o f the multi-use of the same meaning in different words and has the vital need for

cross-understanding and mutually acceptable standards. ISA S95 and its XML

implementation B2MML provide standardized terminology and tools for data and

attribute definitions for the interface constructions in this study.

ISA S95 is the international standard for the integration of enterprise and control

systems developed by ISA and the World Batch Forum. It was created to solve the rising

problem of misunderstanding grown between the industrial control and business process

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

groups, and to implement the necessary ready transfer o f information in electronic form

between business processes and the plant floor control systems. ISA S95 establishes

common terminology for the description and understanding of enterprise, including

manufacturing control functions and business process functions (Williams, 1998). It is a

standard that defines the interface between manufacturing control functions and other

enterprise functions, and defines information exchange between them including data

models and attribute definitions.

ISA S95 consists of models and terminology which can be used to determine which

information has to be exchanged between systems for sales, finance and logistics and

systems for production, maintenance and quality. There are three parts of the ISA S95

standard: models and terminology; object model attributes; and activity models of

manufacturing operation management. Part one consists of standard terminology and

object models, which can be used to determine which information must be exchanged

between plant control systems and enterprise business processes. Part two consists of

attributes for every object that is defined in part one. The objects and attributes o f part

two can be used for the exchange of information among different systems. Part three

focuses on the functions and activities o f manufacturing operations management which is

still under developing by ISA and World Batch Forum group.

B2MML (Business to Manufacturing Markup Language) is an XML implementation

of the ANSI/ISA 95 family of standards (ISA-95) developed by World Batch Forum,

known internationally as IEC/ISO 62264. B2MML consists of a set of XML schemas

written using the World Wide Web Consortium’s XML Schema language (XSD) that

implement the data models in the ISA-95 standard. B2MML has totally defined nine

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22

schemas that can be used respectively for information exchange regarding manufacturing

equipment, maintenance, material, personnel, process segments, product definition,

production capability, production performance, and production schedule (WBF, 2003).

Each XML schema defines type names, user elements, user enumeration and models for

information exchange.

In this study, B2MML schema will be used as an XML tool to define data and data

attributes in constructing the web-based interface for the real-time performance

management system.

.NET Technologies for Module Development

All infrastructure and platform suppliers are building XML and Web services into

their products, and it is clear that most business and plant floor systems will eventually be

impacted. Even now, manufacturers are deploying XML widely, and Web services in

limited areas (Mick, 2003). Web services will be used more heavily over the next few

years, and a Service Based Architecture (SBA) is necessary as a reference framework for

integration between business and production systems. As mentioned in the last section,

ISA S95 has defined standard models and terminology for business and production

systems to communicate. These have been defined with XML schemas by the World

Batch Forum, and are being used by software suppliers with Web services.

To build a generalized partial enterprise module for integration between

manufacturing control functions and other computerized enterprise functions in this study,

ASP Web applications and XML Web services are the main components to construct

dynamic web applications and achieve web-based information exchange between those

functions. .NET technologies provide a complete set of development tools for building

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23

ASP Web applications and XML Web services. Therefore, .NET component platforms

will be used as the construction platforms for the partial enterprise module in this

study. .NET is a vision and set of Microsoft software technologies for connecting

information, systems, and devices. It enables a high level of software integration through

the use of XML Web services— small, discrete, building-block applications that connect

to one another as well as to other, larger applications over the Internet.

ASP Web applications will be compiled in ASP.NET environment, which is a part of

the .NET framework. ASP.NET includes a set o f controls that encapsulate common

HTML user interface elements. These controls run on the Web server, however, and push

their user interface as HTML to the browser. On the server, the controls expose an

object-oriented programming model. It allows programmable web pages to be integrated

with ASP Web applications. Programmable web pages are the important elements that

realize the real-time performance management in this study.

XML Web services are applications that can receive requests and data using XML

over HTTP. XML Web services are not tied to a particular component technology or

object-calling convention and can therefore be accessed by any language, component

model, or operating system. Also XML Web services can provide the means to access

server functionality remotely by clients. These features make XML Web services perfect

tools for constructing the real-time performance management system.

Lab VIEW for the Development o f Control Systems

Lab VIEW, developed by National Instruments, is a graphic programming language

to build virtual instruments (Vis) for control systems. The VI developed in LabVIEW

environment provides an interface between a user and a control process. The main

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

concept of such an interface is to provide a general view of the process and facilitate full

control of the operations (Beyon, 2001).

Three reasons exist for this study to choose LabVIEW-based control systems to

implement enterprise-control system integration. First, LabVIEW is widely used in

developing automatic control solutions in real world industries, research studies and

academic laboratories. Second, in LabVIEW, the locally controlled setup can be turned

into a remotely controlled one by moving the user interface away from the physical setup

with the integrated web-based functions. These web-based functions not only represent

the advanced technology in current plant control systems, but also provide features that

will benefit the construction of the web-based enterprise integration module. Third,

LabVIEW also provides advanced communication methods for the integration of

LabVIEW Vis with other applications, such as ActiveX containers, File Input and Output,

and .NET constructor nodes.

In this study, the method used for control system interface in LabVIEW environment

is FieldPoint. FieldPoint is a proprietary method for interfacing devices to computers

developed by National Instruments. But it is very similar in principle to the standard of a

fieldbus interfacing method used by many process control equipment suppliers. The idea

of fieldbus grew out o f the problem of interfacing hundreds or thousands of sensors and

actuators to PLCs and process control computers in large industrial plants. Rather than

connect each sensor or actuator to a central plant computer, requiring hundreds or

thousands o f kilometers of wiring, the idea o f fieldbus is to connect related groups of

sensors and actuators to a local microcomputer that communicates with the central plant

computer via an Ethernet local area network (LAN). Earlier fieldbus units used serial

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25

interface lines for communication but the principal remained the same. The result was an

enormous reduction in wiring and a corresponding increase in reliability.

For FieldPoint control in the LabVIEW environment, a virtual interface programmed

by LabVIEW graphical language provides a control panel for users to interact with the

control process through FieldPoint Ethernet communication and the communication

between the FP controller and I/O Modules. The communication between the FP

controller and I/O Modules is similar among different types o f network modules. Each

I/O module cycles through its internal routine o f sampling all channels, digitizing the

values and updating the values on the module channel registers (buffer).

FiledPoint Ethernet communication uses an asynchronous communication

architecture called event-driven communication. The network module automatically

sends updates to a client when data changes. The server then caches the data from I/O

modules and uses it to respond to read requests from the virtual interface. The network

module scans all I/O channels with subscriptions to determine whether a value has

changed, comparing the current value to the cached value for each channel. If a change

has occurred, the network module puts the difference between the two values in the

transmit queue. The FP Server receives this information and sends an acknowledgement

to the network module. The network module periodically sends and receives a

time-synchronization signal so that it can adjust its clock and provide proper

timestamping. When signals do not change over long periods of time, the client sends

periodic re-subscribe messages to verify that the system is still online.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26

Relational Database and Data Access

Relational databases and data access technologies are the core components in

establishing the enterprise module for enterprise-control system integration in this study.

A relational database stores all its data inside tables, and nothing more. And a relational

database management system (DBMS) must manage its stored data using only its

relational capabilities. All operations on data are done on the tables themselves or

produce some other tables as the result. A table is a set o f rows and columns. Each row is

a set of columns with only one value for each. All rows from the same table have the

same set of columns, although some columns may have NULL values, i.e. the values for

the rows were not initialized.

Edgar Frank Codd has developed the famous “Twelve Rules for Relational

Databases", which were published in two Computerworld articles "Is Your DBMS Really

Relational?" and "Does Your DBMS Run By the Rules?" on October 14, 1985, and

October 21, 1985, respectively. These twelve rules are still considered gospel for

relational database implementations (Bostrup, 2005).

1. Information Rule: All information in the database should be represented in one

and only one way — as values in a table.

2. Guaranteed Access Rule: Each and every datum (atomic value) is guaranteed to

be logically accessible by resorting to a combination o f table name, primary key

value, and column name.

3. Systematic Treatment o f Null Values: Null values (distinct from empty character

string or a string of blank characters and distinct from zero or any other number)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27

are supported in the fully relational DBMS for representing missing information

in a systematic way, independent o f data type.

4. Dynamic Online Catalog Based on the Relational Model: The database

description is represented at the logical level in the same way as ordinary data,

so authorized users can apply the same relational language to its interrogation as

they apply to regular data.

5. Comprehensive Data Sublanguage Rule: A relational system may support several

languages and various modes of terminal use. However, there must be at least

one language whose statements are expressible, per some well-defined syntax.

6. View Updating Rule: All views that are theoretically updateable are also

updateable by the system.

7. High-Level Insert, Update, and Delete: The capability of handling a base relation

or a derived relation as a single operand applies not only to the retrieval of data,

but also to the insertion, update, and deletion of data.

8. Physical Data Independence: Application programs and terminal activities

remain logically unimpaired whenever any changes are made in either storage

representation or access methods.

9. Logical Data Independence: Application programs and terminal activities remain

logically unimpaired when information preserving changes o f any kind that

theoretically permit unimpairment are made to the base tables.

10. Integrity Independence: Integrity constraints specific to a particular relational

database must be definable in the relational data sublanguage and storable in the

catalog, not in the application programs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28

11. Distribution Independence: The data manipulation sublanguage of a relational

DBMS must enable application programs and terminal activities to remain

logically unimpaired whether and whenever data are physically centralized or

distributed.

12. Nonsubversion Rule: If a relational system has or supports a low-level

(single-record-at-a-time) language, that low-level language cannot be used to

subvert or bypass the integrity rules or constraints expressed in the higher-level

(multiple-records-at-a-time) relational language.

Databases need to be hosted by database servers. A database server is a data storage

and retrieval system, and it is the back end part of a client-server database (Foggon &

Maharry, 2004). A database server controls the storage of the data, grants access to users,

updates and deletes records, and communicates with other servers when necessary. There

are several database Servers available for database construction, such as Microsoft

DataBase (MDB), MySQL, SQL Server, Oracle, and so on. In this study, the dynamic

database is constructed in the Microsoft SQL Server 2000 Desktop Engine (MSDE).

MSDE is the free version o f Microsoft’s full SQL Server database server. Its main

difference is that the number o f clients that can access it at the same time is limited to 25.

Since the system established in this study is for research purposes, MSDE is selected

instead of another database server. Once it needs to be applied in the real industrial world,

the database can be migrated to a more powerful version database server.

Data access technologies are the methods used to support data accesses to databases.

In the more than ten year’s history o f data access technologies, the most important

technologies are Open DataBase Connectivity (ODBC), Object Linking and Embedding

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for DataBases (OLE DB), ActiveX Data Object (ADO), and ADO.NET. ODBC was

developed at the beginning of the 1990s. It is a common set of functions and interfaces

agreed upon by all the major database vendors at that time to be implemented by all their

servers. ODBC was extremely successful and is still supported by all the major database

servers in use today. However, ODBC works at quite a low level, it is difficult to use.

OLE DB is a set o f Component Object Model components designed for Windows

application developers that makes accessing data a bit simpler. OLE DB was pretty

successful and is still supported by several vendors, including Microsoft. ADO is a

technology originally designed to give classic ASP pages a way to access databases.

ADO.NET now takes over from ADO. ADO.NET can work with a database through a

common set o f methods and interfaces regardless of whether it supports ODBC, OLE DB,

or its own proprietary access solution.

ADO.NET is used in this study to establish the communication method among the

ASP forms, the dynamic database, and LabVIEW-based control systems. As the latest

version of data access technology, ADO.NET is able to work with data away from

database itself pulling information onto the web server and working with it there instead

of on the database server. It is able to take a large number o f simultaneous queries and

keep the stability and performance at the same time. ADO.NET can bind information to

any control on an ASP page.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

Chapter 3

METHODOLOGY

Restatement o f the Study Objectives

This study is to establish a generalized partial enterprise module for

enterprise-control system integration in manufacturing enterprises based on the

development of a real-time data communication mechanism among ASP web forms,

LabVIEW control applications, and a dynamic database. It is a web-based enterprise

module that provides interface for end users in the manufacturing enterprise over the

Internet. Virtual remote panels for process control and monitoring, real-time data

retrieving, data analysis, and system maintenance are available from the web-based

interface. System security is executed by implementing ASP form authentication and

authorization.

This partial enterprise module is a modular system that can be used to implement

enterprise integration solutions in LabVIEW-based manufacturing control systems. The

system’s architecture is designed according to GERAM architecture and methodology.

The information transaction methods, objects in the architecture, and attributes o f each

object are defined by applying ISA S95 standard in enterprise control system integration.

The modular system consists of three components, a LabVIEW module running in

LabVIEW applications, a database server, and a web interface.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31

System Architecture

Overview of the Integration Module

LAN

33

Q
- '

Process
Data

C ollector

LAN — — '
Dalabase

• ----- i

: O perator
Interface

W eb/D atabase S erver

; ’]

intornet

Plant F loor Controllers R em ote Interfaces and
W eb-based Applications

Figure 4. System architecture

Figure 4 displays the architecture overview of the web-based enterprise integration

module. The modular system consists o f three main components: a LabVIEW-based

process data collector, a virtual server, and a web-based interface. The LabVIEW-based

process data collector is a set of sub Vis developed in LabVIEW environment to collect

real-time process data from LabVIEW control applications and send the collected data to

specified database tables. It was developed by using LabVIEW controls and Microsoft ®

ActiveX ® Data Objects (ADO) so that it can access and manipulate data in an OLE DB

database from LabVIEW control applications. This data collector has features o f ease of

use, high speed, low memory overhead, and reusability. It can be utilized by various

LabVIEW applications for data collection activities with minor modifications. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32

frequency of data updating is determined by the timer configuration of the While Loop in

LabVIEW applications which is a configurable parameter.

The web server and the database server could be set up as two computer servers

located in the same LAN network, or two virtual servers established and configured in

one computer. In this study, the servers’ capacity for client support is not the critical

concern. Therefore, two virtual servers are established and hosted by one computer.

One is the database server which hosts an MSDE database and provides a management

interface for direct database control. The database server supports the communication

channels for the data collector module running in the LabVIEW control applications. The

database exchanges production information with manufacturing control systems in near

real time through the communication channels. One virtual web server hosts ASP web

pages and supports remote accesses to the interface. The web server compiles dynamic

web pages according to different data requests received from clients, displays web pages

to clients’ browser, and reacts to clients’ actions on the web pages.

The web-based interface consists of a series o f ASP dynamic web pages. It is

supported by the MSDE database server and the LabVIEW-based data collector module.

Therefore, the web-based interface is not only a normal web site that can be accessed by

authenticated users over the Internet, but also a remote real-time system control panel and

data analyzer that provides real-time process data and historical data analysis for the

decision-making process in the manufacturing enterprise. This interface is the end-user

component of the web-based integration module. It needs to be customized and

re-configured for specific usage of the integration module.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33

Interface Features

The web-based interface in this integration module is developed in .NET

environment. Due to the time limit and resources available in this study, the web-based

interface is built only to provide the critical features that are necessary for system

performance testing. In the module’s future applications, the interface needs to be

customized and enhanced to provide more functions and features. However, the most

important features, which are the main purpose of this study, are integrated with this

web-based interface. The main features are the real-time data retrieve from the database

server, the data analysis, real-time direct control and monitor o f the plant-floor process,

and a live video of the process. The main window of the interface is shown in Figure 5.

AveTem(F) j AveLevel(%)

Process Control-1 ntegration Panel

0 abc 0 0

1 abc 0.1 1

2 abc 0.2 2

3 abc 0.3 3

.4 abc 0.4 4

DeviceED DeviceName Status Time

a b c

Figure 5. The main interface window

The main window of the web-based interface provides data tables to display the

real-time process data from the plant-floor process which can be updated every 250

milliseconds. This window is developed to provide real-time data in a timely manner for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

decision makers in a manufacturing enterprise. The simplicity o f the interface will reduce

the page load and access time and save the processing cycle and time o f the server. As

shown in Figure 5, the interface is in offline state with no data retrieved from the database

server. Figure 6 and 7 provide the data table in online status with data filled from the

database server.

0 TANKl 40 50 44 30

1 TANK2 42 20 41 22

2 TANK3 41 30 41

Figure 6. Measurement data table

The data table in Figure 6 displays the temperature value and the level value of the

liquid product in each tank of the process. The average temperature and level value o f a

specified time period are also displayed. The data table in Figure 7 displays the On/Off

status o f each device in the process.

DeviceED DevieeName Status
0 valvel 0

1 valve2 1

pumpl 0

3 heater 1

4 pump2 1
5 valve3 1

6 valve4 1

Figure 7. Device status data table

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35

The main window provides a hyperlink button which navigates to the real-time

LabVIEW control panel of the plant-floor process as shown in Figure 8.

I dr Q p « « t [cafe * r* > » ISST]
;<> |g>| 1 I I I j'l*» ' V| >D- ’ i___i f E l l

(V.lllegf ill IVi linolo"Y j
W ei Process Trainer i . . .

Figure 8. LabVIEW real-time control panel

This control panel is a virtual instrument programmed in LabVIEW environment. As

shown above, controls and indicators on the interface provide the way for users to

interact with the control process. A video clip was integrated into the interface for users to

monitor the real process through an Internet camera. Two waveform graphics provide

history data tracking of temperature and incoming pressure o f each tank. The current

value of tank levels, temperatures, incoming flow rate for main tank, and incoming

pressure for tank 1 and tank 2 are also shown on the interface by different indicators.

More details about this LabVIEW remote control panel will be discussed in the next

section of the chapter. The possible enhancements and further integrations o f this

web-based interface for future applications will be discussed in detail in Chapter Four.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

Construction of the Data Collector

Lab VIEW Environment and Database

As introduced in the last chapter, LabVIEW is a graphic programming language to

build virtual instruments (Vis) for control systems. The VI developed in LabVIEW

environment provides an interface between a user and a control process. A database

consists of an organized collection of data. Most modem Database Management Systems

(DBMS) store data in tables. The tables are organized into records, also known as rows,

and fields, also known as columns. LabVIEW programming language and database

applications are different language-based software, and can not communicate with each

other at the same level.

In order to access a database hosted by a Windows-based database server, LabVIEW

applications have to utilize third-party software. National Instmment has released a

software kit, called the Database Connectivity Toolset for LabVIEW. The LabVIEW

Database Connectivity Toolset provides a method to communicate and pass data between

LabVIEW and either a local or a remote database management system (DBMS). This

third-party software kit costs around $1000 and occupies processing capacity and time for

communication. In this study, the LabVIEW data collector is a module integrated in

virtual instruments providing a direct communication channel for LabVIEW applications

and Windows-based database servers. The data collector is built in Microsoft .NET and

integrated into the LabVIEW environment. These objects can make system calls into

Microsoft’s application programming interface (API) for database access called ODBC

and use ADO method as the application interface for data communication. The data

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37

collector can be utilized as an open source module to be integrated into various

Lab VIEW applications without cost.

Database Concepts

A database consists of an organized collection of data. Every table in a database

must have a unique name. Similarly, every field within a table must have a unique name.

The database tables have many uses. Tables could be used with a simple test executive

program to record sequence results. The data in a table could not be inherently ordered.

Ordering, grouping, and other manipulations of the data occur when a SELECT statement

is used to retrieve the data from the table. A row can have empty columns, which means

that the row contains NULL values. NULL values for databases are not exactly the same

as NULL values in the C programming language.

Non-relational databases are used to store all the information in one large structure.

This method is sometimes inefficient, because all of the information is in one table, and

searching for a specific piece o f data can be difficult and time-consuming. Relational

databases have information stored in multiple structures, or tables, where each table can

be smaller and contain a specific subset of information.

Components o f the Data Collector

ODBC standard.

The SQL Access Group, including representatives of Microsoft, Tandem, Oracle,

Informix, and Digital Equipment Corporations, developed the Open Database

Connectivity (ODBC) standard as a uniform method for applications to access databases.

ODBC 1.0 was released in September 1992. The standard consists of a multilevel API

definition, a driver packaging standard, an SQL implementation based on ANSI SQL, and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

a means for defining and maintaining Data Source Names (DSN). A DSN is a quick way

to refer to a specific database. A DSN is specified with a unique name and by the ODBC

driver that communicates with the physical database, local or remote. A DSN must be

defined for each database to which an application program connects.

LabVIEW Control
Application

Date
Collector

ODBC API

Database

ODBC Driver

Figure 9. Communication path between LabVIEW and a database

The data collector complies with the ODBC standard, so that it can communicate

with all ODBC-supported database applications. The data collector module in LabVIEW

environment calls the Microsoft API for ODBC. ODBC then communicates with a

database’s specific driver that translates the call to the database’s low level language, as

shown in Figure 9. The data collector module is compatible with any database providing

an ODBC driver that translates the ODBC calls to the native database language. ODBC

API and drivers are integrated with all ODBC supported database servers, so that no extra

software or application package is required to realize the communication.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

Structured Query Language

The data collector adopts the Structured Query Language (SQL) as command

statements for data manipulation in data access. The Structured Query Language consists

of a set of character string commands and is a widely supported standard for database

access. The SQL commands can be used to describe, store, retrieve, and manipulate the

rows and columns in database tables. IBM developed the language, and it became

publicly available in the late-1970s. Since then, the American National Standards Institute

(ANSI), the International Standards Organization (ISO), and the Federal Information

Processing Standards (FIPS) have adopted SQL and most major commercial relational

database products support it to some degree. It is a non-procedural language for

processing sets of records in database tables.

There are three pertinent classes in SQL statements, Data definition/control language,

Data manipulation language, and Queries. Data Definition/Control Language (DDL/DCL)

statements define and control the structure of the database. They also define and grant

access privileges to database users. Use the statements to create, define, and alter

databases and tables. Data Manipulation Language (DML) statements operate on the data

contents o f database tables. These statements are used to insert rows of data into a table,

update rows of data in a table, delete rows from a table, and conduct database

transactions. Queries are SQL SELECT statements that specify which tables and rows are

retrieved from the database. Table 1 describes the SQL commands that can be recognized

and used by the data collector.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40

Table 1.

SQL Commands Used by the Data Collector

SQL Command Function

CREATE TABLE Creates a database table and specifies the
name and data type for each column
therein. The result is a named table in the
database. It is a DDL command.

INSERT Adds a new data row to the table, allowing
values to be specified for each column.
INSERT is a DML command.

SELECT Initiates a search for all rows in a table
whose column data satisfy specified
combinations of conditions. The result is
an active set o f rows that satisfy the search
conditions. SELECT is a query command.

UPDATE Initiates a search as in SELECT, then
changes the contents of specific column
data in each row in the resulting active set.
UPDATE is a DML command.

DELETE Initiates a search as in SELECT, then
removes the resulting active set from the
table. DELETE is a DML command.

OLE DB Standard

The ODBC standards design was to access only relational databases. Microsoft

realized this as a limitation and developed a platform called Universal Data Access (UDA)

where applications can exchange relational or non-relational data across intranets or the

Internet, essentially connecting any type o f data with any type of application. OLE DB is

the Microsoft system-level programming interface to diverse sources o f data. OLE DB

specifies a set o f Microsoft Component Object Model (COM) interfaces that support

various database management system services. These interfaces can be used to create

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41

software components that comprise the UDA platform. OLE DB is an API that allows for

lower-level database access from a compiler. There are three types of COM components

for OLE DB, OLE DB Data Providers, OLE DB Consumers, and OLE DB Service

Providers. OLE DB Data Providers are data source-specific software layers that are

responsible for accessing and exposing data. OLE DB Consumers are data-centric

applications, components, or tools that use data through the OLE DB interfaces. Using

networking terms, OLE DB consumers are the clients, and the OLE DB data provider is

the server. OLE DB Service Providers are optional components that implement standard

services to extend the functionality of data providers. Examples o f these services include

cursor engines, query processors, and data conversion engines.

The LabVIEW-based data collector module uses MDAC as data providers, which

means MDAC needs to be installed for the data collector to function properly. The

Microsoft Data Access Components (MDAC) are the practical implementation of

Microsoft’s UDA.strategy. MDAC includes the ODBC, OLE DB, and ADO components.

MDAC also installs several data providers that can be used to open a connection to a

specific data source such as an MS Access database. Windows 2000 and Windows ME

contain MDAC as part of the operating system. MDAC includes several OLE DB

providers for various data sources. All data access in the data collector occurs through an

OLE DB provider. Microsoft provides some relational data providers as part of the

MDAC installation.

The main data providers used in the data collector are the OLE DB for ODBC and

OLE DB for SQL server. OLE DB provider for ODBC acts as a conversion layer between

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42

OLE DB interfaces and ODBC. The hierarchy of data interface layers between ADO and

a database using the OLE DB provider for ODBC is shown in Figure 10.

v— :

ODBC A PI

SQ L Server
Database

ODBC D river M anager

A D O (O LE DB Consum er)

OLE DB P rovider fo r '

ODBC

SQL Server
ODBC D river

Figure 10. Communication path between ADO and SQL Server

ActiveX Data Objects (ADO)

As mentioned previously, OLE DB is a system-level programming interface, and

ADO is the application-level programming interface to diverse sources of data. ADO is

an ActiveX wrapper to OLEDB so that any programming language or tool that supports

COM can use the OLE DB technology through ADO. The LabVIEW-based data collector

consists of ADO objects through invoke and Property Nodes.

The object model of ADO in this data collector is made up of three main COM

objects, Connection, Command, and Recordset. A Connection object represents a unique

session with a data source. In a client/server database system, it may be equivalent to an

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43

actual network connection to the server. Depending on the functionality supported by the

provider, some collections, methods, or properties of a Connection object may not be

available. A Command object can be used to query a database and return records in a

Recordset object, to execute a bulk operation, or to manipulate the structure of a database.

Depending on the functionality of the provider, some Command collections, methods, or

properties may generate an error when referenced. With the collections, methods, and

properties, a Command object can define the executable text o f the command (for

example, an SQL statement) with the CommandText property. Alternatively, for

command or query structures other than simple strings (for example, XML template

queries) define the command with the CommandStream property. A command object can

indicate the command dialect used in the CommandText or CommandStream with the

Dialect property. It can also define parameterized queries or stored-procedure arguments

with Parameter objects and the Parameters collection and indicate whether parameter

names should be passed to the provider with the NamedParameters property. In some

cases, a command object can execute a command and return a Recordset object if

appropriate with the Execute method. Recordset object represents the entire set of records

from a base table or the results of an executed command. At any time, the Recordset

object refers to only a single record within the set as the current record. Recordset objects

are used to manipulate data from a provider. When ADO is used, data is manipulated

almost entirely using Recordset objects. All Recordset objects consist o f records (rows)

and fields (columns).

According to the ADO standard, each of these top-level objects can exist

independently without the others. However, the data collector has a hierarchical structure

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44

where the Connection object is necessary in order to use a Command or Recordset object.

The hierarchical structure of the ADO standard applied in the LabVIEW-based data

collector is shown in Figure 11.

Some other ADO objects used in the ADO standard are the Record object, the

Stream object, the Property object, the Error object, the Parameter object, and the Field

object. They are also components in the ADO standard applied in the LabVIEW-based

data collector. Their functions are described in Table 2.

Errors Properties Properties Parameters

Fields PropertiesFields

RECORD

STREAM

COMMAND

RECORDSET

CONNECTION

Figure 11. ADO object structure

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45

Table 2.

Other ADO Components

Components Description

Record Object This object represents a single row in a
recordset.

Stream Object This object represents binary data, usually
stored in Unicode.

Property Object This object is the building block o f the
other ADO objects. The properties
collection contains only the properties
added to the object by the data provider
and does not contain the intrinsic
properties of the object.

Error Object This object represents a single error that
occurs during operation.

Parameter Object This object represents a single parameter
for a Command object. Generally,
parameters are used with any type of
parameterized commands where an action
is defined once but can have results
changed depending on the variable values.

Field Object This object represents a single column of
data in a recordset.

Integration o f the Data Collector Module

ADO Sub VI Structure

The data collector module is integrated into LabVIEW applications as sub Vis which

can be called by the primary VI for database communication functions. According to the

ADO hierarchical structure used, the data collector module has four groups of sub Vis.

Each of the groups represents one type o f object applied in ADO database

communication method. The four groups are the Connection Object Vis, the Command

Object Vis, the Recordset Object Vis, and the SQL Statement VI. The advantage of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46

creating these four groups of sub Vis in the names of ADO objects is to provide a simple

and understandable structure o f the sub Vis for easier modular integration in LabVIEW

applications.

Three subVIs are created in the Connection group, the ADO Create Connection VI,

the ADO Open Connection VI, and the ADO Close Connection VI. Vis in this

Connection group are used to create, open, or close a connection with a specified ADO

object which is used for a database communication. They are the Vis used to initialize a

database connection at the beginning and close the database connection when the tasks

are done with the database. The ADO Create Connection VI initializes a database

connection in LabVIEW application by calling an ActiveX function. The ADO Open

Connection VI opens the database connection by calling a .NET function node. Also a

SQL connection string must be specified to provide the database server’s location path,

the server’s name, and the information for user identification. The ADO Open

Connection VI uses the information to establish the communication channel between the

LabVIEW application and the database hosted by a database server. The ADO Close

Connection VI has the similar function as the ADO Open Connection VI, but its purpose

is to disconnect the connection to the database. The block diagrams and functions of each

subVIs in the Connection group are listed in Table 3.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47

Table 3.

ADO Connection SubVIs

“4 .Connection
Close

■4 .Connection

Options

Oper

ADO Create
Connection.vi

ADO Open
Connection.vi

ADO Close
Connection.vi

VI NAME

error in (no error)

M I — 1

ADODB..Connection In
loo- ---- —

ADODB..Connection In

error in (no error)

ConnectionString

I E -------

(LabVIEW Program)

BLOCK DIAGRAM

error out

error out

ADODB. .Connection Out

lOfl

ADODB. .Connection Out
-Vi r n l

Initializes a
database
connection.

Opens a
database
connection.

Closes a
database
connection.

FUNCTION

Three subVIs are created in the Command group, the ADO Create Command VI, the

ADO Execute Command VI, and the ADO Set Command Text VI. The subVIs in this

Command group are used to initialize a SQL command, set the SQL command statement,

configure the SQL command, and execute the SQL command on the specified database.

The ADO Create Command VI initializes a SQL command by calling an ActiveX

function to connect to an ADO command object. The ADO Set Command Text VI is used

to prepare a SQL command to be executed on the database. The ADO Set Command Text

VI uses a .NET property node to set the SQL command type and the command text string.

Also the .NET property node sets a Boolean datum to identify the status of the command,

and an integer datum to limit the valid life time of the command. The command text

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

string can set all the five types of SQL commands, as mentioned previously, to retrieve or

manipulate data in the specified database. The ADO Execute Command VI uses a .NET

invoke node to execute the SQL command prepared by the Set Command Text VI.

Parameters associated with the command execution need to be specified as an input data

string. The recordset affected by the command execution will be saved and sent as an

output data string. The block diagrams of each subVIs in the Command group are listed

in Table 4.

Table 4.

ADO Command SubVIs

VI NAME BLOCK DIAGRAM
(LabVIEW Program) FUNCTION

ADO Create
Command, vi

ADODB. _Command

(□ o —

error in (no error)

ADODB. Command Out

Initializes a
SQL
command.

_ error out
T V s r f i l

ADO Set
Command

Text .vi

ADODB. _Command In

error in (no error)

ED
CommandText ladCmdText'

\ < Command !
Prepared

CommandType

►CommandTimeout

ADODB ..Command Out
-Vim

error out

Prepares a
SQL
command.

ADO
Execute

Command.vi

ADODB. jCom m and In

B O 1
error in (no error) !

E x e c u te
R e co rd sA ffec ted

P aram eters
O ptions

ADODB. _Command Out
T “~
error out

ADODB. _Recordset

Executes a
SQL
command
and generate
output,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49

Three subVIs are created in the Recordset group: the ADO Create Recordset VI, the

ADO Open Recordset VI, and the ADO Close Recordset VI. The Recordset object

represents the entire set of records from a base table or the results o f an executed

command. The Recordset object refers to only a single record as the current record within

the set. Recordset objects are used to manipulate data from a provider. The ADO

Recordset subVIs are designed to create a recordset during the process of database

manipulation, save the retrieved data record in the recordset, manipulate data in the

recordset, save changes to the recordset, and display the updated recordset to an interface

or send back to update the corresponding record in the database.

The ADO Create Recordset VI initializes a recordset in LabVIEW application by

using an ActiveX function. The ADO Open Recordset VI calls the invoke .NET node to

open an existed recordset. The command text string needs to be specified as a text string

input which gives the executable command to manipulate the data in the recordset. Also

the ADO connection needs to be specified as another input to the subVI, giving the

existed database connection path. Options are provided with the Open Record VI to

configure some other actions that may be taken on the recordset, such as Get rows, Get

strings, Requery, and Update. The ADO Close Recordset VI uses a .NET invoke node to

close the existing recordset after the updated recordset has been used. The existing

recordset connection needs to be provided to the Close Recordset VI as an input. It is an

executable VI without any output. The recordsets created and used in a database

connection session will not be kept in the LabVIEW application or the database server.

They are only temporary files created for data manipulation on the database; the updated

recordsets will be used in the same connection session, and affected data is updated and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50

used at the end of the session. So keeping the recordsets created in any previous

connection session is meaningless. The block diagrams and functions o f each subVIs in

the Recordset group are listed in Table 5.

Table 5.

ADO Recordset SubVIs

VI NAME BLOCK DIAGRAM
(LabVIEW Program) FUNCTION

ADO Create
Recordset.vi

ADODB, Recordset

error in (no error)
i

0 ®

ADODB. _Recordset Out
► a

error out
sxxsatx I

Initializes a
recordset.

ADO Open
Recordset.vi

ADODB. _Recordset In
CEE------
error in (no error)

Command Text

ADODB,_Recordset Out

ADODB. _Connectionjln

CursorType
DBS---------
LockType

Options
litei—

_Open.
Activ&Connectiori

CursorType

Options

error out

Opens and
manipulates
a recordset.

ADODB. _Recordset Out
A iOADO Close

Recordset.vi
ADODB._Recordset In

e t ----------
error in (no error);

S " 4 _Recordset j)
Close

error out

Closes a
recordset.

These three ADO object VI groups are the fundamental subVIs that establish the

communication between LabVIEW applications and the database. They provide the

methods for LabVIEW applications to retrieve, manipulate, and update data in the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

specified database. Based on these fundamental ADO object subVIs, a higher level SQL

VI is created for easier database communication, which forms the fourth group o f the

subVIs for LabVIEW applications. This SQL Execute VI is created to perform a SQL

query on a database, and if necessary, get the rows that are returned by the query. The

input and output connections are indicated in the icon o f the subVI in Figure 12.

ADODB._Connection In —
Com m and Text ~r

Return Data (T)
error in (no error) *“

ADO
SQLExecute

ADODB..Connection Out
, Data
'— Rows Fetched
“ " e r r o r out

Figure 12. SQL Execute VI

To issue the SQL Execute VI, an ADO Connection object must be created and wired

to the ADODB . Connection In input. Command text is the SQL statement string which

specifies the SQL command to be executed on the database. The Command text must be

terminated with a semicolon, as in the SQL programming. Return Data is a Boolean,

which, when True (the default), tells the VI to retrieve data from the query. If a SQL

command without return data is called by the VI, this Boolean must be set to FALSE,

such as when an UPDATE command is called). Data is a 2D array o f strings which

contains the rows returned by the SQL command statement. Rows Fetched gives the

number o f rows returned by the function. Rows Fetched has no output when the Boolean

is set to FALSE. Retries is an integer that specifies the number o f retries that this SQL

command can be executed. Normally this should not be set. However, it is useful when

the LabVIEW application is to connect to a very slow database or the records are being

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52

locked out while the SQL command is trying to execute. The block diagram of this SQL

Execute VI is shown in Figure 13.

ADODB. C onnection In ADODB. C onnection O ut

D ate

F e tched

2S£
e rro r o u t

in(no

EV------
R etu rn D ata (T)

[cm
R etries

Figure 13. Block diagram of the SQL Execute VI

In this block diagram, a while loop is used to set the number o f retries. A case

structure is used to execute SQL command with returned data or without returned data

separately. This higher level VI uses basic ADO object subVIs to perform the SQL query.

It provides an easier way to integrate the module into LabVIEW applications, and

simplifies the programming process when a huge number of database related commands

need to be executed.

ActiveX and .NET Functions

LabVIEW programming language provides ActiveX and .NET functions as higher

level communication functions. ActiveX functions are used to pass properties and

methods to and from other ActiveX-enabled applications, such as ADO supported

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

databases. Several ActiveX functions are available in LabVIEW programming language;

the one used in construction of the subVIs is called Automation Open function. The input

and output connections of the Automation Open function are shown in Figure 14.

A utom ation Refnum
machine name

open new instance.. .
error in (no error)

o Q l

Automation Refnum

Figure 14. Automation Open Function VI

Automation Open points to a specific ActiveX object by specifying an automation

reference number which is associated with the ActiveX object in Windows. Machine

name indicates on which machine the VI should open the Automation Refnum. If no

machine name is given, the object is opened on the local machine. If open new instance is

TRUE, LabVIEW creates a new instance of the Automation Refnum. If FALSE (default),

LabVIEW tries to connect to an instance of the refnum that is already open. If the attempt

is unsuccessful, LabVIEW opens a new instance. Error in describes error conditions that

occur before this VI or function runs. The default is no error. If an error occurred before

this VI or function runs, the VI or function passes the error in value to error out. This VI

runs normally only if no error occurred before this VI or function runs. If an error occurs

while this VI or function runs, it runs normally and sets its own error status in error out.

Error out contains error information. If error in indicates that an error occurred before this

VI or function ran, error out contains the same error information. Otherwise, it describes

the error status that this VI or function produces. After the reference number is opened, it

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54

can be passed to other ActiveX functions. Only creatable classes can be wired as inputs to

this function. If a machine name is wired, the object opens on the remote machine.

Otherwise, the object opens on the local machine. Because o f its connection capability to

a specified ActiveX object, the Automation Open function is used to program the ADO

Create Connection VI, the ADO Create Command VI, and the ADO Create Recordset VI.

Another type of advanced communication functions used in programming the

subVIs is the .NET function. NET functions are used to create .NET objects and set

properties or methods on those objects. The ADO object is one type o f the .NET objects.

Therefore, .NET functions can be used in programs to set properties or methods for ADO

objects. The .NET functions used in this study are the Invoke Node and the Property

Node. The Invoke Node invokes a method or action on a referenced object. Most

methods have associated parameters. The Property Node reads and/or writes properties of

a referenced object. The Property Node automatically adapts to the class o f the referenced

object. LabVIEW includes Property Nodes preconfigured to access ActiveX properties.

The input and output connections of the Invoke Node are shown in Figure 15.

re fe re n c e R - to l s s s B a u p re fe re n c e
,.'n ■: :n r-.o -:-:i «=** method *

input 1 ► psraml ►
1----- nutp iit 1

Figure 15. Invoke Node Function

Reference is the reference number associated with the ActiveX object on which a

method is invoked or an action is performed. If the Invoke Node class is an Application

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

55

or VI, a reference number is not necessary. For the Application class, the default is the

current instance of LabVIEW. For the VI class, the default is the VI containing the Invoke

Node. Error in describes error conditions that occur before this VI or function runs. The

default is no error. If an error occurred before this VI or function runs, the VI or function

passes the error in value to error out. This VI or function runs normally only if no error

occurred before this VI or function runs. If an error occurs while this VI or function runs,

it runs normally and sets its own error status in error out. Input 1 ..n is an example input

parameter of a method. Dup reference returns reference unchanged. Error out contains

error information. If error in indicates that an error occurred before this VI or function ran,

error out contains the same error information. Otherwise, it describes the error status that

this VI or function produces. Source' describes the origin of the error or warning and is, in

most cases, the name of the VI or function that produced the error or warning. Return

value is an example return value of a method. Output l..n is an example output parameter

o f a method. To select the class on which to execute the method, wire the refnum to the

reference input. The node adapts to the class automatically. Parameters with a white

background are required inputs and the parameters with a gray background are

recommended inputs. The ADO Open Connection VI, the ADO Close Connection VI, the

ADO Command Execute VI, the ADO Open Recordset VI, and the ADO Close Recordset

VI are all programmed with the .NET Invoke Node function.

Another .NET function used is the Property Node. The input and output connections

of the Property Node function are shown in Figure 16.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56

re fe re n c e

property 2 ---------------------

£ class Si

nam e 1 >
» nam e 2

n a is e o >

d u p re fe re n c e
“*> error out

1— property 1

Figure 16. The Property Node function

Reference is the reference number associated with an ActiveX object across a TCP

connection. If the Property Node class is an Application or VI, a reference number is not

necessary. For the Application class, the default is the current instance o f LabVIEW. For

the VI class, the default is the VI containing the Property Node. Error in describes error

conditions that occur before this VI or function runs. The default is no error. If an error

occurred before this VI or function runs, the VI or function passes the error in value to

error out. This VI or function runs normally only if no error occurred before this VI or

function runs. If an error occurs while this VI or function runs, it runs normally and sets

its own error status in error out. Property 2..n is an example o f a property that needs to be

written. Dup reference returns reference unchanged. Error out contains error information.

If error in indicates that an error occurred before this VI or function ran, error out

contains the same error information. Otherwise, it describes the error status that this VI or

function produces. Property l..n is an example of a property that needs to be read.

To select the class on which to execute the property, wire the refnum to the reference

input. The node adapts to the class automatically. To get property information, right-click

the node and select Change to Read from the shortcut menu. To set property information,

right-click the node and select Change to Write from the shortcut menu. If a property is

read only, Change to Write is dimmed in the shortcut menu. The node executes each

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

57

terminal in order from top to bottom. If an error occurs on a terminal, the node stops at

that terminal, returns an error, and does not execute any further terminals. Right-click the

node and select Ignore Errors Inside Node from the shortcut menu which can ignore any

errors and continue executing further terminals. The error out cluster reports which

property caused the error. This .NET Property Node function is used to program the ADO

Set Command Text VI, so that the command string can be written to the command

property.

Communication with the Database

MSDE Database

The Microsoft SQL Server 2000 Desktop Engine (MSDE) is a new database

technology released by Microsoft to compete with Oracle and IBM DB2. Because it has

several advantages over other database technologies, MSDE is selected as the database

server in this integration module. First of all, MSDE has all the features of the powerful

SQL server except the limited number of clients. For example, MSDE has client-server

architecture. Database operations occur on the database server driven by the database

engine, not on the client. Also MSDE can host as many different databases as required

and keep tabs on them all. The limited number of clients is not the major concern in this

study since 25 clients’ accesses will be enough for this study. Secondly, MSDE is

supported by Microsoft Internet Information Services (IIS) which is an service integrated

with all the current WINDOWS operating systems, like WINDOWS 2000 and

WINDOWS XP. To set up the MSDE database server, no extra services are required to be

installed. This will save the process time and capacity of the server. The last advantage is

that MSDE is a free version of database server from Microsoft. They made it free and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58

redistributable so they could convince as many developers as possible to use it. The

integration module developed in this study is aimed to be used in small-to-middle sized

manufacturing enterprises, so the investment required is also an important factor.

However, MSDE does not include a user interface. ASP.NET Web Matrix Project is

used to function as the interface to access the database. Microsoft ASP.NET Web Matrix

Project is a free, light-weight community-supported web development tool for quickly

building ASP.NET Web applications. Web Matrix project is written completely using C#

and the .NET Framework. Specifically, the UI is built using Windows Forms

(System.Windows.Forms). ADO.NET is used for data access (System.Data) and XML

Web Services are used to communicate with backend services on

www.asp.net (System.Web.Services). And the ASP.NET designer APIs, integrated with

the .NET Framework, are used for hosting ASP.NET server controls within designer

(System.Web.Design and System.Web.Mobile.Design). Therefore, Web Matrix Project is

compatible with ADO and .NET functions which are the main structure o f the integrated

module. It can communicate with the other parts of the module which also developed

in .NET development environment - clients, server and services.

In this study, a virtual MSDE database server is set up on the local machine named

db2000. A MSDE database is created inside the server named mydb. The security mode

of the database server is set to SQL server security mode so that SQL username and

password are used for user authentication instead of WINDOWS authentication mode.

These functions are accomplished by issuing the following commands in the WINDOWS

command prompt line.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.asp.net

59

c:\sql2Ksp3 >Setup.exe INSTANCENAME=db2000 USERNAME=SA

PWD=5101 SECURITYMODE=sql

Figure 17. Commands for SQL server security mode

After the virtual database server is set up, the MSDE database service will be

enabled as a local service running on the local machine. The status o f this database

service can be monitored and modified from the system services window of the local

machine as shown in Figure 18. In this window, the MSDE database service is

highlighted with the service name “MSSQL$DB2000”. This service can be enabled,

disabled, started, or stopped from this system services window. Also, it can be set in

manual started or automatic started mode. In manual mode, the service needs to be started

manually after the machine is restarted. In automatic mode, the service will be

automatically started when the operating system is started.

B le A ction V iew tt^ tp

+ • E S ff [§ 1 1 : $; ■ » »

^ Services (Local) Name 1 Description Status (S tartup Type | L09 c n As A1
^ I n d e x in g Service Indexes co... Manual Local System

IPSEC Services Manages I .. Started Automatic Local System

^ Logical Disk Manager D etects a n ... Started Automatic Local System
^ l o g i c a l Disk M anage... Configures... Manual Local System

^ L o o k o u t Citadel Ser... Started Automatic Local System
^ L o o k o u t Classified Ads Started Automatic Local System
^ L o o k o u t Time Synch... Started Automatic Local System
^ M a c h in e D ebug Man... Supports lo ,,, Started Automatic Local System

^ M c S N e ld McAfee O n... Started Manual Local System

^ M e s s e n g e r Transm its... Disabled Local System
MS Software Shado... M anages s ... Manual Local System

^ 9 MSSQLServer AOHel... Manual Local System
^ p N e t Logon Supports p . . . Manual Local System
*%NetMeeting R em ote... Enables a n . .. Manual Local System
^ N e tw o r k Connections Manages o ... Started Manual Local System H

<! 1*1
I \ Extended)\ Standard /

Figure 18. Local system service window

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

Web Matrix project provides the interface to connect to the MSDE database server.

For proper connection, the SQL server username and password are required as shown in

Figure 19.

msmaamh. xj
Connect to SQL or MSDE Database SqL
Hotter the connection information and select a database.

Server; (bcal)\db2Q00

; Windows authentication

• SQL Server authentication

User name: ;SA

Password: • • • •

Qatabase: : 3993 T:

Create a new database •;____^ j : Cancel

Figure 19. SQL Server authentication window

Once the database server is connected from Web Matrix project, the database server

and all its components will be displayed in the data pane o f the interface window as

shown in Figure 20. In this study, the location path o f the database is

“(local)\db2000.mydb”, in which db2000 is the SQL server’s name, and mydb is the

name of the database used in the integration module. The database can be expanded from

the data pane to display all the tables and stored procedures in the database. In this study,

two main tables used are the DevStatus table and the Measurement table storing the

device status data and measurement data. The interface that is used to create and design a

table in the database is shown in Figure 21.

Connect to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61

Tables
DevStatus

1 measurement
+; i Stored Procedures

Figure 20. Data pane of the database interface

bride already contains d a ta .

- J D | X]

Column Name

^JD evkelD

J j DeviceName

J J S tatus

iJT im e

D ata Type

int

tex t

int

timestamp

Si ze 4164
8

Allow N ub

False

False

True

True

Design _ j Data
• [.........

Figure 21. Design view of the database table

Communicating with MSDE from LabVIEW

As discussed previously, six ADO Object Vis and one SQL VI have been

programmed to enable the communication between LabVIEW control applications and

SQL database. These Vis must be programmed properly into the LabVIEW control

application to enable the database access. In the integration module established in this

study, a process control application is used to simulate the plant floor control process in

manufacturing industry. The data that needs to be written into the MSDE database from

(Iocal)\db2000. mydb

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

this control application are the device status data and the measurement values. The device

status data are the Boolean data to indicate the ON/OFF status o f each device in the

process, such as the status of valves and pumps. The device status data are recorded in the

table of DevStatus in the mydb database in MSDE database server. The measurement

values are the measurements of temperatures and levels of the product in the control

process. These values are float data that are recorded in the Measurement table in the

database. Part of the block diagram program with the database Vis is shown in Figure 22.

f s e tv e r= ^ ^ p w d=5101
ADO
Create
Conn

ADO
Open
Conn

jjUPDATEt^^

SET DeviceStatus = "

IW HEREDevicel^

o +
F % l $ J E3+ m
1 .1 l
TFl 1

ADO
SQL

Execute

ADO
Close
Conn

Figure 22. Block diagram of the database Vis

The block diagram program shown above is part o f the data collector module in the

Lab VIEW control application to get a real-time device status data from the Lab VIEW

application and update the corresponding Boolean data in MSDE database. This part of

the data collector module shows the simple method required to program the database Vis

in Lab VIEW control applications. First the ADO Create Connection VI initializes a

connection with ADO based database by calling an ActiveX function. Then the

connection to a specified MSDE database is opened by the ADO Open Connection VI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63

with the location path, database name, username, and password specified by a SQL

connection statement in the command text string. In this case, the higher level SQL

Execute VI is issued to execute the SQL UPDATE command. As the UPDATE command

is issued, there is no recordset to be returned by the command. Therefore, the Boolean

value o f Return Data input is set to False which means there is no return data for this

command. The SQL UPDATE command text is compiled by two string operation Vis

before it is connected to the SQL Execute VI as the command input. The Format into

String VI helps to format the Boolean value o f device ON/OFF status into the command

string. The Concatenate Strings VI combines all the statements to form a complete SQL

UPDATE statement which will be executed by the SQL Execute VI. It follows the format

of SQL language statement as shown below.

UPDATE { table_name}
{SET column_name = expression [WHERE condition list] }

Figure 23. SQL statement format

This block diagram program shows only one execution cycle o f the SQL UPDATE

command to get data and update the database record. During the control process, the

real-time data need to be recorded and historical data saved with timestamp. To achieve

this function, the execution program is put into a While Loop so that it can be executed

repeatedly to get real time status data. The execution rate of the SQL UPDATE command

can be controlled by a Wait Until Next ms Multiple timer inside the While Loop. This

timer is used to set the execution rate by specifying the milliseconds that it needs to wait

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64

for next execution. In this case, it is set to execute every 250 ms. It means that the device

status data in the database will be updated every 250 ms which is very close to the real

time manner. The updated device status can be displayed in the Web Matrix project

interface as shown in Figure 24.

| DevicelD j DeviceName S ta tus i Time

j ► jo valve 1 0 Byte[] Array

i il valve2 1 Byte[] Array

| \z pum pl 0 Byte[] Array

1 3 h e a te r 1 Byte[] Array

j ■ j4 pump2 1 Byte[] Array

[T j s valve3 1 Byte[] Array

! 16 valve4 1 Byte[] Array
\ w ~ .

Figure 24. DeviceStatus data table

The Database Server and the Web-based Interface

Introduction

The basic features of the web-based interface were introduced at the beginning of

this chapter. The most critical feature is the real-time communication with the MSDE

database server. The web-based interface is developed in ASP.NET environment. The

main objects and methods used in the development o f the interface will be explained in

this session. Also the web features of the interface, which are enabled by both Lab VIEW

and ASP.NET environment, will be examined in detail.

ASP.NET provides a platform for web application development. Microsoft tried hard

to make the development process easy by providing quite a few controls and forms that

can be used as GUI (Graphic User Interface) objects for application development. But

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65

due to the complex methods and procedures required by dynamic web applications,

coding is still an important and necessary tool for ASP.NET programming. In the

programming process of the web-based interface, two steps are applied, logic design and

coding.

Procedure Logic

In the interface, the object used to contain the retrieved data from the database server

is DataGrid, which is a data bound list control that displays the items from data source in

a table. The DataGrid control also can be used to select, sort, and edit these items. The

procedure logic used to build the methods and events to enable the dynamic

communication between the DataGrid control and the database follows the pattern in

Figure 25.

B in d DataSets to D ataG rid

C reate S q lD ataA dapter

B u ild D ataSets

F ill D ataSets from
S qlD ataA dapter

C reate SqIC onnection
C om ponent

Figure 25. Procedure logic for DataGrid control

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66

This procedure logic pattern is similar to the programming method used in the

LabVIEW-based data collector. It uses the method of SQL statements to communicate
i

with the MSDE database server. First, a Sqlconnection component is built to establish the

connection channel by specifying the connection string in VB (Visual Basic) coding.

Then a SqlDataAdapter object is called and configured. The DataAdapter supplies the

methods and properties to connect to a database, retrieve data, and populate the DataSet

with that data. The DataAdapter object contains two key methods: Fill and Update. The

Fill method takes a DataSet parameter to fill the records from a Command object's SQL

statement. Command object is used when dealing with DataAdapters. The Command

object always contains the SQL statements that interact with the data source. The Fill

method of the DataAdapter refreshes the data in the DataSet based on the Command

object's SQL statement. After the Fill method is completed, the connection is closed

automatically.

After a SqlDataAdapter is created, DataSet needs to be built. Each data table in the

interface, which needs a dynamic connection to the database server, must have a DataSet.

DataSet is used to hold the data that the DataAdapter is going to retrieve. In ADO.NET,

there are two types o f DataSets: typed and nontyped. A typed DataSet contains strong

type information about the fields and the allowable data types. In a typed DataSet, the

field names can be referenced as any other property. A nontyped DataSet does not contain

strong type information about the fields in the DataSet. Their main difference is how the

field names are referenced when working with the DataSet. In this case, typed DataSet is

used to work with the SqlDataAdapter. At the last, data retrieved by the SqlDataAdapter

needs to be filled into the DataSet by VB coding. DataSet is similar to the RecordSet

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

67

created in ADO method, which is also used to temporarily hold data. In order to display

the data saved in DataSet, DataSet needs to be bound with a specified DataGrid. The way

the data is displayed in DataGrid can be customized by modifying the properties of the

DataGrid. Figure 26 shows the schema of a DataSet used in programming the interface.

Ik jy jp e v S ta tu s |(Dev5tatus) j
$ E DevicelD int
E DeviceName string
E S tatus int j
E Time base64Binary

Figure 26. DataSet for DevStatus table

Coding Structure

The VB coding to realize the procedures above follows the structure explained in

Figure 27.

The E n d

Build Events

DataBinding

Initialize Com ponents

Declare Objects

Figure 27. Structure o f VB coding

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68

The code begins with the component initialization by defining the class namespace

that will used in this program. Then each object that will be used must be declared, such

as SqlConnection, SqlCommand, SqlDataAdapter, DataSet, and so on. The most

important part in coding is building the events that realize the procedures and methods.

An example of the event coding is shown in Figure 28 and the procedure coding is shown

in Figure 29.

Me.SqlUpdateCommand2.CommandText = "UPDATE measurement SET Name
= @Name, [Tem(F)] = @Param5, [Level(%)] = @Param6, [A" & _

"veTem(F)] = @Param7, [AveLevel(%)] = @Param8 WHERE (ID =
@Original_ID) AND ([Ave" & _

"Level(%)] = @Original_AveLevel OR @Original_AveLevel___
IS NULL AND [AveLevel" & _

"(%)] IS NULL) AND ([AveTem(F)] = @Original_AveTem_F_ OR
@Original_AveTem_F_ IS N" & _

"ULL AND [AveTem(F)] IS NULL) AND ([Level(%)] =
@Original_Level OR @Original_L" & _

"evel___ IS NULL AND [Level(%)] IS NULL) AND ([Tem(F)] =
@Original_Tem_F_ OR @Ori" & _

"ginal_Tem_F_ IS NULL AND [Tem(F)] IS NULL); SELECT ID,
Name, [Tem(F)], [Level(%)" & _

"], [AveTem(F)], [AveLevel(%)] FROM measurement WHERE (ID =
@ID)"

Figure 28. Example o f Event coding

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Public Sub Page_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

'Put user code to initialize the page here
If Not IsPostBack Then

SqlDataAdapterl JFill(DataSetl 1)
DataGrid 1 .DataSource = DataSet 11
DataGrid 1 .DataBind()
SqlDataAdapter2.Fill(DataSet21)
DataGrid2.DataSource = DataSet21
DataGrid2.DataBind()
' The DataSave function will be added later.

End If

Figure 29. Data binding procedure

Web-based. Lab VIEW Control Panel

Physical Setup o f the System

/ F V - 2 0 4

' □ V F V - 2 0 2

F Z - 1 Q 2

Figure 30. Components o f the wet process trainer

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

70

The integration module in this study uses a wet process trainer as a plant-floor

control process to realize the web-based integration. The process is comprised of three

tanks, two pumps, five discrete valves and two continuous valves. Temperature

transmitters and level transmitters were used to monitor each tank’s water level and

temperature. Two pressure transmitters were installed to monitor the incoming flow

pressure of tank 1 and tank 2. A flow transmitter was installed to measure the incoming

flow rate of the main tank. Table 1 below provides a detailed list of the input and output

. devices in the physical setup o f the system and their address assignment o f corresponding

control components.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71

Table 6.

I/O Addressing of the Control Process

Lab VIEW Addressing in Programming Device Device Description

FP@ 139 102_29_5 6\cFP-DO-400@7
(Digital Output Module)

\Channel 0 FZ-101 Pump 1
\Channel 1 FZ-102 Pump 2
\Channel 2 FV-201 Discrete valve 1
\Channel 3 FV-202 Discrete valve 2
\Channel 4 FV-203 Discrete valve 3
\Channel 5 FV-204 Discrete valve 4
\Channel 6 FV-205 Discrete valve 5

FP@139 102 29 56\cFP-A0-200@5
(Analog Output Module)

\Channel 0 ZZ-301 Continuous control
valve 1

\Channel 1 ZZ-302 Continuous control
valve 2

FP@ 13 9_ 102_29_56\cFP-RTD-124@2
(Temperature Module)

\Channel 0 TIT-301 Temperature
Transmitter 1

\Channel 1 TIT-302 Temperature
Transmitter 2

\Channel 2 TIT-303 Temperature
Transmitter 3

FP@ 13 9_ 102_29_5 6\cFP-AI-110@ 1
(Analog Input Module)

\Channel 2 LIT-101 Level Transmitter 1
\Channel 3 LIT-102 Level Transmitter 2
\Channel 4 LIT-103 Level Transmitter 3
\Channel 5 PIT-201 Flow Rate Transmitter
\Channel 6 PIT-202 Pressure Transmitter 1
\Channel 1 PIT-203 Pressure Transmitter 2

Lab VIEW Interfacing

A virtual interface programmed by Lab VIEW graphical language provides a control

panel for users to interact with the wet process trainer through FieldPoint Ethernet

communication and the communication between the FP controller and I/O Modules.

The communication between the FP controller and I/O Modules is similar among

different types of network modules. Each I/O module cycles through its internal routine

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

72

of sampling all channels, digitizing the values and updating the values on the module

channel registers (buffer). This cycle time is set for each module and is specified as the

all channel update rate.

FiledPoint Ethernet communication uses an asynchronous communication

architecture called event-driven communication. The network module automatically

sends updates to a client when data changes. The server then caches the data from I/O

modules and uses it to respond to read requests from the virtual interface. The network

module scans all I/O channels with subscriptions to determine if a value has changed,

comparing the current value to the cached value for each channel. If a change has

occurred, the network module puts the difference between the two values in the transmit

queue. The FP Server receives this information and sends an acknowledgement to the

network module. The network module periodically sends and receives a

time-synchronization signal so that it can adjust its clock and provide proper

timestamping. When signals do not change over long periods of time, the client sends

periodic re-subscribe messages to verify that the system is still online.

The virtual interface programmed for this wet process trainer is explained in former

sessions o f this chapter, and the diagram of the direct control panel is shown in Figure 8

on page 42.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

73

System Operation

Main Tank Tank 1 Tank 2

Position 2
jM J Position 1

FV-205!

Figure 31. Process control diagram

Figure 31 shows the process control part on the virtual interface. This process

diagram demonstrates the real process of the wet process trainer. Three tank indicators

represent the main tank, tank 1 and tank 2 in the wet process trainer respectively. The

green line o f each tank will indicate the current water level which can vary from 0

percent to 100 percent. In this diagram, valves and pumps are controls for their

corresponding part in the real process. FV-201, FV-202, FV-203, FV-204, and FV-205 are

controls for discrete valves. These five discrete valves and two pumps are controlled by

ON/OFF Boolean signals; their status can be changed by a mouse-click on them. The

color o f each control represents different status o f these controls. Red represents OFF

status while green represents ON status. ZZ-301 and ZZ-302 represent the two

continuous control valves in the real process. The status of them is controlled by the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74

digital control below each valve symbol. The value of each digital control can be changed

by clicking the arrows beside it from 0 to 100 with the increment o f 10. The value of 0

represents close status of the valve, and the value of 100 represents the totally open status

of the valve. The color of ZZ-301 and ZZ-302 will be changed to green color when the

value of their digital control is equal or greater than 10 to indicate an ON status.

Otherwise, it will be changed to red one indicating an OFF status.

Power

Figure 32. Mode controls and digital indicators

Figure 32 displays the part o f the virtual interface with power control, mode controls

and digital indicators. The power control is used to turn on/off the system, which will be

in green color when the system is running. The six indicators to the right of the mode

buttons are digital indicators displaying current values o f tank levels, incoming flow rate,

and incoming pressures. The buttons with red labels are system mode controls. This

virtual interface provides three different modes for process control which include

supervision mode, manual mode, and auto mode. Users can be assigned different control

capabilities when different modes are enabled.

In supervision mode, all the valves and pumps in the process can be controlled by

users. This mode can be enabled only for maintenance and trouble-shooting purpose.

A UTO

MANUAL

SU P ER V

Main Tank j0
Temp (F)

Tank ! Temp (F) -412

Tank 2 Temp (F) io

Main Tank
Incoming Flow (6PM)

Tank 1 Incoming
Pressure (psi)

Tank 2 Incoming
Pressure (psi)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

75

In manual mode, the status change of valves and pumps will depend on both the

current situation of the system and the commands from the user. For example, if the water

level o f the main tank is lower than 20 percent or valve FV-201 is closed, pump 1 can not

be activated even if the user intends to do so by clicking on the pump symbol in the

virtual interface.

In auto mode, the system will control the valves and pumps automatically,

depending on the water levels of each tank. The only part that users can control is the

continuous control valves. Users can adjust the percentage o f the continuous valves by

changing the value of the digital controls.

a|: Bl: a a
r r.Tnn Stop 1 Stop 2 RESET
E STOP SYSTEM [

Figure 33. Emergency Stop and Reset buttons

The virtual interface provides three emergency stop buttons and one reset button.

E-Stop button will stop the whole system when pressed. Stop 1 and Stop 2 button will

disable pump 1 and pump 2 respectively when pressed. Reset button is used only in auto

mode to reset the system when the main tank level reaches its limits.

Implementing Security

Security Methods fo r Three Components

The integration module consists of three main components, a LabVIEW-based

process data collector, a virtual server, and a web-based interface. The LabVIEW-based

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

76

process data collector is a software module integrated with the Lab VIEW control

application. No direct access is possible to this data collector from remote users. The data

collector is installed on the local control server, and is a server side module, so the

security o f this part can be implemented by setting the security authentication method on

the server machine. On the virtual database server, Web Matrix project provides an

interface for direct access to the database. Its security is implemented by the SQL

authentication method. The interface can only be allowed to access the database when the

server name, server location path, SQL username and password are provided by the user.

The last part of the integration system, also the most important part o f the security issue,

is the access to the web-based interface. From the interface, not only the real-time process

data can be read, but also the direct control to the plant-floor process can be accessed.

Therefore, in this study, an ASP login page is programmed to provide a form

authentication method. The login page is set to be the start page in which users need to

provide username and password before they actually gain access to the interface page.

Forms Authentication fo r the Web-based Interface

Forms Authentication

Forms Authentication in ASP.NET is handled by a special Forms Authentication

class. This class contains a number o f static (or Shared) methods that can identify users

via a login form. When an unauthenticated user visits a restricted page on the Web site,

they will be automatically directed to the specified login form. Once they successfully log

on, an authentication cookie can be issued to prevent authenticated users from having to

log in time and time again.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

77

A security system contains two very important features, authentication and

authorization. Authentication is the means by which the identity o f the user is validated

against a known Authority, like Active Directory, Database Store, Microsoft Passport

Account, etc. If the credentials can't be validated, then the Authentication process fails

and the user will assume the Identity of IUSR_Anonymous. The only way to determine

who is a particular visitor, is to authenticate them by having them provide user credentials

(a username/password, usually). Authorization occurs after Authentication and involves

using information obtained during the Authentication process to determine whether to

grant or deny access to a given resource based on that user’s role in the Application.

Forms Authentication uses cookies to allow applications to track users throughout

their visit. When a user logs in via forms authentication, a cookie is created and used to

track the user throughout the site. If the user requests a page that is secure and has not

logged in, then the user will be redirected to the login page. Once the user has been

successfully authenticated, he/she will be redirected to their originally requested page.

The use of Forms Authentication involves the configuration or development of three files

in the web application, the Web.config file, the login web page, and the redirect web

page.

The Web.config File

The Web.config contains all o f the configuration settings for an ASP.NET

application. Inside the Web.config file, both authentication and authorization sections

need to be configured. The sections of the Web.config file programmed in the

web-interface application are shown below.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

78

Authentication mode="Forms" />
<forms loginUrl-'login.aspx" protection="All" timeout="30">

Credentials passwordFormat="Clear">
<user name="jeff1 password="7336">
<user name="mike" password="7336">

</credentials>
</forms>

</authentication>
<authorization>

<deny users="?" /> <!— Deny all users —>
</authorization>

Figure 34. Web.config

The mode attribute for the <authentication> configuration section sets the

authentication mode to Forms. Inside the <forms> section, the name attribute can be set

which sets the name of the cookie. The path to the root of the application can be set. The

loginUrl attribute sets a local page named login.aspx which is the ASP page to provide

the login page. It can also be assigned as a URL path. Setting protection to all is the

suggested value. This means that the cookie will be both encrypted (using the Triple DES

data-encryption standard) and validated. The validation algorithm comes from the

machineKey element located in Machine.config. This data validation ensures that the

cookie data were not tampered with during transit (someone sniffing traffic and

responding with a modified cookie). The timeout attribute refers to the number of

minutes before a cookie expires and the user must log in again.

In the authorization section, the file needs to ensure that no unauthenticated users

can access the application. The "?" means anonymous users, so a deny flag is set for all

anonymous users.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

79

Login.aspx Page

Login.aspx is an ASP web page that is used to implement the Forms Authentication.

All user authentication logic is performed here. In the forms coding, the

System. Web.Security namespace refers to all methods of authentication that reside in this

namespace. Forms Authentication is a class of the System. Web.Security namespace. A

simple server-side form is set up with one textbox and one password input for username

and password as shown in Figure 35. A check box is included in case the user wants to

have a permanent cookie set.

U sernam e:]

P assw ord:]in
r [chkPersistLogin]Remember my credentials

i — :—I Login

Figure 35. The server-side login form

The Submit button has an event "onclick" which runs a sub called ProcessLogin.

Inside ProcessLogin the Authenticate method of the Forms Authentication class is

executed, passing in the given username and password. This method checks the

credential's tags inside the Web.config for the username and password. If they match,

then the RedirectFromLoginPage will be executed with the username and persistent

cookie state (if checked). This method then writes a cookie to the user's machine to track

them and ensure they are authenticated. If the username and password do not match, then

an error occurs and the user is notified. The VB codes written to call for events of

authentication and authorization are as below.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

80

<script language="VB" runat="server">
Sub ProcessLogin(objSender As Object, objArgs As EventArgs)

If FormsAuthentication.Authenticate(txtUser.Text, txtPassword.Text) Then
FormsAuthentication.RedirectFromLoginPage(txtUser.Text,

chkPersistLogin.Checked)
Else

ErrorMessage.InnerHtml = "Something went wrong... please
re-enter your credentials..."

End If
End Sub
</script>

Figure 36. Coding example for authentication and authorization

Configuring the Interface Page

This is the page the user is requesting or trying to access. Again the

System.Web.Security namespace is referenced since authentication methods and

properties are needed for the configuration. This page contains a simple div element that

will display the current credentials and authentication type used. Also, a sign out input

element runs a sub that deletes the user's cookie. They are then redirected to the login

page. In the Page Load event, it is checked to see if the user has been authenticated using

the User.Identity.IsAuthenticated property. This returns a Boolean value indicating

whether or not the user has been authenticated. If the user is authenticated, the current

user's name and the authentication method used are displayed. The currently logged on

user's name can be assessed with the User.Identity.Name property.
. *

User.Identity. AuthenticationType returns the mode of authentication used. A SignOut

procedure is used that allows the user to sign out and deletes the cookie from the user's

computer. This will even delete a persistent cookie. The VB code added into the

web-based interface coding to realize the above security function is as below.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

81

<script language="vb" runat="server">
Sub SignOut(objSender As Object, objArgs As EventArgs)

'delete the users auth cookie and sign out
FormsAuthentication.SignOut()
'redirect the user to their referring page
Response.Redirect(Request.UrlReferrer.ToString())

End Sub
Sub Page_Load()

'verify authentication
If User.Identity.IsAuthenticated Then

'display Credential information
displayCredentials.InnerHtml = "Current User : " & User.Identity.Name

& "" & _
"

Authentication Used : " &

User.Identity.AuthenticationType & ""
Else

'Display Error Message
displayCredentials.InnerHtml = "Sorry, you have not been authenticated."

End If
End Sub
</script>

Figure 37. Coding for interface security

Testing and Analysis

Introduction

The critical component in this integration module is the LabVIEW-based data

collector. By using this data collector, no third-party software is required for the data

collection process. In this study, a queuing network model is established to analyze the

effect of this integrated data collector on the existing computer system, the control server.

A statistical method, one-way ANOVA, is applied to evaluate the effect on the system.

The SPSS statistical software is used for the analysis.

Queuing Network modeling

Queuing network modeling is a particular approach to computer system modeling in

which the computer system is represented as a network of queues which is evaluated

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

82

analytically (Graham, 1984). A network of queues is a collection of service centers,

which represent system resources, and customers, which represent users or transactions.

The most common application o f queuing network modeling involves projecting the

effect on performance of changes to the configuration or workload of an existing system.

Based on this modeling method, an approach is developed to analyze the effect of

configuration changes on the system.

A single service model is established in this study. The service represents the system

resource (CPU and memory), and the customer represents the transactions processed in

Lab VIEW application. The existing system is the system running a Lab VIEW control

application without a data collector. The modified system is the system running a

LabVIEW control application with a data collector integrated. A statistical technique is

required to provide answers to the question - is there a significant difference on the CPU

usage and the number of threads between the existing system and the modified system. If

the significant difference exists between the evaluation means, the execution of the data

collector does have a significant effect on the existing system. Therefore, the

development of the module does not meet the requirement of the study. If there is no

significant difference, the execution of the data collector does not increase the system

processing load significantly. Therefore, the data collector is verified to be an efficient

module for the integration o f data collection processes.

Statistical Technique Used

The statistical technique used in this study is one-way analysis of variance

(ANOVA). The variance of a population o f values is computed as:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

83

^ 2 _ Z U - ^) 2
iV

/j = the population mean
N = the population size

The unbiased sample estimate of the population variance is computed as:

52 _ Z (T - x)2
n - 1

x = the sample mean
n = the sample size

In general, the purpose of ANOVA is to test for significant differences between

means. ANOVA is derived from the fact that in order to test for statistical significance

between means, variances are actually compared. At the heart of ANOVA is the fact that

variances can be partitioned. The variance is computed as the sum o f squared deviations

from the overall mean, divided by n-1 (sample size minus one). Thus, given a certain n,

the variance is a function o f the sums of (deviation) squares, or SS. The total SS can be

partitioned into the SS due to within-group variability and variability due to differences

between means. The within-group variability (SS) is usually referred to as Error variance,

This term denotes the fact that it can not be readily explained or accounted for in the

current design. However, the SS Effect can be explained. Namely, it is due to the

differences in means between the groups. Put another way, group membership explains

this variability because it is due to the differences in means.

In conclusion, the purpose of analysis of variance is to test differences in means for

statistical significance. This is accomplished by analyzing the variance, that is, by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

84

partitioning the total variance into the component that is due to true random error and the

components that are due to differences between means. These latter variance components

are then tested for statistical significance. If it is significant, the null hypothesis of no

differences between means will be rejected, and the alternative hypothesis that the means

are different from each other will be accepted.

Hypotheses

H • s 2 - s 211o • °1 ^2

Null Hypothesis 1: Mean difference between the CPU Usages on the existing system

and the modified system is equal to zero. Any observed differences can be attributed to

chance (sampling error) alone.

Null Hypothesis 2: Mean difference between the number of threads on the existing

system and the modified system is equal to zero. Any observed differences can be

attributed to chance (sampling error) alone.

H a '■ s i * s \

Alternative Hypothesis 1: The CPU Usage means on the existing system and the

modified system are significantly different. The observed differences can not be

attributed to chance (sampling error) alone.

Alternative Hypothesis 2: The means of thread numbers on the existing system and

the modified system are significantly different. The observed differences can not be

attributed to chance (sampling error) alone.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

85

Assumptions and Limitations

For the purpose of this study, it is assumed that the Lab VIEW application and the

web-based control integration system are the only applications running in the control

server while testing. These remote control applications include Lab VIEW Vis, motion

control application, MAX (Measurement and Automation) application, and integrated

web applications which are necessary for remote control operation. In fact, there are

some other computer applications running in the server for supporting the Windows

operating system, such as virus detecting. Comparing with the remote control

applications and the performance management system, these computer applications

occupy a very small percentage of server resources. Therefore, in this study, the resources

used by these computer applications are ignored.

Also for this statistical study, it is assumed that samples are randomly selected from

the population, the dependent variable is a continuous variable measured at the interval or

ratio level, and there are more than one categorical-level independent variables. Data

collected from each of the various sample groups in this study are assumed to be

approximately normally distributed and have approximately the same variance. When

sample sizes are large (i.e., > 25 measurements), this test is quite robust to violations of

the assumptions of normalcy and homogeneity of variance (Diekhoof, 1992).

The Experimental Design

This statistical study is based on a single service model established by applying the

queuing network modeling method to test the effect o f a system modification. The service

represents the system resource (CPU and memory), and the customer represents the

transactions processed in Lab VIEW application. The existing system is the system

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

86

running a Lab VIEW control application without a data collector. The modified system is

the system running a LabVIEW control application with a data collector integrated. The

performance of the existing system and the modified system is analyzed by comparing

the means of their CPU usages and the numbers of threads sampled randomly during the

operation. The significance of the difference is tested by using the one-way ANOVA

method.

For data sampling, the existing system and the modified system are actually the

same control server running the same LabVIEW control application. The network

connection, the physical system setup, and the software environment are identical.

Therefore, differences contributed by factors other than the data collector are eliminated.

Set the Type I Error Rate

The type I error rate for this study is set to 0.05. a = 0.05. The a determines the

significance level used for rejecting the null hypothesis. If the probability is less than or

equal to the significance level, then the null hypothesis is rejected and the outcome is said

to be statistically significant. Traditionally, researchers have used either the .05 level

(sometimes called the 5% level) or the .01 level (1% level), although the choice of levels

is largely subjective. The lower the significance level, the more the data must diverge

from the null hypothesis to be significant. Therefore, the .01 level is more conservative

than the .05 level. A level of significance of 5% is the rate that we will declare results to

be significant when there are no relationships in the population. If a lower level is set, we

may take the risk o f the type II error which means a false null hypothesis can fail to be

rejected. Therefore, we may use the performance measurement software for further study

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

87

in false while actually the overhead caused by running the software has no relationship

with the server’s other performance data.

In a Type I error, a conclusion is drawn that the null hypothesis is false when, in

fact, it is true. Therefore, Type I errors are generally considered more serious than Type II

errors. The probability of a Type I error (a) is called the significance level and is set by

the researcher. There is a tradeoff between Type I and Type II errors. The more an

experimenter protects himself or herself against Type I errors by choosing a low level, the

greater the chance of a Type II error. Requiring very strong evidence to reject the null

hypothesis makes it very unlikely that a true null hypothesis will be rejected. However, it

increases the chance that a false null hypothesis will not be rejected, thus lowering power.

In this study, the Type I error rate is set to 0.05 for the purpose of our research.

The Population and Sample

In this study, the population is all the system performance measurements including

CPU usage and the number of threads that can be measured by the Windows Task

Manager on the existing system and the modified system. From the population, 40 pairs

of data will be sample randomly. Twenty pairs o f CPU usage (percentage data) will be

sampled from the existing system and the modified system. Twenty pairs o f the thread

number will be sampled from the existing system and the modified system. The Task

Manager window used for data sampling is shown in Figure 38.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

88

Applications | Processes { Performance]| Networking) Users]

CPU Usage , CPU Usage History

Page File Usage t-fctory

Totals
Handles
Threads
Processes

r i iy s n o i I'lom ui

9713 ; Total
481 Available

46 System Cache

Physical Memory (K)
489904

99736 !
217344 i

Commit Charge (K) Kernel Memory (K)
Total
Limit
Peak

301732 Total
1146220 Paged
312320 Nonpaged

69764
64076

5688

Figure 38. The Task Manager Window

In this study, the data are collected from the Windows system tool, Windows Task

Manager. The data needs to be read randomly during the system operation. The entire

data sampling process is arranged in 10 days at different time schedule, so that the data in

various networking usage situations are included into the samples. In order to maintain

the consistence o f operating environments between the existing system and the modified

system, the data samplings from two systems are paired together. One data sampling from

the existing system is closely followed by one data sampling from the modified system.

Therefore, the variance caused by chance errors is eliminated.

Descriptive Statistics

Descriptive statistics of the dependent variables are analyzed to examine their

distributions. The dependent variables are categorized into two groups, one for the

existing system and one for the modified system. The CPU Usage is analyzed for each

group and then for overall variables from both groups. The same analysis has been done

on the variable of number o f threads.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89

Table 7.

Descriptive Statistics of CPU Usages in Each System

N Mean Std. Variance Skewness Kurtosis

Statistic Statistic Statistic Statistic Std.
Error Statistic Std.

Error
CPU1
CPU2
Valid N
(listwise)

20
20
20

13.60
15.15

5.87949
6.62749

34.568
43.924

-.385
-.520

.512

.512
-1.033

-.905
.992
.992

As shown in Table 7, the CPU Usages on the existing system have a mean of

13.6% and a standard deviation of 0.0587949%. The distribution o f the dependent

variable is a nearly normal distribution. Its skewness value o f -.385 indicates the

distribution of the dependent variable is slightly left skewed, which means the left tail is

heavier than the right tail. Its kurtosis value of -1.033 indicates that the distribution of the
I

dependent variable is slightly flat. The CPU Usages sampled from the modified system

have a mean o f 15.15% and a standard deviation o f 0.062749%. The distribution o f the

dependent variable is also a nearly normal distribution. Its skewness value of -.520

indicates that the distribution of the variable analyzed is slightly left skewed, which

means the left tail is heavier than the right tail. Its kurtosis value o f -.905 indicates that

the distribution of the variable is slightly flat. The Histogram Graphs o f these two

distributions are shown below.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

90

Histogram of CPU Usage 1

Std. Oev = 5.
Mean = 13.6

N * 20.00

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5

CPU 1

Figure 39. Histogram of CPU Usages on the existing system

Histogram of CPU Usage 2

I I

5.0 7.5 10.0 12.5 15.0 17.5 .20.0 22.5 25.0

Std. Dev = 6.63
Mean = 15.2

N = 20.00

C P U 2

Figure 40. Histogram of CPU Usages on the modified system

The descriptive statistics o f CPU Usages from both systems is analyzed as shown in

Table 8. The Histogram Graph displaying the distribution o f the variables is also shown

below.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

91

Table 8.

Descriptive Statistics of CPU Usages in both Systems

N Mean Std. Variance Skewness Kurtosis

Statistic Statistic Statistic Statistic Std.
Error Statistic Std.

Error
CPU
Valid N
(Listwise)

40
40

14.375 6.23344 38.856 -.391 .374 -1.000 .733

Histogram of CPU Usage

l i
11

2.5 5 .0 7 .5 10.0 12.5 15.0 17.5 20 .0 22.5 25.0

CPU

L..
Mean

N =

Figure 41. Histogram of CPU Usages on both systems

As shown in Table 8, the CPU Usages on both the existing system and the

modified system have a mean o f 13.6% and a standard deviation o f 0.0587949%. The

distribution o f the dependent variable is a nearly normal distribution. Its skewness value

of -.391 indicates the distribution o f the dependent variable is slightly left skewed, which

means the left tail is heavier than the right tail. Its kurtosis value o f -1.000 indicates that

the distribution o f the dependent variable is close to a perfect normal distribution.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

92

Table 9.

Descriptive Statistics of the Number of Threads in Each System

N Mean Std. Variance Skewness Kurtosis

Statistic Statistic Statistic Statistic Std.
Error Statistic Std.

Error
THREADS 1
THREAD S2
Valid N
(Listwise)

20
20
20

465.75
467.90

12.34962
9.42505

152.513
88.832

-1.970
-.230

.512

.512
3.895

-1.039
.992
.992

Table 9 displays the descriptive statistic result for the number of threads from each

system. The numbers of threads sampled from the existing system have a mean o f 465.75

and a standard deviation of 12.34962. The distribution o f the dependent variable is a

nearly normal distribution. Its skewness value o f -1.97 indicates the distribution o f the

dependent variable is left skewed, which means the left tail is heavier than the right tail.

Its kurtosis value of 3.895 indicates that the distribution of the dependent variable is

peaked. The numbers of threads sampled from the modified system have a mean of

467.90 and a standard deviation o f 9.42505. The distribution o f the dependent variable is

also a nearly normal distribution. Its skewness value o f -.230 indicates that the

distribution of the variable analyzed is slightly left skewed, which means the left tail is

heavier than the right tail. Its kurtosis value o f -1.039 indicates that the distribution of the

variable is slightly flat. The Histogram Graphs of these two distributions are shown

below.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

93

Histogram of Threads 1

Std. Dev = 12.35
Mean = 465.8

430.0 440.0 450.0 460.0 470.0 480.0

THREADS1

Figure 42. Histogram of thread numbers on the existing system

Histogram of Threads 2

J Std. Dev = 9.43
Mean = 467.9

N = 20.00

450.0 455.0 460.0 465.0 470.0 475.0 480.0

THREADS2

Figure 43. Histogram of thread numbers on the modified system

The descriptive statistics o f thread numbers from both systems is analyzed as shown

in Table 10. The Histogram Graph displaying the distribution o f the variables is also shown

below.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

94

Table 10.

Descriptive Statistics of the Number of Threads from Both Systems

N Mean Std. Variance Skewness Kurtosis

Statistic Statistic Statistic Statistic
Std.

Error Statistic Std.
Error

THREADS 1
Valid N
(Listwise)

40
40

466.825 10.89786 118.763 -1.473 .374 3.026 .733

Histogram of Threads
14 t

Std . D ev = 1 0 .9 0

430 .0 440 .0 450 .0 460 .0 470 .0 480 .0

435.0 445.0 455 .0 465 .0 475 .0

THREADS

Figure 44. Histogram of the thread numbers on both systems

As shown in Table 10, the numbers o f threads on both the existing system and the

modified system have a mean of 466.825 and a standard deviation of 10.89786. The

distribution of the dependent variable is a nearly normal distribution. Its skewness value

o f -1.473 indicates the distribution of the dependent variable is left skewed, which means

the left tail is heavier than the right tail. Its kurtosis value o f 3.026 indicates that the

distribution of the dependent variable is very flat.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

95

In conclusion, from the descriptive statistics above, it can be concluded that the

sampled data of CPU Usage and the number of threads from the existing system and the

modified system are acceptable for ANOVA analysis.

Output Tables o f the Statistical Test

Table 11.

Descriptive Statistics o f CPU Usage for ANOVA Test

N Mean Std. Std.
Error

95% Confidence
Interval

Lower Upper
1 20 13.600 5.87949 1.31469 10.8483 16.3517
2 20 15.150 6.62749 1.48195 12.0482 18.2518
Total 40 14.375 6.23344 .98559 12.3814 16.3686

Table 12.

Homogeneity Test on CPU Usage Variable

Levene
Statistic dfl df2 Sig.

.127 1 38 .724

Table 11 displays the means and standard deviations of the evaluation values o f each

group that is calculated by SSPS software. The CPU Usage mean o f the modified system

(group 2) is 15.15%, which is slightly higher than the CPU Usage mean of the existing

system 13.60%. The standard deviations o f the two groups are quite close. Table 12 is the

Levene’s test for equality of error variances. This test examines for possible violations in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

96

the assumption of Homogeneity of Variance among groups. As shown in the table, the

degree of freedom 1 is 1 and the degree of freedom 2 is 38. The critical F value for this test

is 4.098 (checked from F Distribution table). The Levene statistic value from this test is

0.127 which is less than the critical F value. Therefore, it can be concluded that this test is

not significant, and there is no difference in the variances between each group.

Table 13.

ANOVA Test on CPU Usage Variable

Sum of
Squares df Mean Square F Sig.

Between Groups
Within Groups
Total

24.025
1491.350
1515.375

1
38
39

24.025
39.246

.612 .439

Table 13 is the ANOVA test results calculated by SPSS software. The total variability

of the CPU Usage variable is 1515.375. It is partitioned into the SS due to within-group

variability and variability due to differences between means. In this test, the SS due to

within-group variability is 1491.35, 98.4% of the total SS. And the variability due to

differences between means is 24.025, only 1.6% of the total SS. Therefore, the variability

due to differences between means is not significant. This analysis is also verified by the F

test. By using d f l=1, df2=38, the critical F value of this test is 4.098. The F value in this

ANOVA test is 0.612, which is less than the critical F value. The test is not statistically

significant. It can be concluded that the null hypothesis about the CPU Usage variable is

accepted.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

97

Table 14.

Descriptive Statistics o f Thread Numbers for ANOVA Test

N Mean Std. Std.
Error

95% Confidence
Interval

Lower Upper
1 20 •465.750 12.34962 2.76146 459.9702 471.5298
2 20 467.900 9.42505 2.10751 463.4889 472.3111
Total 40 466.825 10.89786 1.72310 463.3397 470.3103

Table 15.

Homogeneity Test on Thread Numbers Variable

Levene
Statistic dfl df2 Sig.

.041 1 38 .841

Table 14 displays the means and standard deviations o f the evaluation values o f each

group that are calculated by SSPS software. The thread numbers mean of the modified

system (group 2) is 467.9 which is slightly higher than the thread number mean o f the

existing system 465.75. The standard deviations o f the two groups are 12.34962 and

9.42505 respectively. Table 15 is the Levene’s test for equality o f error variances. As

shown in the table, the degree of freedom 1 is 1 and the degree o f freedom 2 is 38. The

critical F value for this test is 4.098. The Levene statistic value from this test is 0.041 which

is less than the critical F value. Therefore, it can be concluded that this test is not

significant, and there is no difference in the variances between each group.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

98

Table 16.

ANOVA Test on Thread Number Variable

Sum of
Squares df Mean Square F Sig.

Between Groups
Within Groups
Total

46.225
4585.550
4631.775

1
38
39

46.225
120.672

.383 .540

Table 16 is the ANOVA test results on the number of threads calculated by SPSS

software. The total variability o f the thread number variable is 4631.775. It is partitioned

into the SS due to within-group variability and variability due to differences between

means. In this test, the SS due to within-group variability is 4585.55, 99% of the total SS.

And the variability due to differences between means is 46.225, only 1% of the total SS.

Therefore, the variability due to differences between means is not significant. This is also

verified by the F test. By using d fl=1, df2=38, the critical F value o f this test is 4.098. The

F value in this ANOVA test is 0.383, which is less than the critical F value. The test is not

statistically significant. It can be concluded that the null hypothesis about the number of

threads is accepted. The evaluation means in the existing system and the modified system

are equal.

Conclusion

As the one-way ANOVA test was conducted based on 40 sampled CPU Usage

variables and 40 sampled thread numbers, it can be concluded that the evaluation CPU

Usage means from the existing system and the modified system are equal. It can also be

concluded that the evaluation means o f Thread Numbers from the existing system and the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

modified system are equal. Any observed differences can be attributed to chance

(sampling error) alone. It is verified that in the single service model, the system

modification does not have significant effect on the existing system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

Chapter 4

FINDINGS AND RECOMMENDATIONS

Introduction

In this study, a modular integration system is developed for implementing

enterprise-control integration with an emphasis on dealing with manufacturing process

data. It is proved in the study that small-sized modular application can be applied in the

LabVIEW-based process to implement manufacturing data integration instead of

installing third-party software. An experimental template of the structured manufacturing

information system with the focus on relational databases is implemented on a laboratory

control process. The findings about this modular integration system, its appropriate

application in manufacturing industry, and personnel involvement in the application will

be discussed in this chapter. Recommendations about the possible development and

enhancement on this template system to achieve better manufacturing system integration

are included in the following session. From the view o f a researcher, recommendations

are made on future studies and researches on the issues of manufacturing system

integration focusing on databases based on this study.

Modular and Structured System

The Preference on Modular and Structured System

The current problems faced by manufacturing enterprise integration include the lack

o f business justification, the plethora o f conflicted solutions and terminology, and an

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

101

insufficient understanding of the cross-domain technology by the end users. This

especially inhibits, or at least delays, the use of relevant methods and tools in

small-to-medium-sized manufacturing enterprises. The development o f a modular and

structured integration system aims at these problems by providing simplicity, flexibility,

and efficiency to integration solutions with less investment.

As demonstrated in previous chapters, the enterprise-control system integration is

the field in which the most complicated and confusing problems exist. This is caused by

the variety of manufacturing control devices and the various formats of manufacturing

data. This study is focused on the process o f dealing with manufacturing information data

based on Lab VIEW related control processes. The system developed in this study

eliminates the need for relying on third-party software to provide the communication

channel between the Lab VIEW controller and the SQL relational database. Instead, a

modular LabVIEW-based data collector is integrated into the Lab VIEW control

application. The modular data collector resides in the LabVIEW environment as

programmable subVIs. The sub Vis can be accessed and used by any LabVIEW

applications when they are saved in the LabVIEW Dynamic Link Library (DLL). The

data collector can be used as a component o f modular integration systems in any

LabVIEW-based manufacturing process.

First, the data collector is small in size which occupies less than 300 kilobytes

memory. Compared with the size of any software supporting the database communication

with Megabytes, it occupies very small memory in the control server. When the data

collector is running inside the LabVIEW application, the machine is not in the

multi-tasking status with several applications running together. All the data processing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

102

and function realization is executed within a single control application. In the last section

of Chapter Three, the ANOVA test results show that the data collector does not make

significant change on the existing computer system. Second, the data collector provides

an economic way to implement integration solutions. This is also a critical factor when

small-to-medium-sized manufacturing companies consider their investment budget on

enterprise integration implementation. The same data collector may not adapt to various

cases in real industry world. However, the theories and principles applied in the

development process can be used by manufacturing engineers and IT engineers to

develop similar modular application in various control processes. For example, the

flexible usage of ADO objects, the combination of.N ET functions and ActiveX function,

and the encapsulation o f SQL statements, can be applied in the communication of control

applications with relational databases, not limited to LabVIEW-based applications.

Last, the whole integration system is simplified by adopting modular components. It

is easier to update and maintain the operation of the system, and deal with the product

obsolescence. ActiveX objects, ADO objects, and SQL statements are basic programming

components for any web-based applications. The revision o f the web-based interface, the

update of the relational database, or the change of the manufacturing control process can

be achieved by modification o f each module.

The Template o f a Structured System .

The study provides a basic template for a manufacturing information integration

system. Based on this study, the primary design criteria for a manufacturing data

integration project include documented code, plant maintainability, open database

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

103

connectivity, and flexibility. The template system has three essential components, a

process data collector, a database server, and a web-based interface or reporting system.

Process data collector

The collector is the data acquisition point for the manufacturing process data. Its

essential function is to collect data from plant-floor controllers, store data in a "lite"

version of the manufacturing database, and provide transaction management o f records to

the process data server.

The manufacturing database in the collector will store real-time data values in the

same table structure and data formats as the process data server. The server that hosts the

data collector can be an industrial computer located in proximity to the manufacturing

process. By using a Web server, such as Microsoft IIS (Internet Information Services)

Server, to provide diagnostics and essential reports, the control engineer can ensure data

integrity between the process data server and the collector.

When the network connection between the data collector and data server is lost or

blocked, data transactions are stored on the data collector and rolled forward to the data

server once the connection is re-established.

Process Data Server

The process data server is a database server and an Internet/intranet Web server. The

process data server can be located in the front office computer room or offsite via secure

Internet. Memory and storage requirements for most manufacturing facilities are a

nominal 512 MB and 40 GB of storage. The system archives data older than six months.

Plant-floor controllers automatically feed data to a manufacturing database through the

data collector. Manufacturing database design can provide a marketplace edge if the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

104

information is used to advance business goals. To successfully design the database, one

needs to understand table definition—where database views are needed and how to write

stored procedures.

Web-based Interface or Reporting

End-users of manufacturing information are typically plant managers, quality

control staff, and production supervisors. The manufacturing information normally

needed by them are quality data, downtime reports, work order system, ingredient usage,

and production reports. Reports are provided via an Internet browser. When the plant

manager points the Web browser at the process data server, an information interface

becomes available. The report can be thought o f as a "process database record," providing

an information snapshot for a selected set of parameters, such as shift, batch, or work

order. The Web-based server runs active server pages, with Visual Basic scripts often

triggering stored procedures in the database to bring up the desired information.

Web-based reporting, established in this way, requires no applications to be loaded on

each desktop and information is accessible over an intranet or secure Internet connection.

The Personnel Involvement

The design, development, and maintenance of the integration system require the

involvement of personnel from several functional departments with cross-domain

knowledge and experiences, typically the IT staff, the manufacturing engineer, and the

control engineer.

The data collector resides on the plant floor and is therefore typically the

responsibility of the control engineer. Control engineers should have an essential role in

determining minimum essential criteria for speed and quantity o f data. In a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

105

homogenization process, for instance, the record for the process stored in the

manufacturing database need only have a high temperature, low temperature, and an

average temperature logged for a certain time interval. The control engineer should write

PLC code or LabVIEW code to provide these parameters to the process data collector.

This is not enough for developing and maintaining the data collector. It is required that

either the control engineers have the knowledge of information systems or IT staff needs

to help to work through the process.

The control engineer can take responsibility for data in the collector and the

database administrator can take responsibility for data in the process data server. In this

way, the manufacturing database becomes common ground for IT and control engineers

to support the needs for plant information. To support the needs for production and

process information and succeed in the design/building of a manufacturing database

requires a level of communication and cooperation between the IT department and

control engineers not commonly exercised. The reason is that computer and software

skills needed to set up a manufacturing database are the same basic skills that a database

administrator would possess to design and build a financial, inventory, or contact

database. When comparing the development of a manufacturing database to other types

o f database projects, the differences begin with conception and design. It is here the input

of the control engineer and the manufacturing engineer is needed to identify the origin of

the data and format it into proper engineering units or production metrics so that it can be

understood by production management.

The design and construction of the web-based interface or other web-based reporting

tools require the collaboration of the IT staff and the manufacturing engineer. The IT staff

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

106

is responsible for web-based programming and coding. However, the manufacturing

engineer and manufacturing management need to provide the input for the format of

reports and web-based interface, the way or method used to display or report the

manufacturing data, the priority of the data, any necessary alarm report, or any graphic

tools needed in the reports.

The Potential Development and Enhancement o f the System

To design and construct a complete enterprise control integration system for

implementation in a manufacturing enterprise is far beyond the time and efforts invested

in a study for dissertation. Therefore, further development and enhancement could be

added to the system developed in this study. Here, based on the experience and

knowledge gained from this study, several recommendations are proposed.

In this study, there is only one manufacturing database established. The data

retrieved by the data collector is fed directly into this database. As stated in the previous

session, a more feasible way is to set up two manufacturing databases. A smaller one is

hosted by a machine with the plant-floor process, which can be used to for temporary

data storage. For example, data collected in a short period of time can be saved in this

database. The separation of the database can improve the performance o f the system in

several aspects. First, the temporary data storage can provide a direct data access to

plant-floor workers, supervisors and engineers. They do not need to retrieve data from the

main database server when needed. Second, the data updating rate from the small

database to the main database can be set to a lower rate. In this situation, the network

traffic can be controlled to an optimized level. Also, the separated database server

provides a data backup for each other.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

107

Another recommendation is about the enhancement on the web-based interface. In a

manufacturing enterprise, personnel from several functional departments or different

management levels require different manufacturing information from the plant floor. For

example, the supply manager concerns about the raw material usage while maintenance

personnel needs to know the machine’s current status. Therefore, different web-based

interfaces or web reporting formats can be developed to get the right manufacturing

information to the right person for correct and fast decision making.

Improvement can also be made on the security mechanism implemented in the

system. As demonstrated in Chapter Three, Forms Authentication is applied to protect the

access to the web-based interface. However, the credential information, valid usernames

and passwords, are saved in the Web.config file which is a component o f the web

application. This is not the best way to keep the credential information, especially when

the users may gain the direct control right over the plant-floor processes. It is

recommended to save the credential information in a data table hosted by a secure

database server. Events for connecting to the database and retrieving the information for

authentication purposes need to be programmed into the Web.config file and the

login.aspx file. When implemented on plant floor, the system can also apply secure

Internet protocols to protect the data transmission. Typical secure Internet protocols are

TSL, Transport secure layer, and SSL, Secure Sockets Layer. Typical networking

topology on the shop floor could be organized as isolated LAN; hence the data

transmitted between nodes are confined within the network. In the case some nodes

need to access outside o f the shop floor, they can be identified and communication with

outside through a firewall.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

108

At the last, the database server can be connected to higher level manufacturing

management and business applications to support decision making on the top levels of

the manufacturing enterprise. Since the database is compatible with most o f the Microsoft

office applications, it is very convenient to realize the integration.

Recommendations for Future Studies

The engineering- and business-driven need for manufacturing process data has led to

the development o f manufacturing information systems, with the focus on the relational

database. This study has proposed an approach for developing a modular integration

system to deal with manufacturing data process. This approach has technically improved

the flexibility and efficiency of the communication between plant-floor control process

and the database server, with reduced cost. However, further studies are recommended to

get the statistic data about the implementation o f enterprise-control integration solutions

in small-to-medium-sized manufacturing companies, compare the efficiencies between

the modular system and a conventional system, and to evaluate the feasibility of the

modular integration system.

Collecting and analyzing real-time data from the plant floor plays a critical role in

meeting the market's demand for consistent product quality and improving time to market

for a manufacturer's products. However, for quite a few small-to-medium-sized

manufacturing companies, complete implementation o f the manufacturing information

system is still above their short-term plan, or even long-term plan. For they still have

stand-alone workstations running on the plant floor as isolated information islands and

old version PLC controllers without advanced data integration module, the

implementation becomes even more expensive.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

109

In order to solve the problem, the first step is to describe the problem in a realistic

way. A survey is recommended to be conducted on manufacturing companies for their

current situation of manufacturing information systems. The criteria for selected

manufacturing companies should include but not be limited to: (1)

small-to-medium-sized; (2) produce different types of products; (3) have different

production types; and (4) located in different geographic areas. Items listed in the survey

questionnaires may include but not be limited to: (1) current facilities used in

manufacturing data processing including both hardware equipment and software

applications; (2) current integration levels; (3) short-term strategic plan in improving the

manufacturing information system; (4) long-term strategic plan in improving the

manufacturing information system; and (5) personnel training plans and involvement.

Based on the result of the survey, statistic analysis should be taken to figure out the

current situation of the manufacturing information systems in these companies and also

problems.

After the survey is conducted, establish possible collaboration relationship with one

or more companies. With contributions from experienced control engineers and

manufacturing engineers in the companies, an experimental study needs to be conducted

to compare the efficiencies between the modular integration system and a conventional

system for data collection. Both the modular integration system, the system with the

modular data collector, and a conventional system, a system with third-party software for

data collection, are implemented into the same control process in the real-world

manufacturing environment. Measurements including database response time, system

resource usage, and database updating cycle, are sampled from both systems during the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

110

operation periods. Specified software or hardware may be required for the accurate data

sampling. ANOVA or t-test can be applied to compare the statistical significance between

the modular integration system and the conventional system. Therefore, the efficiency

improvement o f the modular data collector can be further verified and tested in the

real-world manufacturing environment.

Technical enhancements need to be applied to the modular integration system. This

step is also needed to be conducted with experienced control engineers, manufacturing

engineers and IT staff from real world environments that are willing to support the

project. The enhanced system can be implemented to improve the manufacturing

information system in the company. Tests need to be conducted to evaluate the system

performance based on measurements from the real control process on the plant floor.

In conclusion, to improve the implementation o f manufacturing system integration

for business-driven and engineering-driven purposes requires the efforts from

cross-domain personnel in both academia and industry.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I l l

REFERENCES

Beyon, Y. J. (2001). LabVIEW Programming, Data Acquisition and Analysis. Prentice

Hall PTR, Upper Saddle River, New Jersey.

Chang, T. C., Wysk, R., & Wang, H. P. (2005). Computer-Aided Manufacturing. Third

Edition. Prentice Hall, Upper Saddle River, NJ 07458.

Dewar, I. (1999). Real-time optimization equals on-line performance improvements and

off-line benefits. ISA TECH 1999.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design Patterns: Elements of

reusable object-oriented software. Addison-Wesley.

Francois, V. (1996), Enterprise Modeling and Integration: Principles and Applications,

Chapman & Hall.

Foggon, D., & Maharry, D. (2004). Beginning ASP.NET 1.1 Databases. Apress.

Fuggetta, A., Picco, G. P., & Vigna, G. (1998). Understanding code mobility. IEEE Trans.

Softw. Eng., 24, 342-361.

Gavalas, D., Ghanbari, M., O ’Mahony, M., & Greenwood, D. (2000). Enabling mobile

agent technology for intelligent bulk management data filtering. In Proc. Of

NOMS’OO, Honolulu, HI, April 11-13, pp. 865-876. IEEE Press, Piscataway, NJ.

Getting Started With NI Motion Control (2003). National Instrument.

Grundgeiger, D. (2001). Programming Visual Basic .NET. O ’Reilly.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

112

Gunasekaran, A. (2001). Agile Manufacturing: the 21st Century Competitive Strategy.

Elsevier.

Herb. M. S. (1997). Considerations for integrating process with business plan in the real

world. ISA TECH 1997.

Hua, J., & Ganz, A. (2003). A New Model for Remote Laboratory Education Based on

Next Generation Interactive Technologies. Frontiers in Education Conference.

Hoover, S. (1999). Quick product-data management. Think out of the box when

implementing PDM. Quality, Vol38, Iss9.

Manufacturing Engineering Laboratory (2001). Issues in enterprise integration, retrieved

from MEL website January 23, 2005. http://mel.nist.gov

Mick, R. (2003). Building Agility into the Manufacturing Value Chain. ARC White Paper.

ARC Advisory Group.

Motion Control. NI-Motion User Manual. (2003). National Instrument.

Schneider, S., Pardo-Castellote, G. & Hamilton, M. (2000). Using Ethernet for real-time

communication. ISA EXP02000.

Sowell, T. (1999). Completing a manufacturing system by framing time series data in

manufacturing context. ISA TECH 1999.

Taqui, A. (2002). Increase ROI by providing real-time manufacturing process information.

IMS 2002.

Tham, K. D. (1997), Enterprise Modeling, Enterprise Integration Laboratory. Retrieved

March 3rd, 2005, from http://www.ie.utoronto.ca/EIL/comsen.html

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://mel.nist.gov
http://www.ie.utoronto.ca/EIL/comsen.html

	Establishing A Web-Based Integration Module In .Net And Labview Environment
	Recommended Citation

	tmp.1722516122.pdf.RZOBW

